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Abstract
To process real-world datasets, modern data-parallel systems
often require extremely large amounts of memory, which are
both costly and energy-inefficient. Emerging non-volatile
memory (NVM) technologies offer high capacity compared
to DRAM and low energy compared to SSDs. Hence, NVMs
have the potential to fundamentally change the dichotomy
between DRAM and durable storage in Big Data processing.
However, most Big Data applications are written inmanaged
languages and executed on top of a managed runtime that
already performs various dimensions of memory manage-
ment. Supporting hybrid physical memories adds in a new
dimension, creating unique challenges in data replacement.
This paper proposes Panthera, a semantics-aware, fully

automated memory management technique for Big Data
processing over hybrid memories. Panthera analyzes user
programs on a Big Data system to infer their coarse-grained
access patterns, which are then passed to the Panthera run-
time for efficient data placement and migration. For Big Data
applications, the coarse-grained data division information
is accurate enough to guide the GC for data layout, which
hardly incurs overhead in data monitoring and moving. We
implemented Panthera in OpenJDK and Apache Spark. Our
extensive evaluation demonstrates that Panthera reduces
energy by 32 – 52% at only a 1 – 9% time overhead.
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1 Introduction
Modern Big Data computing exemplified by systems such
as Spark and Hadoop is extremely memory-intensive. Lack
of memory can lead to a range of severe functional and
performance issues including out-of-memory crashes, signif-
icantly degraded efficiency, or even loss of data upon node
failures. Relying completely on DRAM to satisfy the memory
need of a data center is costly in many different ways — e.g.,
large-volume DRAM is expensive and energy-inefficient; fur-
thermore, DRAM’s relatively small capacity dictates that a
large number of machines is often needed just to provide
sufficient memory, resulting in underutilized CPU resources
for workloads that cannot be easily parallelized.
Emerging non-volatile memory (NVM), such as phase

change memory (PCM) [32, 55, 58], resistive random-access
memory (RRAM) [54], Spin-transfer torque memory (STT-
MRAM) [30] or 3DXPoint [4], is a promising technology that,
compared to traditional DRAM, provides higher capacity and
lower energy consumption. Systems with hybrid memories
have therefore received much attention [9–11, 13, 16, 23,
31, 32, 35, 38, 40, 41, 46–48, 52, 53, 56, 59, 62, 63] recently
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from both academia and industry. The benefit of mixing
NVM with DRAM for Big Data systems is obvious — NVM’s
high capacity makes it possible to fulfill the high memory
requirement of a Big Data workload with a small number of
compute nodes, holding the promise of significantly reducing
the costs of both hardware and energy in large data centers.

1.1 Problems

Although using NVM for Big Data systems is a promising
direction, the idea has not yet been fully explored. Adding
NVM naïvely would lead to large performance penalties due
to its significantly increased access latency and reduced band-
width — e.g. the latency of an NVM read is 2-4× larger than
that of a DRAM read and NVM’s bandwidth is about 1/8 -
1/3 of that of DRAM [19, 51] . Hence, a critical research ques-
tion that centers around all hybrid-memory-related research
is how to perform intelligent data allocation and migration
between DRAM and NVM so that we can maximize the overall
energy efficiency while minimizing the performance overhead?
To answer this question in the context of Big Data processing,
there are two major challenges.

Challenge #1:WorkingwithGarbage Collection (GC). A
common approach to managing hybrid memories is to mod-
ify the OS or hardware to (1) monitor access frequency of
physical memory pages, and (2) move the hot (frequently-
accessed) data into DRAM. This approach works well for
native language applications where data stays in the mem-
ory location it is allocated into. However, in managed lan-
guages, the garbage collector keeps changing the data layout
in memory by copying objects to different physical memory
pages, which breaks the bonding between data and physi-
cal memory address. Most Big Data systems are written in
such managed languages, e.g., Java and Scala, for the quick
development cycle and rich community support they pro-
vide. Managed languages are executed on top of a managed
runtime such as the JVM, which employs a set of sophis-
ticated memory management techniques such as garbage
collection. As a traditional garbage collector is not aware of
hybrid memories, allocating and migrating hot/cold pages
at the OS level can easily lead to interference between these
two different levels of memory management.

Challenge #2: Working with Application-level Memory
Subsystems. Modern Big Data systems all contain sophisti-
cated memory subsystems that perform various memory
management tasks at the application level. For instance,
Apache Spark [5] uses resilient distributed datasets (RDDs)
as its data abstraction. An RDD is a distributed data struc-
ture that is partitioned across different servers. At a low
level, each RDD partition is an array of Java objects, each
representing a data tuple. RDDs are often immutable but
can exhibit diverse lifetime behavior. For example, develop-
ers can explicitly persist RDDs in memory for memoization

or fault tolerance. Such RDDs are long-lived while RDDs
storing intermediate results are short-lived.

