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Abstract
Even with substantial endeavors to test and validate proces-
sors, computational errors may still arise post-installation.
One particular category of CPU errors transpires discreetly,
without crashing applications or triggering hardware warn-
ings. These elusive errors pose a significant threat by under-
mining user data, and their detection is challenging. This
paper introduces Orthrus, a solution for the timely detection
of silent user-data corruption caused by post-installation
CPU errors. Orthrus safeguards user data in cloud applica-
tions by providing simple annotations and compiler support
for users to identify data operators and validating these op-
erators asynchronously across cores while maintaining a
low overhead (2–6%), making it practical for production de-
ployment. Our evaluation, using carefully injected errors,
demonstrates that Orthrus can detect 87% of data corruptions
with just a single core dedicated to validation, increasing to
91% and 96% when two and four cores are used.

CCS Concepts: • Hardware→ Testing with distributed
and parallel systems; • Computer systems organiza-
tion → Reliability; • Software and its engineering →
Software maintenance tools.
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1 Introduction
Microprocessors have advanced to a point where they are
no longer entirely reliable. As Google describes, they have
become "mercurial" [44], meaning their calculations may
no longer behave predictably. While CPU errors have ex-
isted for as long as CPUs themselves, they were historically
rare and primarily affected only highly sensitive calcula-
tions. This is, unfortunately, no longer the case with cloud
computing, where data centers house thousands of CPUs.
While individual errors remain rare, the likelihood of such
errors affecting system reliability and data integrity is signif-
icantly higher. Google reported that these errors manifested
monthly, often long after installation, and were isolated to
specific CPU cores rather than entire chips or families of com-
ponents [44]. Similar findings have been reported by other
tech firms [30, 50, 73], as well as research institutions like
Oak Ridge [35] and Los Alamos National Laboratories [54].
CPU errors can have varying consequences [73], with

silent user data corruption (SDC) being among the most se-
vere (i.e., considered catastrophic by cloud providers such as
Google [42], AWS [9], and Alibaba [73]), as user data corrup-
tion poses a significant risk by violating SLAs and causing
far greater damage than crash-induced failures. Consider a
cloud service storing data for a bank. If it returns a deflated
account balance to a user during a query, the consequences
could be disastrous—the bank would likely need to com-
pensate the customer and might face significant fines from
the federal regulators. Furthermore, the bank could initiate
a lawsuit against the cloud provider, leading to a lengthy
and costly legal battle that could span years and involve
millions of dollars. Detecting and reporting user data cor-
ruption is a critical priority for cloud providers. For example,
Alibaba Cloud requires developers to explicitly implement
data integrity verification (with checksums) after every read
or write operation on user data [11, 73]. However, this man-
ual process is labor-intensive and checksums cannot detect
instances where data payloads are corrupted by CPU errors
during data updates.
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State of the Art. The most common approach today for de-
tecting CPU errors involves periodically running test cases
(e.g., every threemonths [30, 73]) to assess CPU fleets [40, 73].
However, as an offline technique, this form of testing is de-
signed to detect mercurial cores rather than the user data
they may have corrupted. Consequently, it fails to catch data
corruption in real-time for cloud applications, allowing dam-
age to occur before detection—for instance, a user account
may be compromised long before the tests are executed.

In contrast, online techniques like replication-based valida-
tion (RBV) [15, 58] and instruction-level validation (ILV) [67]
can detect errors in real time but come at a high cost. RBV re-
quires running the original application alongside its replica
in isolated environments (e.g., separate servers), resulting in
significant resource overheads and expensive cross-server
communication. RBV consumes more than 100% CPU and
memory resources due to maintaining a replica and per-
forming validation. In addition, synchronizing operations
between the primary instance and its replica introduces fur-
ther performance overhead. ILV, on the other hand, enforces
cycle-by-cycle synchronization and comparison, leading to
a 50-fold performance slowdown and requiring specialized
hardware that is not available in current cloud environments.
As such, neither approach is practical for production use.

A substantial body of research exists on crash-consistency
techniques that verify [18, 19] or check [16, 43] data con-
sistency during crashes. However, these techniques primar-
ily focus on validating a system’s on-disk or in-memory
metadata, rather than the actual data payload. Ensuring the
integrity of the payload itself is significantly more resource-
intensive and remains an unsolved challenge.

Goals and Non-Goals. This paper investigates the feasibil-
ity of a low-overhead, best-effort approach for continuously
validating cloud applications to detect SDCs caused by CPU
errors. Note that we do not intend to detect mercurial CPU
cores or offer coverage guarantees; nor do we provide mech-
anisms for applications to withstand CPU errors. Our goal is
to provide an online validation assistant for each application
that has low tolerance of corrupted user data, detecting and
reporting corruptions as soon as they occur. Once an SDC is
detected, the application is aborted, preventing the corrupted
data from being returned to the client.

Insights. Our work stems from a key observation: the code-
base of a typical cloud application often exhibits a clear
separation [57, 59, 60] between a control path—which imple-
ments control logic such as scheduling and dispatching and
does not manipulate user data—and a data path that performs
operations on user data. For instance, in big data systems
like MapReduce [25] and Spark [74], the data path consists of
straightforward user-defined data processing functions such
as map, reduce, or shuffle. In key-value stores and databases,
the data path includes data retrieval and update functions
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Figure 1: An overview of Orthrus’ approach.

such as insert, read, and update, which operate over a dis-
tributed data structure like a hash table or B+ tree. User data
enters an application through the control path (e.g., such
as file operators or network sockets), which forwards it to
the data path for computation; the results flow through the
control path again before getting back to the user.

Building on this observation, we developed Orthrus, a sys-
tem that detects SDCs using a hybrid approach tailored to the
behaviors of the two execution paths. Figure 1 provides an
overview of Orthrus’ mechanism. Since the control path does
not modify user data, Orthrus computes a checksum when
each user data object is generated and verifies it before it
enters the data path (§3.4). In the data path, Orthrus ensures
correctness by validating (re-executing) each data operator
on a different core and comparing the results of the two exe-
cutions (§3.1). Given that the data path has a much simpler
code structure than the control path, re-executing data-path
operators is significantly more feasible and efficient than
re-executing the entire program (done in RBV).

Orthrus maintains a low time overhead of ∼4% while dy-
namically adjusting its resource usage based on available
cores, making it deployable for production. Achieving such
a low overhead and high resource adaptability requires over-
coming two challenges, as elaborated below:

The first challenge is how to efficiently re-execute data-path
operators. Our experience shows that most of these opera-
tors, even in large, real-world applications, are simple in logic
and most of their implementation code can be directly re-
executed for validation. To correctly re-execute a data-path
operator, Orthrus provides simple annotations that allow
developers to declare user data types (e.g., tree, hash map,
etc.) as well as closures that represent data operators to be
validated (e.g., map, reduce, insert, etc.). Our compiler auto-
matically identifies the input and output of each closure and
transforms the closure to use a set of Orthrus primitives for
logging (§3.1).

To ensure that the validation of a closure (i.e., VAL) is con-
ducted on the same input and memory state as the original
execution (i.e., APP), Orthrus employs a versioned memory.
It runs the application and validation in separate processes,
each with its own private heap while sharing a user-data
space backed by versioned memory. Every write to user data
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(i.e., objects of an annotated user-data class) in the APP cre-
ates a new version in this shared space. Upon the APP execu-
tion completion, Orthrus generates a validation log contain-
ing the addresses of the input, output, and all data versions
produced during execution. This log is forwarded to the VAL,
which re-executes the closure on a different core using the
same input and an identical initial memory state. Versioned
memory also enables Orthrus to completely eliminates de-
pendencies between the APP and the VAL—validation can
occur out-of-order with logs and independently of the origi-
nal computation, reducing overhead (§3.3).
The second challenge is how to effectively use resources.

Timely validation of all data-path operators may require
a large amount of CPU resources, taking compute away
from applications. To effectively validate closures without
incurring a heavy burden on compute, Orthrus employs a
sampling-based algorithm that selectively chooses closures
to validate, effectively adapting the amount of validation
work to the available resources. In other words, validation
logs produced by APPs are pushed into a validation queue
(Figure 1) and selectively validated by the validation process.

The Orthrus scheduler dynamically adjusts the sampling
rate based on observed validation latency—the time gap
between the execution of each APP and its corresponding
VAL. A high latency suggests excessive computational load,
prompting the scheduler to decrease the sampling rate. Or-
thrus prioritizes operators that have not been recently val-
idated, leveraging prior observations [34, 44] that CPU er-
rors are highly reproducible and correlated with specific
instructions rather than being transient. If an operator has
undergone multiple validations without user data corrup-
tion being detected, its future executions are also likely to
remain SDC-free. Orthrus also gives high priority to opera-
tors that contain certain types of instructions (such as fp and
vector) on which CPU errors were observed to frequently
occur [30, 40, 73] (see §3.5).

Results.We emulated CPU faults by using LLVM to inject
instruction-level errors following the patterns observed in
[46, 73]. Our results with four real-world applications demon-
strate that Orthrus incurs a low overhead of ∼4%, which is
1.9× faster than RBV, and enjoys a validation latency of 40µs,
which is three orders of magnitude lower than that of RBV.
Although the SDC detection ratio (i.e., coverage) depends
on the sampling rate, which, in turn, is determined by the
amount of available CPU resources, our results demonstrate
that Orthrus can detect 87% of data corruptions with just a
single core dedicated to validation, increasing to 91% and
96% when two and four cores are used, respectively. Orthrus
is available at https://github.com/ICTPLSys/Orthrus.