An RDD can be at one of many storage levels (e.g., memory,
disk, unmaterialized, etc.). Spark further allows developers to
specify, with annotations, where an RDD should be allocated,
e.g., in themanaged heap or nativememory. Objects allocated
natively are not subject to GC, leading to increased efficiency.
However, data processing tasks, such as shuffle, join, map,
or reduce, are performed over the managed heap. A native-
memory-based RDD cannot be directly processed unless it is
first moved into the heap. Hence, where to allocate an RDD
depends on when and how it is processed. For example, a
frequently-accessed RDD should be placed in DRAM while
a native-memory-based RDD would not be frequently used
and placing it in NVMwould be desirable. Clearly, efficiently
using hybrid memories requires appropriate coordination
between these orthogonal data placement polices, i.e., the
heap, native memory, or disk, vs. NVM or DRAM.

State of the Art. In summary, the key challenges in sup-
porting hybrid memories for Big Data processing lie in how
to develop runtime system techniques that can make mem-
ory allocation/migration decisions that match how data is
actually used in an application. Although techniques such
as Espresso [56] and Write Rationing [9] support NVM for
managed programs, neither of them was designed for Big
Data processing whose data usage is greatly different than
that of regular, non-data-intensive Java applications [42, 43].

For example, Espresso defines a new programming model
that can be used by the developer to allocate objects in per-
sistent memory. However, real-world developers would be
reluctant to completely re-implement their systems from
scratch using such a new model. Shoaib et al. [9] introduced
the Write Rationing GC, which moves the objects that expe-
rience a large/small number of writes into DRAM/NVM to
prolong NVM’s lifetime. Write Rationing pioneers the work
of using the GC to migrate objects based on their access
patterns. However, Big Data systems make heavy use of im-
mutable datasets — for example, in Spark, most RDDs are
immutable. Placing all immutable RDDs into NVM can incur
a large overhead as many of these RDDs are frequently read
and an NVM read is 2–4x slower than a DRAM read.

1.2 Our Contributions
Our Insight. Big Data applications have two unique char-
acteristics that can greatly aid hybrid memory management.
First, they perform bulk object creation, and data objects ex-
hibit strong epochal behavior and clear access patterns. For ex-
ample, Spark developers program with RDDs, each of which
contains objects with exactly the same access/lifetime pat-
terns. Exploiting these patterns at the runtime would make
it much easier for Big Data applications to enjoy the benefits
of hybrid memory.
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Second, the data access and lifetime patterns are often
statically observable in the user program. For example, an
RDD is a coarse-grained data abstraction in Spark and the
access patterns of different RDDs can often be inferred from
the way they are created and used in the program (§2).

Hence, unlike regular, non-data-intensive applications for
which profiling is often needed to understand the access
patterns of individual objects, we can develop a simple static
analysis for a Big Data application to infer the access pattern
of each coarse-grained data collection, in which all objects
share the same pattern. This observation aligns well with
prior work (e.g., Facade [43] or Yak [42]) that requires simple
annotations to specify epochs to perform efficient garbage
collection for Big Data systems. The static analysis does
not incur any runtime overhead, yet it can produce precise
enough data access information for the runtime system to
perform effective allocation and migration.

Panthera. Based on our extensive experience with Big Data
applications, we propose Panthera, which divides a mess
of data objects into several data collections according to
application’s semantics and infers the coarse-grained data
usage behavior by light-weight static program analysis and
dynamic data usage monitoring. Panthera leverages garbage
collection to migrate data between DRAM and NVM, incur-
ring almost no runtime overhead.

We focus on Apache Spark in this paper as it is the de-facto
data-parallel framework deployed widely in industry. Spark
hosts a range of applications in machine learning, graph ana-
lytics, stream processing, etc., making it worthwhile to build
a specialized runtime system, which can provide immediate
benefit to all applications running atop. Although Panthera
was built for Spark, our idea is applicable to other systems
such as Hadoop as well; §4 provides a detailed discussion of
Panthera’s applicability.

Panthera enhances both the JVM and Spark with two ma-
jor innovations. First, based on the observation that access
patterns in a Big Data application can be identified statically,
we develop a static analysis (§3) that analyzes a Spark pro-
gram to infer a memory tag (i.e., NVM or DRAM) for each
RDD variable based on the variable’s location and the way it
is used in the program. These tags indicate which memory
the RDDs should be allocated in.

Second, we develop a new semantics-aware and physical-
memory-aware generational GC (§4). Our static analysis
instruments the Spark program to pass the inferred memory
tags down to the runtime system, which uses these tags to
make allocation/migration decisions. Since our GC is based
on a high-performance generational GC in OpenJDK, Pan-
thera’s heap has two spaces, representing a young and an old
generation. We place the entire young generation in DRAM
while splitting the old generation into a small DRAM compo-
nent and a large NVM component. The insight driving this
design is based on a set of key observations (discussed in §2

in detail) we make over the lifetimes and access patterns of
RDDs in representative Spark executions:

• Most objects are allocated initially in the young generation.
Since they are frequently accessed during initialization,
placing them in DRAM enables fast access to them.