1 static inline uint64_t

2 pow2_ceil_u64(uint64_t x) {

3 // A computation error in branching.

4 if (unlikely(x <= 1)) {

5 return x;

6 }

7 size_t msb_on_index = fls_u64(x - 1);

8 return 1ULL << (msb_on_index + 1);

9 }

Listing 1: Masked error: a silent computation error occurs in branch
condition calculation, but it does not change the branching results.

2 Background
2.1 Silent Computation Errors
These errors are a significant contributor to data corruption
in large-scale data centers [30, 44, 73]. For instance, test-
ing over one million processors on Alibaba Cloud revealed
that 3.61‱ of them exhibited computational errors capa-
ble of causing SDCs [73]. This underscores the importance
for both industry and academia to better understand the
data corruption fault model and develop efficient validation
techniques. Recent studies [30, 44, 73] indicate that silent
computation errors are highly reproducible, occur even in
CPUs that have passed pre-production testing, and affect all
micro-architectures.
Silent computation errors occur at the instruction level,

encompass a range of issues such as arithmetic errors, mem-
ory access errors, vector computation errors, and even jump
errors [30, 40, 46, 73]. Unlike fail-stop errors, these errors can
bypass traditional fault-tolerantmechanisms like checkpoint-
ing and recovery. They are strongly correlated with certain
types of instructions. A study from Google [44] shows that
once a CPU error occurs in a function (e.g., upon detection of
its crash), it will often continue to occur in the same function
at a certain frequency. This behavior leads to our sampling
strategy (§3.5) that favors the selection of data operators that
have not been recently validated.
The consequences of such errors can be categorized into

two types: masked errors and silent data corruptions (SDCs).
Masked errors do not affect the final computation results;
for instance, a bitflip error might occur on the variable x

during the evaluation of x <= 1 (Line 4 in Listing 1), but
this does not alter the control flow, allowing the application
to proceed correctly by executing the appropriate branch
(Line 7). In contrast, SDCs corrupt computation results, as
illustrated in Listing 2, where an error during a hash table
query leads to incorrect data being returned to users.
Although silent CPU errors can occur at any instruction

and corrupt various types of data, this work focuses on safe-
guarding user data managed by cloud applications for the
reasons detailed in §1. Orthrus ensures coverage for both
data reads and writes, flagging errors in cases of corruption
either when (1) user data is returned to clients (i.e., load) or
(2) user data is written into memory (i.e., store).
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1 dictEntry *dictFind(dict *d, const void *key) {

2 // SCEEs occur in calculating the hash from key.

3 h = dictHashKey(d, key);

4 for (table = 0; table <= 1; table ++) {

5 idx = h & DICTHT_SIZE_MASK(d->ht_size_exp[table]);

6 // Query tables accodring to the hash value

7 }

8 }

Listing 2: SDC: a silent computation error occurs during the hash
calculation, resulting in returning wrong results to the client.

1 // Data path:

2 Item *set(KVPair *kv_pair) {

3 KVPair kv = *kv_pair;

4 uint32_t hv = hash(kv.key);

5 item_lock(hv);

6 Item *next = hashtable[hv & hashmask ];

7 Item *item = new Item;

8 *item = {kv, next};

9 hashtable[hv & hashmask] = item;

10 item_unlock(hv);

11 return item;

12 };

13 Item *get(String key);

14 void remove(String key);

15
16 // Control path

17 void drive_machine(conn *c);

18 // network IO

19 int new_socket(struct addrinfo *ai);

20 ssize_t tcp_read (...);

21 ssize_t tcp_write (...);

22 void conn_init(void);
23 // scheduling and event processing

24 void dispatch_conn_new (...);

25 void event_handler (...);

26 void stop_threads(void);
27 // miscellaneous

28 bool get_stats (...);

29 // parse and dispatch commands

30 int try_read_command_ascii(conn *c);

31 void process_command_ascii(conn *c, char *cmd) {

32 token_t command_token = /* ... */;

33 if (command_token == "set") {

34 KVPair *pair = /* parse key -value pair ... */;

35 Item *it = set(pair);
36 /* copy it ->value to response buffer ... */

37 } else { /* process other command types ... */ }

38 }

39 /* other functions ... */

Listing 3: Data path and control path in Memcached.

It is important to note that SDC is caused by instruction-
level CPU errors and hence checksums alone are only capable
of protecting data against bit-flip errors that directly corrupt
data, but cannot detect errors during computations that are
meant to update user data and impact control flow. To illus-
trate, consider Listing 2 again. If the dictHashKey function
produces an incorrect value of h due to a computation error,
the dictFind function still executes normally but returns an
incorrect result. In the worst-case scenario, if a subsequent
Set operation depends on the result of this dictFind, the data
may be inserted into the wrong bucket and consequently
never be retrieved again. To address this, Orthrus employs

the re-execution mechanism in addition to checksums, effec-
tively protecting cloud applications from both bit-flip errors
as well as errors in execution flow and computation.

2.2 Data and Control Path
As discussed in §1, Orthrus builds on an observation that a
cloud application has a clearly defined control and data path.
To illustrate, consider Listing 3 that shows how the data
and control path split in Memcached [2], a real-world data
store commonly used in industry. Its data path consists of a
series of data operators, such as get, set, remove, etc. (Line 2-
14), whereas its control path (Line 17-38) is responsible for
handling network traffic, parsing requests, dispatching them
to the data operations, and/or forwarding the retrieved data
to the client.
On one hand, the boundary between the data and con-

trol paths is clearly defined: all data operators are located
in four files assoc.c, hash.c, item.c and cache.c, and only
these operators manipulate user data. The control path man-
ages the data flow by invoking these operators to pass inputs
and retrieve outputs (e.g., Line 35), without directly modi-
fying the user data. On the other hand, the control logic is
significantly more complex than the data path logic. In the
original implementation, for instance, the control path has
a code size over 20× larger than the data path. This pattern
consistently appears across all real-world applications we
evaluated, forming the basis for Orthrus’ data-path valida-
tion approach.

2.3 What Orthrus Cannot Detect
First, Orthrus is unable to detect masked errors that do not
impact computation results. This limitation arises because
Orthrus identifies corruption by comparing the outcomes of
data operators to minimize overhead. However, this is not
a concern since these errors do not affect the data stored in
the cloud or returned to users.
Second, an error may occur in a data operator that in-

vokes a non-deterministic (e.g., a random number generator
or timer) system call or a synchronization primitive (e.g.,
mutex) or interacts with external devices (e.g., disk or net-
work). Since Orthrus records the outcomes of these calls and
replays them during validation (see §3.3), it cannot directly
validate the system call itself. Profiling results from repre-
sentative cloud applications reveal only a few system calls,
with extremely small code sizes—only 0.04% of the executed
instructions belong to these syscalls, leaving extremely low
probabilities of being hit by a silent execution error.

Third, Orthrus employs checksums to detect SDCs caused
by CPU errors in the control path (see §3.4). However, if a
CPU error affects the interaction between the control and
data paths, checksums alone may not catch it. For example,
an error in a comparison instruction that belongs to the
control path could incorrectly alter the control flow, causing
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the wrong data-path function to be invoked (e.g., calling get

instead of insert when handling a user request).
Fourth, in an unlikely scenario where the two cores run-

ning a data operator APP and its corresponding VAL both
produce errors that corrupt user data in precisely the same
way, Orthrus would be unable to detect such corruptions.

Finally, Orthrus uses sampling to adapt the validation ef-
fort to the amount of available resources, and hence can also
miss errors that occur in functions that are not selected for
validation. Since practicality is the most important design
goal, Orthrus was architected to be a best-effort tool that runs
efficiently online alongside applications to promptly catch
data corruptions that occur in resource-constrained produc-
tion environments. Users could use heavyweight validation
techniques such as RBV if resources are abundant or offline
testing if their goal is only to identify erroneous CPUs.

3 Orthrus Design and Implementation
Orthrus comprises several main components. This section
first presents Orthrus’ user data management and its low-
level primitives (§3.1). Then, we present Orthrus’ LLVM-
based compiler that can automatically transform annotated
operators to operate user data in versioned memory with
the low-level primitives (§3.2). Next, we present Orthrus’
online validator capable of detecting silent data corruptions
in the data path (§3.3) as well as how to use checksums to
verify data integrity in the control path (§3.4). Finally, we
present Orthrus’s scheduler (§3.5) and memory manager
(§3.6), which schedules validation tasks based on resource
availability and recycles unused data versions, respectively.

3.1 User Data Management in Orthrus
Key to Orthrus’ efficiency is a novel technique to model and
version user data in applications. This subsection focuses on
the presentation of Orthrus’ low-level primitives (e.g., with
Orthrus pointers and allocation API) to manage user data.
Note that these low-level primitives will not be directly used
by developers—our compiler support (§3.2) automatically
transforms a program’s data path to use such primitives.