• Long-lived objects in Spark can be roughly classified into
two categories: (1) long-lived RDDs that are frequently
accessed during data transformation (e.g., cached for itera-
tive algorithms) and (2) long-lived RDDs that are cached
primarily for fault tolerance. The first category of RDDs
should be placed in the DRAM component of the old gener-
ation because they have long lifespans andDRAMprovides
desirable performance for frequent access to them. The sec-
ond category should be placed in the NVM component of
the old generation because they are infrequently accessed
and hence NVM’s large access latency has relatively small
impact on overall performance.

• There are also short-lived RDDs that store temporary, in-
termediate results. These RDDs die and are then reclaimed
in the young generation quickly, leading to frequent ac-
cesses to this area. This is another reason why we place
the young generation within DRAM.

Based on these observations, we modified both the minor
andmajor GC, which allocate andmigrate data objects, based
on their RDD types and the semantic information inferred
by our static analysis, into the spaces that best fit their life-
times and access patterns. Our runtime system also monitors
the transformations invoked over RDD objects to perform
runtime (re)assessment of RDDs’ access patterns. Even if
the static analysis does not accurately predict an RDD’s ac-
cess pattern and the RDD gets allocated in an undesirable
space, Panthera can still migrate the RDD from one space to
another using the major GC.
Results. We have evaluated Panthera extensively with
graph computing (GraphX), machine learning (MLlib) and
other iterative in-memory computing applications (Table 4).
Results with various heap sizes and DRAM ratios demon-
strate that Panthera makes effective use of hybrid memories
— overall, the Panthera-enhanced JVM reduces the mem-
ory energy by 32%–52% with only a 1%–9% execution time
overhead, whereas Write Rationing [9] that moves read-only
RDD objects into NVM incurs a 41% time overhead.

2 Background and Motivation
This section provides necessary background on Apache
Spark [5] and a motivating example that illustrates the access
patterns in a Spark program.
Spark Basics. Spark is a data-parallel system that supports
acyclic data flow and in-memory computing. The major data
representation used by Spark is resilient distributed dataset
(RDD) [60], which represents a read-only collection of tuples.
An RDD is a distributed memory abstraction partitioned in
the cluster. Each partition is an array of data items of the
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1 Top : ob j org / apache / spark / rdd / Shuff ledRDD
2 depth [ 0 ] : a r ray , [ L s c a l a / Tuple2 ;
3 depth [ 1 ] : ob j s c a l a / Tuple2
4 depth [ 2 ] : ob j j a v a / lang / S t r i n g
5 depth [ 3 ] : a r r ay [C
6 depth [ 2 ] : ob j spark / u t i l / c o l l e c t i o n / CompactBuf fer
7 depth [ 3 ] : a r ray , [ L java / lang / S t r i n g ;
8 depth [ 4 ] : ob j j a v a / lang / S t r i n g
9 depth [ 5 ] : a r r ay [C

10 depth [ 4 ] : ob j j a v a / lang / S t r i n g
11 depth [ 5 ] : a r r ay [C

Figure 1. The heap structure of an example RDD.

same type. Each node maintains an RDD partition, which
is essentially a multi-layer Java data structure � a top RDD
object references a Java array, which, in turn, references a
set of tuple objects such as key-value pairs. Figure 1 shows
the heap structure for an example RDD where each element
is a pair of a string (key) and a compact bu�er (value).

A Spark pipeline consists of a sequence oftransformations
andactionsover RDDs. A transformation produces a new
RDD from a set of existing RDDs; examples aremap, reduce,
or join. An action is a function that computes statistics from
an RDD, such as an aggregation. Spark leverageslazy eval-
uation for e�ciency, that is, a transformation may not be
evaluated until an action is performed later on the result-
ing RDD. Before data processing starts, the dependences
between RDDs are �rst extracted from the transformations
to form alineage graph, which can be used to conduct lazy
evaluation and RDD recomputation upon node failures.

With lazy evaluation, a transformation only creates a (top-
level) RDD object withoutmaterializingthe RDD (i.e., the
point at which its internal array and actual data tuples are
created). Recomputing all RDDs is time-consuming when
the lineage is long or when it branches out, and hence, Spark
allows developers to cache certain RDDs in memory (by
using the APIpersist ) . Developers can specify a storage
level for a persisted RDD,e.g., in memory or on disk, in
the serialized or deserialized form,etc.RDDs that arenot
explicitly persisted are temporary RDDs that will be garbage-
collected when they are no longer used, while persisted
RDDs are materialized and never collected.

The Spark scheduler examines the lineage graph to build
a DAG of stages for execution. The lineage (transformation)-
based dependences are classi�ed into �narrow� and �wide�.
A narrow dependence exists from a parent to a child RDD if
each partition of the parent is used byat most onepartition of
the child RDD. By contrast, a wide dependence exists when
each partition of the parent RDD may be used bymultiple
child partitions. Distinguishing these two types of depen-
dences makes it possible for Spark to determine whether a
shu�e is necessary. For example, for narrow dependences
shu�ing is not necessary, while for wide dependences it is.