Memory and Low-level Primitives. As shown in Figure 2,
the application heap is divided into two regions: a private
space and a user-data space that is versioned to enable ef-
fective validation. Objects allocated with regular allocation
libraries such as new are placed in the private space, whereas
user data must be allocated using OrthrusNew (and deallo-
cated with OrthrusDelete) and will be placed in the user-data
space for data corruption detection. User data can only be ac-
cessed and manipulated through Orthrus pointers (Listing 4),
which are typically used to specify the input and output of a
data-operator (i.e., a closure as discussed shortly).
An OrthrusPtr, similar to the C++ smart pointer, is de-

signed to track accesses to user data stored in the user-data
space. Its structure is shown in Listing 4. The actual user data
can be obtained through the load function, and the returned

Private Heap Private HeapUser-data Space

Virtual Address Space of Validator

Virtual Address Space of Application

Versioned UnversionedUnversioned

Figure 2: Memory organization of an Orthrus-based application:
the versioned user-data space is shared between the application
and the validation processes to maximize validation efficiency.

1 class OrthrusPtr <T> {

2 uint64_t metadata; //flags & pointer value

3 const T* load(); //Get the pointer value

4 void store(T); //Atomic , out -of-place update

5 };

Listing 4: Orthrus user-data pointer API.

1 #pragma user -data

2 class KVPair {...}

3
4 #pragma closure

5 Item *set(KVPair *kv_pair) {

6 KVPair kv = *kv_pair;

7 /* ... */

8 Item *item = new Item;

9 /* ... */

10 return item;

11 };

Listing 5: Annotating a function as a closure.

data is immutable. Any updates to user data must be through
the store function. Orthrus leverages OrthrusPtr to imple-
ment versioning, where each update creates a distinct ver-
sion in versioned memory out-of-place and is automatically
logged in the closure’s closure log for the subsequent valida-
tion. Versioning provides two major benefits: (1) it enables
an operator to be re-executed on a heap snapshot identical to
that on which the operator was executed originally, and (2) it
eliminates dependencies between the original and validation
execution, enabling Orthrus to perform out-of-order valida-
tion and thereby significantly improving efficiency. Further
details can be found in §3.3.

Closure and User-Data Classes. The only extra work de-
velopers must do to use Orthrus is to (1) annotate user-data
operators with keyword closure, which serves as a basic
unit for validation, and (2) annotate classes/structs that rep-
resent user data structures (such as Hashmap, Tree, etc.) with
user-data. To annotate a function as a closure, the developer
explicitly specifies a scope for re-execution, while the input
and output of the closure are automatically identified by
our compiler. The input data includes arguments and global
variables that may be accessed, while the output consists of
a set of new data versions generated in versioned memory as
well as the return value. The reason for annotating user-data
classes is for the compiler to automatically identify user data
objects and place them into the versioned heap space.
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1 struct closure_log {

2 uint32_t closure_id;

3 uint32_t core_id;

4 closure* closure_class; //Point to the closure

class

5 const void* inputs; //The inputs

6 const void* outputs; //The outputs

7 void (* self_defined_validation); // Optional

8 void *reserved; //e.g., record results of syscalls

9 uint64_t start_time; // for resource reclamation

10 };

Listing 6: Structure of a closure log.

Listing 5 depicts a simple example of annotating a Mem-
cached user-data class and a closure that represents a data op-
erator. For instance, class KVPair is annotated as a user-data
class and hence our compiler can find all its allocation sites
and replace them with the Orthrus allocation (OrthrusNew),
which places the allocated objects into versioned memory.

In addition, the implementation of a closure must follow a
single-threaded execution model, ensuring that the validator
can re-execute the closure on a different core for validation.
Note that this is already the case in most real-world applica-
tions—an application may launch data operators in multiple
threads, but the implementation of each operator itself (e.g.,
get, set, map, reduce, etc.) is always single-threaded.
Shared data accessed by multiple closures through Or-

thrus pointers can be tracked explicitly. For example, if two
closures running in separate threads attempt to update the
same data object via Orthrus pointers, the first closure to ac-
quire the lock creates a new data version, records its closure
ID and proceeds. The second closure then creates another
version. This ensures that both the accessing closures and
the versions they take as input are recorded for a faithful
re-execution.

Closure Log. To ensure consistent results for comparison,
Orthrus produces a closure log at the end of the execution of
each closure. It provides the validator with a memory view
identical to what the application sees, including the closure’s
inputs, outputs, versions of user-data reads, writes, as well
as the recorded results of system calls. Since system calls
may have side effects (i.e., read from or write into a socket)
or return non-deterministic values (i.e., a random number or
a timestamp), Orthrus does not re-execute them, but instead,
it directly uses the logged results during validation.

Listing 6 outlines the structure of a log. As explained ear-
lier, Orthrus employs versioning to make the memory view
consistent. User data is read-only, and any update to it re-
sults in a new data version. The inputs field captures the
corresponding versions of all input user-data accessed by
the closure during the execution. If the input data is mutated
during the execution, newer versions of the data are gen-
erated but the original version remains the same (for the
validation to correctly execute).

Orthrus considers the output of a closure to include (1) the
addresses of all new data versions created through the invo-
cation of store on OrthrusPtrs and (2) the return value of the
closure. These values are recorded in the outputs field of the
log. The closure_class field references the closure’s class,
containing its computations. Since all inputs and outputs
are accessible through this log, the validator can execute the
closure with the log and compare the results, asynchronously,
without requiring interaction with the application. The sys-
tem calls executed in a closure are intercepted and their
values are recorded in the closure_log.reserved field of the
log for the replay of these calls during its validation.
To optimize the logging performance, we implement a

cache-locality-aware log allocator to efficiently manage logs.
Details are omitted due to space constraints.

3.2 Orthrus Compiler Support
The Orthrus compiler automatically transforms annotated
data-path operators using our LLVM-based infrastructure.
This transformation is applied at the IR level and focuses
on identifying user-data objects. It replaces standard alloca-
tions/deallocations and pointers associated with these ob-
jects with OrthrusNew/OrthrusDelete and OrthrusPtr, respec-
tively. The core idea is to allocate user-data objects in ver-
sioned memory using OrthrusNew and ensure all accesses go
through OrthrusPtr, which enables versioning and check-
sum operations; the latter is for data integrity verification
when user data goes through the control path, as discussed
in §3.4.

To realize this, our compiler identifies all classes annotated
with user-data and locates every allocation site that instanti-
ates objects of these classes. Each such class is made to inherit
from OrthrusObj (Listing 7), which contains a checksum field
that stores the checksum of the object’s data payload. This
checksum will be used to verify data integrity when user
data goes through the control path (§3.4). Each allocation
site of the class is then replaced with a call to OrthrusNew. For
each closure, Orthrus performs two passes over the function
body. In the first pass, it conducts type inference to determine
which variables are of user-data types. Any pointers refer-
encing these variables are replaced with OrthrusPtr, and all
read/write operations through these pointers are rewritten
as OrthrusPtr.load and .store, respectively.

The second pass performs escape analysis [10, 28], aiming
to identify objects that may potentially outlive the function
execution—i.e., those whose lifetimes extend beyond the clo-
sure. Objects that do not escape are guaranteed to be deallo-
cated before the function returns and can therefore be safely
placed in the private heap even if they are of a user data
type. These objects are not part of the closure’s initial heap
state; they do not need to be allocated in versioned memory
and their pointers are not replaced with OrthrusPtr, thereby
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1 template <typename T>

2 class OrthrusObj : public T { uint16_t checksum; }

3 OrthrusPtr <Item > set(OrthrusPtr <KVPair > kv_pair) {

4 KVPair kv = *kv_pair.load();

5 /* ... */

6 OrthrusPtr <Item > item = OrthrusNew <Item >();

7 /* ... */

8 return item;

9 };

Listing 7: The transformed closure code from Listing 5.

improving performance. Note that corruption of such tem-
porary objects will go undetected by our validator unless it
propagates to user data stored in versioned memory.

3.3 Validation
Orthrusmaintains a validator process that uses a per-core log
queue to run validation.When an application closure finishes
its execution, it generates a closure log. The scheduler picks
a core that is different from the one that runs the closure
and pushes the log into its log queue. Validation is done by
dequeuing logs from each queue and re-executing closures
on them. The validator process is allowed to read from the
user-data space of the application process (where log entries
point to), but it can only write into its private heap.

Read and Write. Once a log is dequeued, the validator first
retrieves the input and output by following the input and
output OrthrusPtrs. The validator runs the closure with the
input in a separate execution environment. When the closure
dereferences an OrthrusPtr to load data, it reads from either
the shared user-data space (like the input or log entries)
or its private heap. However, a store with an OrthrusPtr

always writes into its private heap to not interfere with the
application heap—if the raw memory address in the pointer
initially belongs to the shared user-data space, Orthrus finds
a new location in the validator’s private space, writes the
value in, and atomically updates the pointer with the new
address. This ensures all subsequent reads and writes use
this updated address. The validator’s private heap is not
versioned since we do not need to re-execute the closure
after validation.

Result Comparison. Orthrus allows users to overload the
“==” operator on the OrthrusPtr that points to the output data
structure. This operator is used to check if the validator’s
output matches the record in the closure log. If it is not
explicitly defined, Orthrus performs a bitwise comparison
between the two memory regions.