A Spark pipeline is split into a set ofstagesbased on shuf-
�es (and thus wide dependences) � each stage ends at a
shu�e that writes RDDs onto the disk and the next stage

starts by reading data from disk �les. Transformations that
exhibit narrow dependences are grouped into the same stage
and executed in parallel.
RDD Characteristics. An RDD is, at a low level, an array of
Java objects, which are managed by the semantics-agnostic
GC in the JVM. RDDs often exhibit predictable lifetime and
memory-access patterns. Our goal is to pass these patterns
down to the GC, which can exploit such semantic infor-
mation for e�cient data placement. We provide a concrete
example to illustrate these patterns.

Figure 2(a) shows the Spark program for PageRank [14],
which is a well-known graph algorithm used widely by
search engines to rank web pages. The program iteratively
computes the rank of each vertex based on the contribu-
tions of its in-neighbors. Three RDDs can be seen from its
source code:links representing edges from the input graph,
contribs containing contributions from incoming edges of
each vertex, andranks that maps each vertex to its page
rank. links is a static map computed from the input while
contribs andranks are recomputed per iteration of the loop.

In addition to these three developer-de�ned RDDs visible
in the program, Spark generates many invisible RDDs to
store intermediate results during execution. A special type
of intermediate RDD isShuffledRDD. Each iteration of the
loop in the example forms a stage that ends at a shu�e, writ-
ing shu�ed data into di�erent disk �les. In the beginning of
the next stage, Spark creates aShuffledRDDas input for the
stage. Unlike other intermediate RDDs that are never mate-
rialized,ShuffledRDDsare immediately materialized because
they contain data read freshly out of disk �les. However,
since they are not persisted, they will be collected when the
stage is completed.

In summary, (1) persisted RDDs are materialized at the
moment the methodpersist is called, and (2) non-persisted
RDDs are not materialized unless they areShuffleRDDsor
an action is invoked on them.
Example. Figure 2(b) shows the set of RDDs that exists
within a stage (i.e., iteration) and their dependences. Suppose
each RDD has three partitions (on three nodes). The dashed
edges represent wide dependences (i.e., shu�es) due to the
reduction on Line 17. There are totally eight RDDs gener-
ated in each iteration.ShuffledRDD[8], which stems from the
reduction on Line 17, is transformed toranks via amaptrans-
formation.ranks joins with links to form CoGroupedRDD[3],
which is then processed by four consecutivemapfunctions,
i.e., f4 � f7, producingcontribs at the end. For unmateri-
alized (blue) RDDs, the sequence of transformations (e.g.,
f4 � : : : � f7) is applied to each record from the source RDD
in a streamingmanner via iterators to produce a �nal record.

For links andcontribs , the developer invokes the method
persist to materialize these RDDs. The storage levels indi-
cate thatlinks is cached in memory throughout the execu-
tion (as it is used in each iteration) whilecontribs generated
in each iteration is kept in memory but will be serialized to
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1 var l i n e s = c t x . t e x t F i l e ( a rgs [ 0 ] ,
s l i c e s )

2 var l i n k s = l i n e s . map { s=>
3 var p a r t s = s . s p l i t (" \\s+" )
4 ( p a r t s ( 0 ) , p a r t s ( 1 ) )
5 } . d i s t i n c t ( ) . groupByKey ( )
6 . p e r s i s t ( S t o r a g e L e v e l . MEMORY_ONLY)
7

8 var ranks = l i n k s . mapValues ( v => 1 . 0 )
9 f o r ( i <� 1 to i t e r s ) {

10 var c o n t r i b s =
l i n k s . j o i n ( ranks ) . v a l u e s . f l a tMap {

11 case ( u r l s , rank ) =>
12 v a l s i z e = u r l s . s i z e
13 u r l s . map ( u r l => ( u r l , rank / s i z e ) )
14 . p e r s i s t ( S t o r a g e L e v e l
15 . MEMORY_AND_DISK_SER )
16 }
17 ranks = c o n t r i b s . reduceByKey ( _ + _ ) .
18 mapValues ( 0 . 1 5 + 0 . 8 5* _ )
19 }
20 ranks . count ( )

(a) PageRank Program. (b) Transformations within a stage (c) Results of DRAM-only and DRAM+NVM,
managed by the OS and by Panthera.

Figure 2. Characteristics of RDDs in Spark PageRank.
disk upon memory pressure.ranks is not explicitly persisted.
Hence, it is not materialized until the execution reaches
Line 20 where actioncount is invoked on the RDD object.

The lifetime patterns of these di�erent RDDs fall into two
categories. Non-persisted intermediate RDDs are short-lived
as their data objects are generated only during a pipelined
execution. Persisted RDDs are long-lived and stay in memo-
ry/on disk until the end of the execution. Their access pat-
terns are, however, more diverse. Objects in an intermediate
RDD are accessed at most once during streaming. Objects in
a persisted RDD can exhibit di�erent types of behavior. For
RDDs likelinks that are used in each iteration, their objects
are frequently accessed. In contrast, RDDs likecontribs are
persisted primarily for speeding up recovery from faults, and
hence, their objects are rarely used after generated.

Design Choices.The di�erent characteristics of DRAM and
NVM make them suitable for di�erent types of datasets.
DRAM has low capacity and fast access speed, while NVM
has large capacity but slow speed. Hence, DRAM is a good
choice for storing small-sized, frequently-accessed datasets,
while large-sized, infrequently-accessed datasets �t natu-
rally into NVM. The clear distinction in the lifespans and
access patterns of di�erent RDDs makes it easy for them to
be placed into di�erent memories suitable for their behavior.
For example, intermediate (blue) RDDs are never material-
ized. Their objects are created individually during streaming
and then quickly collected by the GC. These objects are allo-
cated in the young generation and will eventually die there.
Although they are short-lived, they are accessed frequently
during streaming. This motivates our design choice of plac-
ing the young generation in DRAM.

Persisted RDDs, in contrast, have all their data objects
created at the same time, and thus need large storage space.
Since they are kept aliveinde�nitely, they should be allocated

directly in the old generation. One category of persisted
RDDs includes those that are frequently accessed, likelinks ;
they need to be placed in DRAM. Another category includes
RDDs that are rarely accessed and cached for fault tolerance,
like contribs , these RDDs should be placed in NVM. This
behavioral di�erence motivates our choice of splitting the
old generation into a DRAM and an NVM component.

We perform what we suggest on a system with 32GB
DRAM and 88GB NVM using Spark-based PageRank as the
benchmark. Figure 2(c) shows the performance and energy
consumption normalized to a system with 120GB of DRAM.
Compared to using only 32GB DRAM, adding 88GB NVM to
the system provides modest performance bene�t (15%) but
leads to 16% higher energy consumption, without proper
data placement across DRAM and NVM (seeUnmanaged,
Ÿ5.2). After applying Panthera, RDDlinks andcontribs are
placed into DRAM and NVM, respectively. With such care-
ful placement of data across DRAM and NVM, we �nd that
(1) performance increases by 42% compared to using only a
32GB DRAM, and becomes at the same level of the perfor-
mance of using 120GB DRAM; (2) energy consumption is 9%
less than using only a 32GB DRAM, and 54% less than using
a 120GB DRAM. We conclude that careful data placement
between DRAM and NVM can provide the performance of
large DRAM system, while keeping the energy consumption
at the level of a small DRAM system.

3 Static Inference of Memory Tags

Based on our observation that the access patterns of RDDs
can often be identi�ed from the program using them, we
developed a simple static analysis that extracts necessary
semantic information for e�cient data placement. The anal-
ysis automatically infers, for each persisted RDD visible in
the program, whether it should be allocated in DRAM or
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NVM. This information is then passed down to the runtime
system for appropriate data allocation.
Static Analysis. In a Spark program, the developer can in-
vokepersist with a particular storage level on an RDD to
materialize the RDD, as illustrated in Figure 2. We piggyback
on the storage levels to further determine if a persisted RDD
should be placed into DRAM or NVM. In particular, Panthera
statically analyzes the program to infer a memory tag (i.e.,
DRAM or NVM) for eachpersist call. Each of the ten ex-
isting storage levels (e.g., MEMORY_ONLY), except forOFF_HEAP
andDISK_ONLY, is expanded into two sub-levels, annotated
with NVM and DRAM, respectively (e.g., MEMORY_ONLY_DRAM
and MEMORY_ONLY_NVM). OFF_HEAPis translated directly into
OFF_HEAP_NVMbecause RDDs placed in native memory are
rarely used, whileDISK_ONLYdoes not carry any memory tag.

Our static analysis performs inference based on thedef-use
informationw.r.t.each RDD variable declared in the program
as well as the loop(s) in which the variable is de�ned/used.
Our key insight is that if the variable isde�ned in each
iteration of a computational loop, most of the RDD instances
represented by the variable arenot used frequently. This is
because Spark RDDs are often immutable and hence, every
de�nition of the RDD variable creates a new RDD instance at
run time, leaving the old RDD instance cached and unused.
Hence, we tag the variable �NVM�, instructing the runtime
system to place these RDDs in NVM. An example is the
contribs variable in Figure 2(a), which is de�ned in every
iteration of the loop � although the variable is also used in
each iteration, the use refers to the most recent RDD instance
created in the last iteration while the instances created in all
the other past iterations are left unused.

By contrast, if a variable isused-only(i.e., never de�ned)
in the loop, such aslinks , we create a tag �DRAM� for it
since only one instance of the RDD exists and is repeatedly
used. Panthera analyzes not only RDD variables on which
persist is explicitly called, but also those on which actions
are invoked, such as theranks variable in Figure 2(a). The
tag inferred for an RDD variable (sayv) is passed, at the
materialization point of every RDD instance (v refers to),
into the runtime system via automatically instrumented calls
to auxiliary (native) methods provided by the Panthera JVM.
We piggyback on a tracing GC to propagate this tag from
the RDD object down to each data object contained in the
RDD � when the GC runs, it moves objects with the same
tag together into the same (DRAM or NVM) region (see Ÿ4).