Out-of-Order Validation. Closure logs serve as a self-
contained record, providing the validator with all neces-
sary inputs, outputs, and computations. This design allows
the validator to process closure logs independently with-
out requiring synchronization with the application. Further-
more, Orthrus leverages the lightweight user-thread runtime
Shenango [62] to implement the validator, allowing dynamic

Client:
Generate the user data via
Closure and send it to server

Server:
Verify received user data and update
the user data via Closure

set Ouput

Relay the user data
with checksums

Input

Data Path
(Closure)

Control Path
set

......
Call Stacks

OrthrusPtr<Item>
set (OrthrusPtr<KVPair> kv_pair) {

// Verify the checksums via load()
KVPair kv = *kv_pair.load();
....

// set the user data
// Generate the checksums via store()
auto item = OrthrusNew<Item>();
item.store({kv, next});
....

return item;
}

generate_kv_pairOuput
Verify
checksums

Generate
checksums

Generate
checksums

drive_machine

process_command_ascii

event_handler

Figure 3: Execution flow of the closures defined in Listing 3.

scaling at the microsecond level. This enhances CPU utiliza-
tion and further reduces detection latency.

3.4 Handling Control Path
Although the control path does not directly modify user data,
CPU errors occurring within control code can still result in
data corruption. For example, a CPU fault during a socket
read may alter user-provided input, and such an error would
bypass data-path validation since it does not originate from a
data-path operator. Since the control path does not perform
computations that update user data, our key idea is to use
checksums to efficiently verify data integrity at the interface
between the control and data paths.
In particular, Orthrus assigns a 16-bit cyclic redundancy

check (CRC) to each data object version, storing it in
the version header. The CRC is created each time a ver-
sion is generated (e.g., at the instantiation of a new ob-
ject through OrthrusNew or an update of the object through
OrthrusPtr.store). When a data object flows from the con-
trol/data path into the data/control path, the CRC is com-
pared against the content of the object.
To illustrate this, consider Figure 3, which shows the ex-

ecution of a set closure on the server side of Memcached.
On the client side, a key-value pair is created within the
generate_kv_pair closure using OrthrusNew. Once the object
is generated, Orthrus computes a CRC checksum and at-
taches it to the object. As the key-value pair is transmitted
over the network to the server, it passes through the control
path without modification before reaching the data path (i.e.,
the set closure). When set is invoked, the checksum is veri-
fied the first time OrthrusPtr.load accesses the object. Since
the control path—from the client-side generate_kv_pair to
the server-side set—is not expected to modify the key-value
pair, any data corruption introduced along the way can be
reliably detected by a checksum mismatch.

New checksums are generated when the key-value pair is
inserted into user data (e.g., a hash map) using the Orthrus
pointer via item.store. Once the insertion is complete, the
set closure returns a user data handler—an Orthrus pointer
referencing the inserted object—back to the control path.
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Since the checksum is used solely for integrity verification
rather than error recovery, a 16-bit checksum per object
is sufficient. Generating this checksum is lightweight, re-
quiring only a few dozen CPU cycles, and introduces ∼1%
performance overhead in our evaluation.

3.5 Orthrus Runtime
The Orthrus scheduler is a NUMA-aware system that moni-
tors idle cores, dynamically assigns validation tasks to the
cores that are not used to run application threads, and scales
tasks as needed to maximize resource utilization and mini-
mize detection latency.

Scheduling Policy. Since silent computation errors can re-
cur on the same hardware components such as ALUs, FPUs,
and vector units [30, 41, 73], our scheduler is designed to
prevent validation tasks from sharing these computing units
with application processes. On Intel platforms [47], where
ALUs, FPUs, and vector units are core-private, it is safe to
colocate application and validation tasks on different cores
within the same CPU (i.e., NUMA node). Colocating applica-
tion and validation tasks on the same CPU facilitates fast log
sharing. Many closure logs generated by application threads
are accessed by validation tasks within microseconds. This
approach increases L3 cache hit rates, significantly enhanc-
ing validation throughput and reducing detection latency.
Additionally, the scheduling policy is user-configurable to
detect other types of errors, such as cache consistency issues,
provided the detection can be achieved by comparing results.

Sampling.When hardware resources are limited, Orthrus
employs sampling to scale validation efforts according to
available compute capacity. The primary goal of this sam-
pling strategy is to maximize code coverage—that is, to val-
idate as many distinct code paths as possible. To achieve
this, Orthrus monitors logs from the validation queue and
adaptively selects closures that have not been validated re-
cently. It tracks a timestamp for each closure, indicating the
last time it was validated, and gives priority to those whose
timestamps exceed a defined threshold, ensuring that less
frequently validated code receives higher attention.

While this approach offers a baseline level of code cover-
age, a single closure can be invoked in various contexts (e.g.,
by different callers), with each context potentially exercising
different control paths [72, 77]. To improve the precision of
sampling and further enhance code coverage, Orthrus also
takes the caller into account. Specifically, it maintains a times-
tamp for each unique (closure, caller) pair. If a given pair has
been invoked frequently within a recent time window, its
likelihood of being selected for validation is reduced.
Prior studies [30, 33, 34, 41, 44, 46, 73] have shown that

CPU errors are strongly correlated with specific instruction
types, particularly those involving fp and vector operators.
During compilation, the Orthrus compiler detects and tags

closures containing these instruction types. These closures
are then given elevated priority in the validation process.
Orthrus begins by validating all closures. Running at a

low execution priority, the validation process initially tries
to utilize all available cores, though these resources can be
preempted by application threads at any time. If the queuing
delay for validation exceeds a predefined threshold, Orthrus
adaptively reduces the sampling rate in increments until the
delay returns to an acceptable range.

Safe Mode. Since SDCs are rare, validation does not, by de-
fault, block results from being returned to users, thereby
avoiding unnecessary latency. Instead, when an SDC is de-
tected, the system flags the specific corrupted operation re-
sult. This design, however, may risk externalizing corrupted
outputs. To address this, Orthrus offers an optional strict safe
mode that users can enable, ensuring that application results
are withheld until their corresponding closures are validated.
The performance cost of this mode is modest: only a lim-
ited subset of operations can potentially expose corrupted
data and thus require safe-mode execution. For instance, in
Memcached, only the get operation returns data to users,
while operations such as insert and remove do not. Similarly,
Phoenix only reveals results at the end of execution. More-
over, the validation overhead in Orthrus is minimal—just
a few microseconds per operation on average (§4.3)—con-
tributing less than 2% of total execution time.

Dynamic Scaling. The scheduler continuously monitors the
CPU utilization of the application and ensures that validation
tasks are scheduled only on idle cores to avoid performance
interference. To adapt to fluctuating application workloads,
the Orthrus scheduler supports dynamic scaling and work-
stealing mechanisms, enabling low SDC detection latency,
which is critical for preventing error propagation.

The Orthrus validator builds on Shenango [37, 62] user-
level threads, which support core reallocation within mi-
croseconds. Initially, the scheduler launches a single valida-
tion thread to periodically scan all log queues. Each closure
tracks its average validation latency, defined as the time be-
tween a log’s enqueue and validation completion, over the
last eight validated closure logs. If this closure-specific la-
tency exceeds a pre-defined threshold—such as 50% higher
than the average latency across all validated logs—it notifies
the scheduler to launch an additional validation thread (i.e.,
a Shenango thread) to handle half of its log queues.

Load Balancing. While out-of-order validation enhances
throughput, it can introduce tail latency issues. For instance,
a closure log might remain in its queue longer than its succes-
sors due to imbalanced validation workloads across threads.
Such delays can result in both prolonged SDC detection la-
tency and wasted computational resources if the log contains
corrupted data. Errors in the stranded log can propagate to
its successors that rely on its outputs, yet these errors cannot
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data ver. #N data ver. #N+1
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or OrthrusDelete()
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Of data ver. #N
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Figure 4: Visible window of a data version.

be detected by validating the successors. This is because clo-
sure log re-execution only detects errors occurring during
the current closure’s execution and assumes the inputs are
correct. Consequently, resources spent validating successors
are wasted. This problem can escalate with higher error rates.
To address this, Orthrus incorporates work stealing [53] to
balance validation workloads and mitigate tail latency issues.

3.6 Memory Reclamation
While versioning enables efficient validation, it leads to in-
creased memory consumption. To mitigate this, redundant
data versions must be reclaimed promptly to minimize mem-
ory overhead. Orthrus provides a garbage collector (GC) that
reclaims data versions as soon as they are no longer needed.

The core challenge in reclaiming stale data versions lies in
determining the exact moment when no pending closures or
closure logs reference those versions as inputs. This is non-
trivial as a data version may be used by multiple closures
(and hence appear in multiple logs) due to multi-threading.
The problem is further complicated by Orthrus’ out-of-order
validation model, which makes the validation timing of each
closure unpredictable. Traditional GC [20, 27, 52] does not
work for unmanaged languages such as C/C++. Reference
counting (RC) [21], as another commonmemory reclamation
technique, tracks the number of active references per version
at a very high overhead—maintaining reference counts re-
quires atomic operations for each increment and decrement,
which can lead to substantial synchronization costs—up to
13% overhead in memory-intensive workloads [68, 76].