One constraint that needs to be additionally considered
is the location of the loop relative to the location of the
materialization point of the RDD. We analyze the loop only if
the materialization pointprecedes or is inthe loop. Otherwise,
whether the variable is used or de�ned in the loop does
not matter as the RDD has not been materialized yet. For
instance, although theranks variable is de�ned in the loop
that starts at Line 17, it does not get materialized until Line 20
after the loop �nishes. Hence, its behavior in the loop does

not a�ect its memory tag, which should actually depend on
its def-usein the loops, if any, after Line 20.

If no loop exists in a program, the program has only one
iteration and all RDDs receive an �NVM� tag as none of
them are repeatedly accessed. If there are multiple loops
to be considered for an RDD variable, we tag it �DRAM� if
there exists one loop in which the variable is used-only and
that loop follows or contains the materialization point of
the RDD. The variable receives an �NVM� tag otherwise. If
all persisted RDDs receive an �NVM� tag at the end of the
analysis, we change the tags of all RDDs to �DRAM� � the
goal is to fully utilize DRAM by �rst placing RDDs in DRAM.
Once DRAM capacity is exhausted, the remaining RDDs,
including those with a �DRAM� tag, will be placed in NVM.

Note that our analysis infers tags only for the RDD vari-
ables explicitly declared in the program. Intermediate RDDs
produced during execution are not materialized and thus do
not receive memory tags from our analysis. We discuss how
to handle them in Ÿ4.

The memory tag of an RDD variable is astatic approxima-
tion of its access pattern, which may not re�ect the behavior
of all RDD instances represented by the variable at run time.
However, user code for data processing often has a simple
batch-transformation logic. Hence, the static information
inferred from our analysis is often good enough to help the
runtime make an accurate placement decision for the RDD.
In case the statically inferred tags do not precisely capture
the RDD's access information, Panthera has the ability to
move RDDs between NVM and DRAM (within the old gen-
eration) based on their access frequencies, when a full-heap
GC occurs. Ÿ4 provides a full discussion for this mechanism.
Dealing with ShuffledRDD. Recall from Ÿ2 that, in addi-
tion to the RDDs on whichpersist is explicitly invoked,
ShuffledRDDs, which are created from disk �les after a shuf-
�e, are also materialized. These RDDs are often the input
of a stage but invisible in the program code. The challenge
here is where to place them. Our insight is that their place-
ment should depend on the other materialized RDDs that are
transformed from (i.e., depend on) them in the same stage.

For example, in Figure 2(b), the input of the stage are two
sets ofShuffledRDDs: [1] and [8].ShuffledRDD[1] is the RDD
represented bylinks and our static analysis already infers
tag �DRAM� for it. ShuffledRDD[8] results from the reduction
in the previous stage. BecauseShuffledRDD[8] transitively
producesMapPartitionRDD[7] (represented bycontribs ) and
MapPartitionRDD[7] has a memory tag �NVM� inferred by
our static analysis, we tagShuffledRDD[8] �NVM� as well.

The main reason is that RDDs belonging to the same stage
may share many data objects for optimization purposes. For
example, amaptransformation that only changes the values
(of key-value pairs) in RDDA may generate a new RDDB
that references the same set of key objects as inA. If B has
already received a memory tag from our static analysis, it is
better to assign the same tag toA so that these shared objects
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Figure 3. The Panthera heap and allocation policies. Here
RDD array objects refer to RDDs' backbone arrays while data
objects refer to other non-array objects in an RDD structure.

do not receive inconsistent tags and would not need to be
moved from one memory to another whenB is generated
from A. This is especially bene�cial when the transformation
is in a computational loop � a large number of objects would
be moved if A and B have di�erent memory tags.

To assign the same tag toA andB, we add support that
scans the lineage graph at the beginning of each stage to
propagate the memory tagbackward, starting from the low-
est materialized RDD in the graph that has received a tag
from our analysis. Con�icts may occur during the propaga-
tion � an RDD encountered during the backward traversal
may have an existing tag that is di�erent from the tag be-
ing propagated. To resolve con�icts, we de�ne the following
priority order: DRAM> NVM, which means that upon a con-
�ict, the resulting tag is always DRAM. This is because our
goal is to minimize the NVM-induced overhead; RDDs with
a �DRAM� tag inferred will be frequently used and putting
them in NVM would cause large performance degradation.

4 The Panthera Garbage Collector

While our static analysis (Ÿ3) determines where RDDs should
be allocated, this information has to be communicated down
to the runtime system, which recognizes only objects, not
RDDs. Hence, our goal is to develop a new GC that, when
placing/moving data objects, is aware of (1) the high-level
semantics about where (DRAM or NVM) these RDDs should
be placed and (2) the low-level information about the RDDs
to which these objects belong.