The key insight driving our approach is that an ob-
ject version is only accessible within a specific visible
window, defined as the period between its creation (via
OrthrusPtr.store) and the creation of a new version of the
same object (via OrthrusPtr.store again)—the forward exe-
cution will not see this old version any more—or deallocation
(via delete), as illustrated in Figure 4. Similarly, each closure
execution has an active window: from the point the closure is
executed by the application all the way until its validation is
done by the validator (as illustrated by closure A in Figure 5).
After its validation is over, none of the versions referenced
by the closure’s log will be referenced any more.
Consequently, by tracking the visible window for each

data version and the active window for each closure, the
validator can determine whether a version can be safely re-
claimed by checking for time overlaps. Note that this is a

ObjA ver. #N
ObjB ver. #M

ObjC ver. #H
Elapsed Time

Closure A

Closure C

ObjC ver. #H2

Start exec.

Stale data versions
can be reclaimed

Closures in
the queue

Finish exec.

Validation
latency

Figure 5: Data versions whose visible windows end before the
earliest starting closure A in the queue can be safely reclaimed.

coarse-grained check—even if a data version’s visible win-
dow overlaps with a closure’s active window, the version
may still be reclaimed if it is not referenced by the closure.
However, tracking such references requires maintaining the
mapping between data versions and the closures that use
them, which introduces both high time and space overhead.
As a result, Orthrus employs an efficient approximate al-

gorithm to detect overlaps and quickly reclaim versions that
are guaranteed to be stale. Whenever the validator finishes
validating a closure, Orthrus searches a combined queue,
which contains all closures currently being executed by the
application and by the validator as well as those waiting to
be validated, to find the one with the earliest starting time
(say 𝑡 )—given 𝑡 is a past time, it is guaranteed that no cur-
rent and future closure executions can start earlier than 𝑡 .
As such, Orthrus can safely reclaim all data versions whose
visible window ends before 𝑡 .

As shown in Figure 5, the algorithm is efficient because
the combined queue is organized as a list sorted by the start
times of closure executions, with the earliest-starting closure
always at the tail. Orthrus asynchronously identifies data ver-
sions whose visible windows end before time 𝑡 and reclaims
them in batches to maximize efficiency. Experimental results
demonstrate that this approach significantly improves mem-
ory usage, reducing Orthrus’ memory overhead to ∼20%
while incurring a negligible time overhead.

4 Evaluation
4.1 Setup and Methodology
We developed the Orthrus compiler, library, and runtime in
C/C++. Our experiments were conducted on a cluster of three
servers, each equipped with two Intel Xeon Gold 6342 CPUs
and connected via 100 GbpsMellanox ConnectX-5 InfiniBand
adapters. The test environment ran on Ubuntu 18.04 with the
kernel version 5.14. To ensure consistent performance, we
disabled Turbo Boost, C-states, and CPU frequency scaling,
following the practices outlined by Shenango [62].

Workloads.We selected a diverse set of real-world cloud ap-
plications: Memcached [2], an in-memory object caching sys-
tem; Masstree [4], a multi-core in-memory key-value store;
Log-Structured Merge-Tree (LSMTree) [63], a two-level tree
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Application Dataset Size Characteristics
Memcached [2] CacheLib [14] 150 MOP Skewed with churn
Masstree [4] ALEX [29] 200 MOP Read-intensive
LSMTree [63] Synthetic [3] 50 MOP Write-intensive
Phoenix [64] WMT [48] 15 GB Word count

Table 1: Applications and datasets used for our evaluation.

structure commonly used for indexing write-intensive files,
such as in RocksDB [5]; Phoenix [64], a MapReduce frame-
work designed for data-intensive processing tasks, as detailed
in Table 1.

Annotating these applications is straightforward, as most
follow a well-defined separation between the control path
and data path. For example, MapReduce frameworks like
Phoenix already define standard data operations, such as
split, map, and reduce, and utilize structured data types like
hash_container and array_container. These components
can be directly converted into closures and Orthrus user
data through our annotations, as described in §3.1. Similarly,
in-memory data stores such as Memcached and Masstree
are structured around explicit operations—like get, set, and
remove—for manipulating user data, making them equally
amenable to Orthrus’ validation. As a result, porting these
applications requires minimal effort, with less than 20 lines
of code needing modification.

Baselines. We used the original, unmodified applica-
tions—referred to as the vanilla version—to evaluate the per-
formance overhead. For assessing SDC detection in terms
of overhead, timeliness, and coverage, we used replication-
based validation (RBV) as a baseline. In the RBV setup, a
replica of the application was run on a separate server from
the primary to avoid shared hardware and software states.
All client requests were directed to the primary application,
which batched and forwarded them—along with their out-
puts—to the replica in the same processing order. The replica
executed the requests and compared the results against those
from the primary. Any mismatches triggered a signal to in-
terrupt the primary’s execution. Instruction-level validation
(ILV) was excluded from our evaluation, as it requires spe-
cialized hardware and incurs prohibitively high overhead.

Fault Injection.Given that CPU errors are rare, to fully eval-
uate our technique, we used a compiler-based fault injection
method to emulate the corrupted execution of individual
instructions on a mercurial core [26, 38, 46]. By adding a
fault-injection machine function pass to the LLVM, we could
leverage an external configuration file to specify which ma-
chine instructions the Clang compiler should target for fault
injection and define the types of faults to apply. Typically,
this involves replacing the target instruction or modifying
its output to emulate corrupted execution.
We developed a fault-injection compiler framework (Ap-

pendix A in the supplementary material) to ensure the cov-
erage of the four types of vulnerable CPU features reported
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Figure 6: Application performance: throughput measured for Mem-
cached, Masstree, and LSMTree, while time measured for Phoenix.

by Alibaba Cloud [73]: arithmetic logic computation, vector
operations, floating point calculation and cache coherency.

CPU Resources. We conducted two sets of performance
experiments. The first set focuses on Orthrus’ overall perfor-
mance (§4.2) and its validation latency—how fast a closure
can be validated (§4.3). Since Orthrus is fully adaptive to
available resources, varying the number of cores has minimal
impact on these results. For example, the primary overhead
arises from logging and runtime bookkeeping, which occur
during application execution regardless of how many cores
are allocated for validation. Similarly, validation latency re-
mains largely unaffected by compute resources—sampling
may skip certain closures, but once a closure is selected, its
validation proceeds promptly and hence validation latency
is not impacted. The second set of experiments centers on
error coverage analysis (§4.4), which is directly influenced by
the number of cores allocated to the validator. Consequently,
we fixed the validator to use 2 cores in the experiments for
§4.2 and §4.3, while varying the number of cores in §4.4 to
illustrate the impact of sampling on coverage.

4.2 Application Performance
This subsection evaluates the end-to-end performance and
tail latency of applications under various validation tech-
niques. Because RBV relies on state-machine replication, it
was allocated the same number of cores as the correspond-
ing application (which is significantly more than the cores
used by Orthrus) to ensure reasonable performance. Overall,
Orthrus introduces only a modest overhead—4% in execu-
tion time and 25% in memory usage. In contrast, RBV incurs
significantly higher costs, with execution time and memory
overheads of 2.0× and 2.1×, respectively.
Memcached is a widely used in-memory data store with
extensive deployment in cloud environments. We annotated
a total number of 5 closures from its open-source implemen-
tation [8]. For evaluation, the client and Memcached server
were deployed on separate machines. Following the default
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Figure 7: The 95th latency of latency-critical applications.

configuration, the client used 32 threads to generate a high
request load, while the Memcached server operated with
four threads. The dataset for Memcached was sourced from
Meta’s CacheLib [1, 14], which exhibits highly skewed access
patterns, where the top 20% of objects account for 80% of
requests [14].

As Figure 6 shows, Memcached-Orthrus achieves through-
put comparable to Memcached-Vanilla, with only a slight
4.4% reduction attributed to the overhead of generating logs
for validation. This is because Memcached is a read-intensive
workload with most of the requests consisting of GET oper-
ations that do not lead to version generation.

Memcached-Orthrus delivers a 1.6× throughput improve-
ment over Memcached-RBV, thanks to its use of shared-
memory communication and relaxed synchronization be-
tween the application and the validator. RBV, on the other
hand, is built on state machine replication [15, 58], which re-
lies on TCP/IP-based inter-server communication. As a result,
Memcached-RBV spends 43% of total CPU resources on com-
munication, even with batching applied to reduce sync fre-
quency. Figure 7 further highlights that Memcached-RBV suf-
fers from tail latencies up to 1000× worse than Memcached-
Orthrus, largely due to queuing delays.

We have also measured memory consumption and found
that versioning in Memcached-Orthrus incurs a 29% memory
overhead compared to Memcached-Vanilla—7.3× lower than
the overhead observed in Memcached-RBV.