We have implemented our new collection algorithm in
OpenJDK 8 (build jdk8u76-b02) [7]. In particular, we have
modi�ed the object allocator, the interpreter, the two JIT
compilers (C1 and Opto), and the Parallel Scavenge collector.

4.1 Design Overview
Heap Design.The Panthera GC is based on the Parallel Scav-
enge collector, which is the default GC in OpenJDK8. The
collector divides the heap into a young and an old generation.

As discussed earlier in Ÿ1, Panthera places the young gener-
ation in DRAM and splits the old generation into a DRAM
component and an NVM component. The o�-heap native
memory is placed entirely in NVM. We reserve two unused
bits, referred to asMEMORY_BITS, from the header of each ob-
ject to indicate whether the object should be allocated into
DRAM (01) or NVM (10). The default value for these bits is
00 � objects that do not receive a tag have this default value.
They will be promoted to the NVM component of the old
generation if they live long enough. Figure 3 illustrates the
heap structure and our allocation policies.
Allocation Policies. As discussed in Ÿ3, each materialized
RDD carries a memory tag that comes from our static anal-
ysis or lineage-based tag propagation. However, at a low
level, an RDD is a structure of objects, as illustrated in Fig-
ure 1, and these objects are created at di�erent points in
the execution. Our goal is to place all objects belonging to
the same logical RDD � including the top object, the array
object, tuple objects, and other objects reachable from tuples
� together in the space suggested by the RDD's memory tag,
because these objects likely have the same access pattern
and lifetime.

However, this is rather challenging � our static analysis
infers a memory tag for eachtop RDD object(whose type is a
subtype oforg.apache.spark.rdd.RDD) in the user program
and we do not know what other objects belong to this RDD
by just analyzing the user program. Statically identifying
what objects belong to a logical data structure would require
precise context-sensitive static analysis ofboth user and sys-
tem code, which is di�cult to do due to Spark's extremely
large codebase and the scalability issues of static analysis.

Our idea to solve this problem is that instead of attempting
to allocate all objects of an RDD directly into the space (say
S) suggested by the RDD's tag, weallocate only the array
object intoS upon its creation. This is much easier to do �
Panthera instruments each materialization point (e.g., before
a call topersist or a Spark action) in the user program to
pass the tag down to the runtime system without needing to
analyze the Spark system code. Since the array is created at
materialization, the runtime system can just use the tag to
determine where to place it. All other objects in the RDD are
not immediately allocated inS due to the aforementioned
di�culties in �nding their allocation sites. They are instead
allocated in the young generation. Later, we use the GC to
move these objects intoSas tracing is performed.

Another important reason why we �rst allocate the array
object intoSis because the array is often much larger than
the top and tuple objects. It is much more e�cient to allocate
it directly into the space it belongs to rather than allocating
it somewhere else and moving it later.

Table 1 shows our allocation policies for di�erent types
of objects in an RDD. For RDDs with tag �DRAM�, array
objects are allocated directly into the DRAM component of
the old generation if it has enough space. Otherwise, they
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have to be allocated in the NVM component. For RDDs with
tag �NVM�, array objects are allocated directly into the NVM
component. Intermediate RDDs without tags are all allocated
in the young generation (DRAM). Most of them end up dy-
ing there and never get promoted, while a small number of
objects that eventually become old enough will be promoted
to the NVM space of the old generation. Top RDD objects
and data tuple objects, as discussed earlier, are all allocated
into the young generation and moved later by the GC to the
spaces containing their corresponding arrays.

Table 1. Panthera's allocation policies.
Tag Obj Type Initial Space Final Space

DRAM
RDD Top Young Gen. DRAM of Old Gen.

RDD Array DRAM of Old Gen. DRAM of Old Gen.
Data Objs Young Gen. DRAM of Old Gen.

NVM
RDD Top Young Gen. NVM of Old Gen.

RDD Array NVM of Old Gen. NVM of Old Gen.
Data Objs Young Gen. NVM of Old Gen.

NONE
RDD Top Young Gen. Young Gen. or NVM of Old Gen.

RDD Array Young Gen. Young Gen. or NVM of Old Gen.
Data Objs Young Gen. Young Gen. or NVM of Old Gen.

4.2 Implementation and Optimization

This subsection describes our implementation techniques
and various optimizations.

4.2.1 Passing Tags

Right before each materialization point (i.e., the invocation
of persist or a Spark action), our analysis inserts a call to
a native methodrdd_alloc(rdd, tag) , with the RDD's top
object (rdd) and the inferred memory tag (tag) as the argu-
ments. This method �rst sets a thread-local state variable
to DRAM or NVM, according to the tag, informing the cur-
rent thread that a large array for an RDD will be allocated
soon. Next,rdd_alloc sets theMEMORY_BITSof the top object
rdd based ontag . Regardless of where it currently is, this
top object will eventually be moved by the GC to the space
corresponding totag .