Phoenix [64] is a MapReduce framework designed for
coarse-grained batch processing. In Phoenix-Orthrus, each
map and reduce function is annotated as a closure. Unlike
Memcached, where each operation involves small amounts
of user data, Phoenix operates on large batches of data, re-
sulting in significantly fewer log entries and versioned ob-
jects. For our evaluation, we ran both mapper and reducer
processes with 16 cores and executed a word count task
on the 2024 English news subset of the WMT dataset [48].
As shown in Figure 6, Phoenix-Orthrus introduces minimal
overhead—less than 2%—compared to the vanilla version.
In contrast, Phoenix-RBV experiences a 51% drop in

throughput. Degradation stems from two main factors. First,
Phoenix is a data-intensive application, with each opera-
tion producing and modifying large result sets that must
be validated. Transmitting these results over the network
to the replica consumes significant CPU resources. Second,

data processing workloads often involve complex struc-
tures [39, 71], such as large arrays and nested object graphs,
which require expensive equivalence checks during valida-
tion. Phoenix-Orthrus significantly improves data transfer
efficiency by using shared-memory-based logs, eliminating
the need to serialize and transmit read-only user data.

This design results in a 1.5× improvement in throughput
over RBV. Phoenix-Orthrus incurs just a 2.6% memory over-
head, while Phoenix-RBV introduces a significantly higher
2.1× memory overhead due to the need to maintain a full
replica of the application state.

Masstree [4] is a KV store optimized for multi-core systems.
We allocated 4 cores to the Masstree server and 16 cores to
the client, which was run on a separate machine. We used
the real-world ALEX [29] workload, which is skewed and
composed of 50% range queries and 50% updates. Each range
query begins by locating the node containing the specified
key, then scans forward through the node. Updates require
looking up the key and modifying its associated value. This
workload is read-intensive and introduces a series of depen-
dencies between scanning and update operations.

As shown in Figure 6, Masstree-Orthrus delivers through-
put comparable to Masstree-Vanilla, whereas Masstree-RBV
suffers a significant performance drop—65% lower than
Masstree-Orthrus. Beyond the communication overhead pre-
viously discussed, Masstree’s use of optimistic concurrency
on a complex tree structure introduces considerable synchro-
nization overhead. For instance, when multiple concurrent
requests contend for shared data, the application must record
their execution order and forward the requests to the replica.
Due to data dependencies, the replica is forced to process
these requests sequentially, which severely restricts paral-
lelism. This results in two major performance bottlenecks:
(1) reduced validation throughput, leading to increased vali-
dation latency (§4.3); and (2) frequent application blocking
when the validator falls behind, causing themessage queue to
overflow, which further degrades throughput and increases
long-tail latency.

Masstree-Orthrus, however, can validate the received logs
out of order, resulting in much higher validation throughput
compared to Masstree-RBV. As a result, Masstree-Orthrus
achieves a 2.9× increase in throughput. It incurs a 35% mem-
ory overhead compared to Masstree-Vanilla.

LSMTree [63], or Log-Structured Merge Tree, is optimized
for indexing in write-intensive file systems and widely
adopted in databases such as RocksDB [5] and Cassan-
dra [12]. LSMTree consists of two tiers: an in-memory skip
list as the first tier and a simplified version of the Sorted
String Table (SSTable) on the block device as the second.
For this evaluation, we focused on the memory-tier per-
formance—specifically the skip list—by allocating a large
memory buffer to minimize data flushing to the SSTable.
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The dataset used for this evaluation consists of 100%
random writes, which introduce significant memory over-
head due to data versioning. As a result, LSMTree-Orthrus
achieves 95% of the throughput of LSMTree-Vanilla, with a
memory overhead of 34%. Despite this, LSMTree-RBV lags
behind LSMTree-Orthrus in throughput by 54%, primarily
due to communication overhead. It is worth noting that a
workload composed of 100% random writes is unrealistic;
this setup was intentionally chosen to stress-test Orthrus’s
performance under extreme conditions.

Impact of Checksum.We have measured the cost of check-
sum computation and verification that is used to ensure user
data integrity in the control path. The overall overhead is
negligible (< 1%) as checksum can be efficiently executed on
modern processors (e.g., with SSE4.2 instructions).

Resource overhead. Overall, Orthrus incurs resource over-
head from two sources. First, the validator consumes CPU
andmemory resources for re-execution, which are controlled
through the adaptive sampling mechanism. Second, the mod-
ified application introduces additional runtime and memory
overhead due to its use of OrthrusPtr to manage user data.
To address the first source, Orthrus’ sampling policy

strikes a balance between SDC detection coverage and re-
source consumption, while ensuring bounded detection la-
tency. When computing resources are insufficient to process
all generated closure logs, the validator selectively drops logs
containing recently validated code patterns (as described in
§3.5), thereby improving validation and memory reclamation
throughput. We evaluate how detection coverage evolves
under varying levels of computing and memory resources
in §4.4.

The second source of overhead comes from Orthrus ’s data
management, particularly the use of OrthrusPtr, which in-
curs both memory and runtime access overhead—averaging
7% and 3%, respectively, in our evaluation. This overhead
can be mitigated by adopting a dedicated pool allocator for
versioning metadata to reduce memory fragmentation. Our
design also encourages coarse-grained data annotation, al-
lowing developers to consolidate related data chunks into
single objects to further lower management costs. We leave
these optimizations for future work.

4.3 Closure Validation Latency
This section evaluates closure validation latency, defined as
the time between the completion of a closure’s execution and
the completion of its validation, for both RBV and Orthrus.
This metric reflects the timeliness of SDC detection—how
quickly a user data corruption can be identified after it occurs.
Figure 8 presents the validation latency across four applica-
tions. On average, Orthrus achieves a validation latency of
1.6 µs, 234 ms, 22.6 µs and 7.7 µs —two or three orders of
magnitude lower than that of RBV in latency-critical appli-
cations. This improvement is primarily due to three factors:
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Figure 8: Closure validation latency distribution.

(1) RBV must validate data in sequence if there is data depen-
dency between operations, while Orthrus validates out of
order due to versioning, leading to much higher validation
throughput; (2) Orthrus only validates code in the data path,
while RBV needs to re-execute the entire program; and (3)
Orthrus leverages efficient shared-memory-based log trans-
fer between the application and the validator, eliminating
the need for costly network synchronization.

Memcached.Memcached requests are typically small, result-
ing in relatively low request-level validation latency under
RBV, averaging 90 µs. This latency is still 56× higher than
that of Memcached-Orthrus, which achieves an average la-
tency of just 1.6 µs. Orthrus particularly benefits from the
out-of-order validation for the highly skewed workloads,
which usually exhibit data dependencies between opera-
tions, whereas validating each operation under RBV requires
cross-server communication and synchronization.

Phoenix. As discussed in §4.2, each Phoenix operation, such
as map or reduce, can take up to 240 ms to complete. With
RBV, validation is delayed until these large outputs are serial-
ized and transmitted to the replica, a process that is both time-
consuming and resource-intensive. Consequently, Phoenix-
RBV suffers from high tail validation latency, reaching up
to 1100 ms, with an average of 513 ms. In contrast, Orthrus
leverages a shared user data space between the application
and the validator, significantly reducing the data movement
overhead. Furthermore, Orthrus performs validation using
efficient bitwise comparisons, which are substantially faster
than the complex data structure comparisons required by
RBV. As a result, Orthrus achieves an average validation
latency of just 230 µs.

Masstree. Masstree-Orthrus achieves a validation latency
that is 21× lower than Masstree-RBV. This improvement
stems from Masstree’s use of optimistic concurrency on a
complex tree structure, which requires RBV to strictly syn-
chronize the execution order of operations in the replica to
ensure consistency. This synchronization introduces substan-
tial communication overhead and severely limits parallelism
in replica execution. In contrast, Orthrus leverages out-of-
order, log-based validation, enabling 2.9× higher validation
throughput compared to RBV. Additionally, RBV incurs ad-
ditional latency due to the high cost of comparing complex
tree structures, further widening the performance gap.
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Injected Error TypeApps Detections Arithmetic Floating point Vector Cache
Total SDCs 132 0 217 122

RBV 130(98%) 0 216(99%) 122(100%)
Memcached

Orthrus 126(95%) 0 213(98%) 120(98%)
Total SDCs 145 0 163 210

RBV 143(99%) 0 163(100%) 209(99%)
Masstree

Orthrus 140(97%) 0 160(98%) 209(99%)
Total SDCs 126 337 157 198

RBV 123(98%) 334(99%) 155(99%) 198(100%)
LSMTree

Orthrus 123(98%) 330(98%) 151(96%) 195(98%)
Total SDCs 227 244 213 0

RBV 223(98%) 244(100%) 212(99%) 0
Phoenix

Orthrus 219(96%) 237(97%) 208(98%) 0

Table 2: SDC coverage when both Orthrus and RBV were given the
same number of cores as were used by the applications.

LSMTree. Here Orthrus and RBV exhibit the smallest differ-
ence (still 8× apart) in validation latency. As discussed in
§4.2, we used a random-write dataset for LSMTree-Orthrus,
which introduced minimal data dependencies between oper-
ations. As a result, RBV requires less synchronization effort
in LSMTree compared to other applications.

4.4 SDC Coverage
This subsection evaluates Orthrus’ validation efficiency and
its ability to detect SDCs by varying the computation and
memory resource assigned to the validator. SDC coverage
is defined as the percentage of user data corruptions suc-
cessfully detected out of the total number of corruptions
that occurred. We also compared Orthrus’ adaptive sampling
approach to unguided random sampling as well as RBV, an
approach that does not use sampling.

Full SDC Detection Capabilities. We used LLVM to inject
instruction-level errors (into both the control and data path),
following the four common error types identified by Alibaba
Cloud [73]. Details of the fault injection methodology are
provided in the supplementary document. To evaluate the
maximum SDC detection capability of both Orthrus and RBV,
we allocated the same number of cores for validation as were
used by the applications themselves. Table 2 presents the
total number of injected errors for each fault type, along with
the number of SDCs detected by Orthrus and RBV across
different applications. Note that dedicating as many cores to
validation as to the application is impractical in real-world
deployments. As such, the SDC detection rates reported for
Orthrus represent an upper bound onwhat could be achieved
in a production environment.
Overall, RBV detects 98.3%, 99.5%, 99.5%, and 99.8% of

SDCs across the four error types, while Orthrus achieves
detection rates of 97.2%, 97.6%, 97.6%, and 98.9%, respectively.
RBV demonstrates slightly higher detection coverage, pri-
marily because it re-executes the entire control path within a
replica. For instance, RBV can catch branching errors in the
control path that cause the program to return prematurely,
skipping the data operation that was intended to run. In
our evaluation, all but three of the SDCs detected by RBV
but missed by Orthrus originated in the control path—cases
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Figure 9: SDC detection rate with varied validation cores.

that Orthrus’s checksum-based mechanism is not designed
to catch. The remaining three missed SDCs were caused by
errors during system calls (one in write and two in mutex

operations), which are not re-executed by Orthrus’s valida-
tor. These correspond to the second and third limitations
outlined earlier in §2.

SDC detection with varying cores. As shown in Figure 9,
Orthrus’ SDC detection rate decreases slightly to an average
of 86.7% when the validator is limited to a single core —still
1.41× higher than what is achieved with random sampling.
Notably, coverage for Memcached remains unchanged, as
even a fraction of a core is sufficient to validate its execution.
In contrast, Phoenix experiences the steepest drop in cover-
age, falling to 78.2% with one core. This is primarily due to
its high degree of parallelism (16 threads), which produces a
high volume of closures to validate. Additionally, Phoenix’s
word count workload is extremely memory-intensive, re-
quiring considerable CPU resources to compare user data
during validation. Masstree, on the other hand, shows bet-
ter resilience to reduced validation resources. Due to access
skewness, many closures share similar calling contexts, al-
lowing Orthrus’ adaptive sampling to maintain higher cov-
erage efficiency. For Masstree, coverage drops by only 8.6%
when decreasing from four cores to one.

Note that under sampling, Orthrus’ application perfor-
mance and validation latency remain largely consistent as
the number of validation cores is reduced to one. However,
memory consumption decreases sharply—by an average of
36%—because closures are processed (either validated or
skipped) more quickly, preventing log accumulation and
delay in resource reclamation.

SDC detection with varying memory constraints. This
experiment evaluates how the SDC detection rate changes as
available memory decreases. To limit validation throughput,
we fixed the number of cores to two; otherwise, closure logs
and data versions would be validated and reclaimed quickly
with only negligible memory usage. We then switched the
sampling trigger from detection latency to available memory
capacity, allowing us to directly control memory consump-
tion. Using the vanilla application’s memory footprint as
a baseline, we varied the constraint by permitting an ad-
ditional 5% to 40% memory beyond that baseline. When a
burst of writes generates excessive closure logs and data ver-
sions that exceed validation throughput and exhaust memory

13



SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea Liu, Zhu, Li, Xia, Qiao, Deng, Lu, Xie, Cui, Du, Xu, and Wang

10 20 30 4050

75

100

D
et

ec
tio

n 
R

at
e 

(%
)

Memcached

10 20 30 40
Additional Available Memory (%)

Phoenix

10 20 30 40

Masstree

10 20 30 40

LSMTree

Figure 10: SDC detection rates with varying memory constraints.

resources, the validator activates sampling. This increases
validation and reclamation throughput, thereby impacting
the detection rate.
As shown in Figure 10, Phoenix’s SDC detection rate re-

mains largely stable, averaging 91% even when available
memory is restricted to 15% of the application’s footprint. As
discussed in §4.2, Phoenix is relatively insensitive to memory
limits. This is due to two factors: (1) its word count work-
load is read-intensive, producing relatively few data ver-
sions; and (2) its data dependencies are simpler than those of
tree-based applications, enabling high validation and recla-
mation throughput. Consequently, its detection rate only
slightly decreases to an average of 92.7% when additional
available memory is reduced to 5%. In contrast, Masstree’s
detection rate steadily declines as memory resources shrink.
This stems from its complex tree-based structures, where
even a small number of writes can trigger significant updates.
Moreover, memory reclamation is slowed by dependencies
on unverified closures. Under high sampling rates, the val-
idator, limited to two cores, struggles to promptly verify
closures, resulting in long-tail verification latency and mem-
ory buildup. As a result, constraining memory resources
can reduce the sampling rate and, in turn, lower the detec-
tion rate. For Memcached, however, the validator achieves
very high validation throughput even with a single core (Fig-
ure 9), so memory limitations have only a modest impact on
its sampling rate.

5 Related Work

Instruction-level validation. To provide strong dependabil-
ity for critical applications, e.g., software running in space
shuttles, a series of instruction-level error detection methods
were proposed [24, 45, 46, 56, 65, 67], ranging from space
redundancy to time redundancy. However, these techniques
suffer from significant performance and resource overheads.
Dedicated processors were proposed to speed up the

instruction-level validation [56, 65, 66]. However, these pro-
totypes are not readily deployable in commodity data centers.

Offline CPU testing. Cloud providers may stress-test their
processors [30, 40, 73]. For example, Google built a CPU-
check test set for SDC detection based on their experi-
ence [40]. The test set includes a series of code ranging from
compression, encryption and checksum to hash algorithms
etc. CPU testing is an offline approach. In order to limit

resource contention and performance interference with de-
ployed services, cloud providers usually schedule validation
at a (low) frequency (e.g., once a few weeks) and damages
may have resulted during an interval [30, 73].

Replication-based validation (RBV). To provide high re-
liability and availability, databases [7, 17, 22, 70, 70] often
maintain several replicas, which are also referred to as repli-
cated state machines [15, 58, 75]. A replica is designed to
replace the primary database and serve user requests when
software or hardware failures are encountered. A series of
consensus algorithms, notably Paxos [49] and Raft [61], were
proposed to guarantee data consistency across replicas. A
similar approach that uses redundant computation for val-
idation has been employed for error detection in different
scenarios [31, 36, 69].

Compared to offline CPU testing, RBV improves SDC de-
tection timeliness by validating each client request (e.g., com-
paring primary and replica results). However, it has limita-
tions: long requests involving many cores, such as those in
Spark [74] and DataFrame [55], lead to unpredictable error
propagation; RBV’s linearizability introduces synchroniza-
tion overhead even with batching optimizations [58]; and
communication between primary and replica over Ethernet
limits validation timeliness.

Transient Error Detection.While techniques like PASC [23]
and SEI [13] were proposed to tolerate transient errors, the
key distinction lies in our fault model. These approaches
exploit the transient nature of errors by performing replay
validation on the same CPU core as the original execution.
As noted in [73] and discussed in §2, a significant number of
SDCs stem from persistent, reproducible hard errors that con-
sistently manifest on a specific CPU core. Hence, replaying
on the same core may fail to detect these persistent errors.

6 Conclusion
Orthrus offers a practical and efficient solution for detecting
SDCs caused by post-installation CPU errors—an increas-
ingly critical challenge in modern cloud environments. By
combining lightweight annotations, compiler support, and
asynchronous validation, Orthrus enables high-coverage pro-
tection with minimal performance impact.
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A Appendix of Orthrus’ Fault Injection
Framework

Generating realistic SDC errors is challenging, as research
on SDC error patterns is nascent and real-world hardware
platforms that can produce SDC errors is not available on
the market. Current frameworks like LLFI [26, 51] and RE-
FINE [38] randomly inject faults at instruction-level and
identify SDCs solely by program output. In this work, we
have developed our Fault Injection (FI) framework based on
REFINE and used it in §4 to inject SDC errors on x86 CPUs.
Further, we extend the generated fault models to cover all
the vulnerable CPU features reported by Alibaba Cloud [73].

This appendix describes our methodology and implemen-
tation, covering technical background (Section A.1), fault
model (Section A.2), workflow (Section A.3), and implemen-
tation (SectionA.4).

A.1 Background

Hardware Error Types. Hardware errors manifest in three
ways during program execution:

• Fail-Stop Errors: Cause program termination or sys-
tem crashes. Detected by hardware exceptions or OS
checks, leading to program abortion. Examples include
segmentation faults from invalid memory access.

• Masked Errors: Occur without affecting final pro-
gram output. Errors in intermediate values may be
neutralized by program logic or subsequent operations.
Examples include errors in unused bits or overwritten
values.

• Silent Data Corruption (SDC):Alter program output
without detection. Programs complete normally but
produce incorrect results.

Our framework generates errors at the instruction level,
which could produce all three error types and classify them
as Fail-Stop, Masked, or SDC based on their output. However,
during the evaluation, we only care about the SDC errors
that could silently corrupt the user data.

Injected Fault Types. Prior research has used instruction-
level fault operations including bitflip (inverting bits),
stuckat0 (forcing bits to 0), stuckat1 (forcing bits to 1), and
nop (no operation)[32]. We adopt these same mechanisms
for our injections.
Recent studies from Alibaba [73], Meta [30] and

Google [44] have documented SDC error patterns detected in
their datacenters, identifying that certain CPU components
like FPU and Cache Coherence Units are particularly suscep-
tible to SDC errors, with specific bitflip patterns emerging
across faulty instructions.
Our framework incorporates these findings by injecting

faults with distributions that match observed patterns and

targeting vulnerable computational units with higher injec-
tion probabilities [73].

LLVM-based Fault Injection. Compiler-based FI is widely
used in resilience studies to evaluate program error impacts.
LLVM[6] provides a collection of reusable compiler modules
and uses an Intermediate Representation (IR) for code opti-
mization. While many FI frameworks operate at LLVM IR
level, REFINE showed these are less accurate than machine
code due to limited access to dynamic instructions. To im-
prove accuracy, REFINE works at the Machine IR (MIR) level,
which is closer to actual machine code. Orthrus adopts the
same approach.

A.2 Fault Model
Our fault model considers both permanent and transient
faults, which is consistent with previous studies. We focus
on faults in execution units (ALU, SIMD, FPU, cache, and
transactional memory). Our fault injection model mirrors
real-world SDC error distributions observed in Alibaba’s
production environments [73], applying a 1:2:2:1 ratio across
ALU, SIMD, FPU and cache units. §A.3.2 details our imple-
mentation to achieve this distribution.

A.3 Workflow
A.3.1 Input, Processing and Output. Our framework
takes user-defined parameters (fault types, target functions,
and program) as input and produces fault-injected binaries
with corresponding SDC fault classifications. During LLVM
compilation, it generates the necessary fault instructions. If
no specific configuration is provided, the framework defaults
to injecting all fault types evenly and randomly.

A.3.2 Processing Phases. Following REFINE’s method-
ology, our framework operates in three phases: Inspection,
Profiling, and Injection.

Inspection Phase. During Inspection, we compile the pro-
gram and gather essential information about specified func-
tions through our custom LLVM backend pass. The frame-
work loads target functions from configuration files and
extracts their instruction details for subsequent phases.

Profiling Phase. In the Profiling Phase, we identify executed
instructions from the Inspection Phase and classify them by
hardware unit type. This information, including instruction
counts per unit, is passed to the Injection Phase to maintain
our target distribution.

To track executed instructions, we replace target function
instructions with INT3, which triggers a SIGTRAP signal when
executed. We then run these modified binaries and mark
instructions as executed if they trigger the expected SIGTRAP

signal.
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For hardware unit classification, we analyze X86 machine
IR opcodes and operands using the following rules: (1) In-
structions between atomic primitives or lock calls are clas-
sified as cache coherency unit instructions (2) Match op-
code and opname of floating point instructions, including
SSE, X87, MMX etc. (3) Match opcode and opname of vector
instructions, including AVX and CRC instructions. (4) In-
structions not matching above criteria are classified as ALU
instructions

Injection Phase.During the injection phase, we insert faults
according to our unit-based distribution model. For a pro-
gram with instructions distributed across ALU, SIMD, FPU,
cache, and TSX units, we apply the 1:2:2:1:1 ratio to deter-
mine fault counts per unit. For example, if injecting 60 faults
into a program with 1000 ALU and 1000 SIMD instructions,
we would inject 20 faults in ALU instructions and 40 in SIMD
instructions. After building the injected binaries, we execute
them and classify errors based on return codes and outputs.

A.3.3 Example. We demonstrate our framework using a
simple example function. Consider the user-provided code
in Listing 8, which contains atomic operations for shared
data access.
1 std::atomic <int > shared_data (0);

2
3 void writer(int value1 , int value2) {

4 int value = value1 + value2;

5 shared_data.store(value);

6 }

7
8 void reader () {

9 int value1 = random (), value2 = random ();

10 int value = shared_data.load();

11 std::cout << " value1: " << value1 +

12 " value2: " << value2

13 << " = result: " << value;

14 }

Listing 8: User provided code.

During the inspection phase, our compiler extracts the
Machine IR representation:
1 Function(writer(int , int))
2 All instructions:

3 [Inst .0]: renamable $edi = nsw ADD32rr killed

renamable $edi(tied -def 0), killed renamable $esi

, implicit -def dead $eflags # add value1 and

value2

4 [Inst .1]: dead renamable $edi = XCHG32rm killed

renamable $edi(tied -def 0), $rip , 1, $noreg ,

@shared_data , $noreg :: (store seq_cst (s32) into

@shared_data) #store the add result

5 [Inst .2]: RET64 # return

Listing 9: MIR of the writer function.

In the profiling phase, we replace instructions with INT3,
execute the binary, and determine that all three instructions
are executed. We identify the XCHG32rm operation as cache-
related due to its atomic nature.

For the injection phase, we insert a bitflip fault:

1 [New.0] renamable $edi = nsw ADD32rr killed renamable

$edi(tied -def 0), killed renamable $esi , implicit

-def dead $eflags # simulate a bitflip

2 [New.1] $rax = PUSH64r implicit -def $rsp , implicit

$rsp

3 [New.2] $rax = MOV64ri 2861048013

4 [New.3] $edi = XOR32rr $edi(tied -def 0), $rax ,

implicit -def $eflags

5 [New.4] $rax = POP64r implicit -def $rsp , implicit $rsp

6 [New.5] dead renamable $edi = XCHG32rm killed

renamable $edi(tied -def 0), $rip , 1, $noreg ,

@shared_data , $noreg :: (store seq_cst (s32) into

@shared_data)

7 [New.6] RET64

Listing 10: MIR of the writer function after injection.

When executed, the injected binary produces an SDC in
the cache unit:
1 value1: 3 + value2: 34 = result: -1433919256.

Listing 11: Program Output.

A.4 Implementation
Our implementation consists of two main components: (1) a
fault injection pass integrated into the Clang 16.0.6 X86 back-
end (released June 2023), implemented in C++ with approxi-
mately 4,376 LOCs of modifications, and (2) an automated
testing platform written in Python (2,118 LOCs). While our
current implementation targets X86, the methodology is
architecture-independent and could be adapted to other plat-
forms.

B Artifact Appendix
B.1 Artifact Summary
Silent user-data corruptions (SDCs) caused by post-
installation CPU errors is becoming an increasingly criti-
cal challenge in modern cloud environments. Orthrus is a
system for the timely detection of SDCs. Orthrus enables
high-coverage protection of user-data in the cloud, with min-
imal performance impact.

B.2 Artifact Check-list
• Hardware: Intel servers with InfiniBand, requires a mini-
mum of two CPU sockets

• Software environment: Ubuntu 20.04, cmake version >=
3.20

• Public link: https://github.com/ICTPLSys/Orthrus

B.3 Description
B.3.1 Orthrus’s Codebase. Orthrus contains the follow-
ing four components:
• the Orthrus Runtime.
• the modified LLVM compiler for fault-injection.
• the automated python testing platform for fault-injection.
• necessary shell scripts and configuration files.
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B.3.2 Deploying Orthrus.
To setup Orthrus, the first step is to download the source

code:

# For performance test.
git clone git@github.com:ICTPLSys/Orthrus.git

# For fault-injection.
git clone

git@github.com:ICTPLSys/Orthrus-FaultInjection.git

Then, you need to install essential software packages
for performance test. If you are on Ubuntu 20.04, run
./init.sh under the root directory of the repository
ICTPLSys/Orthrus, with root permission.

# Notice: run as root or via sudo
sudo ./init.sh

This script will (1) Install necessary packages from apt
package manager, (2) Install gcc-13 and llvm-16 compilers,
(3) Install cmake and just for building and testing the Orthrus.

Finally, you need to setup the automated testing frame-
work for Orthrus’s fault-injection tests. Run the script
./fw/scripts/table2_setup.sh from the root directory
of the repository ICTPLSys/Orthrus-FaultInjection as a
normal user.

# Notice: Run as normal user, not as root
./fw/scripts/table2_setup.sh

This script will (1) Install the modified LLVM compiler.
(2) Prepare the python environment.

For more details, you can refer to the README.md of
both repositories.

B.3.3 Running Applications.

Performance tests. Tests are grouped by the target applica-
tions: Memcached, Masstree, Phoenix, and LSMTree.

The detection rate is computed from the fault-injection re-
sults. Since generating these results takes a long time, we’ve
provided a pre-generated copy. Please save the file to dataset-
s/fault_injection.tar.gz from the following link:
https://github.com/ICTPLSys/Orthrus-FaultInjection/

releases/download/data-fi/fault_injection.tar.gz
You can run the tests using one of the following methods:
If you’ve already set up the required environment, run

the following command to start the full test suite:

just test-all

Or, you can use the docker compose:

docker-compose run test-all

Fault-injection tests. The complete fault-injection test will
take several days, so we provide two versions of the test:
fastcheck version and full version.

# Run as normal user, not as root
# For fastcheck.
./fw/scripts/table2_fastcheck.sh

# For full test.
./fw/scripts/table2_full.sh
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