The thread then transitions into a �wait� state, waiting
for this large array. In this state, the �rst allocation request
for an array whose length exceeds a user-de�ned threshold
(i.e., a million used in our experiments) is recognized as the
RDD array. Panthera then allocates the array directly into
the space indicated bytag . To implement this, we modi�ed
both the fast allocation path, assembly code generated by
the JIT compiler, and the slow path, functions implemented
in C++. After this allocation, the state variable is reset and
the thread exits the wait state. Iftag is null, the array is
allocated in the young generation, preferably through the
thread-local allocation bu�er (TLAB), and theMEMORY_BITS
of the top object remains as the default value (00).

4.2.2 Object Migration

There are two major challenges in how to move objects:
cross-generation migrationand object compaction. As Pan-
thera piggybacks on a generational GC, objects in the young

generation that survive several minor GCs are deemed long-
lived and moved into the old generation. We leverage this
opportunity to move together objects that belong to the same
logical RDD � as discussed earlier, these objects might not
have been allocated in the same space initially.

Minor GC. To do this, we modi�ed the minor collection
algorithm in the Parallel Scavenge GC on which Panthera is
built. The existing minor GC contains three tasks: root-task,
which performs object tracing from the roots (e.g., stack and
global variables); old-to-young-task, which scans references
from objects in the old generation to those in the young
generation to identify (directly or transitively) reachable
objects; and steal-task, which performs work stealing for
load balancing. To support our object migration, we split
old-to-young-task into a DRAM-to-young-task and NVM-to-
young-task, which �nd objects that should be moved into the
DRAM and NVM parts of the old generation, respectively.

For these two tasks, we modi�ed the tracing algorithm to
propagate the tag � for example, scanning a reference from
a DRAM-based RDD array (with tag �DRAM�) to a tuple
object (in the young generation) propagates the tag to the
tuple object (by setting itsMEMORY_BITS). Hence, when trac-
ing is done, all objects reachable from the array have their
MEMORY_BITSset to the same value as that of the array. In
the original GC algorithm, an object does not get promoted
from the young to the old generation until it survives sev-
eral minor GCs. In Panthera, however, we move the objects
whoseMEMORY_BITSis set as 01 (10) in tracing immediately to
DRAM (NVM) space in the old generation, We refer to this
mechanism aseager promotion. Objects whoseMEMORY_BITS
is not set, 00, in tracing belong to intermediate RDDs or are
control objects not associated with any RDDs. The migration
of these objects follows the original algorithm, that is, they
will be moved only if they survive several minor GCs.

Furthermore, we also need to move RDD top objects to
the appropriate part of the old generation. These top ob-
jects, whoseMEMORY_BITSwas set by the instrumented call to
rdd_alloc at their materialization points, are visited when
root-task is executed because these objects are referenced
directly by stack variables. We modi�ed the root-task algo-
rithm to identify objects with the setMEMORY_BITS. These
RDD top objects will also be moved to (the DRAM (01) or
NVM (10) space of) the old generation by the minor GC.

Major GC. When a major GC runs, it performs memory
compaction by moving objects together (in the old gener-
ation) to reduce fragmentation and improve locality. We
modi�ed the major GC to guarantee that compaction does
not occur across the boundary between DRAM and NVM.
Furthermore, when the major GC performs a full-heap scan,
Panthera re-assesses, for each RDD array object, where the
object should actually be placed based on the RDD's runtime
access frequency. This frequency is measured by counting,
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using instrumentation, how many times a method (e.g., map
or reduce) has been invoked on this RDD object.

We maintain a hash table that maps each RDD object to
the number of calls made on the object. Our static analysis
inserts, at each such call site, a JNI (Java Native Interface)
call that invokes a native JVM method to increment the call
frequency for the RDD object. Frequently (infrequently)
accessed array objects are moved from the NVM (DRAM)
space to the DRAM (NVM) space within the old generation
and all objects reachable from these arrays are moved as well.
Their MEMORY_BITSwill be updated accordingly. At the end
of each major GC, the frequency for each RDD is reset.

The DRAM space of the old generation can be quickly
�lled up as it is much smaller than the NVM space. When
the DRAM space is full, the minor GC moves all objects from
the young generation to the NVM space of the old generation
regardless of their memory tags.
Conflicts. If an object is reachable from multiple references
and di�erent tags are propagated through them, a con�ict
occurs. As discussed earlier, we resolve con�icts by giving
�DRAM� higher priority than �NVM�. As long as the object
receives �DRAM� from any reference, it is a DRAM object
and will be moved to the DRAM space of the old generation.

4.2.3 Card Optimization

In OpenJDK, the heap is divided into manycards, each rep-
resenting a region of 512 bytes. Every object can take one or
more cards, and the write barrier maintains a card table that
marks certain cards dirty upon reference writes. The card
table can be used to e�ciently identify references during
tracing. For example, upona.f = b , the card that contains
the object referenced bya is set to dirty. When a minor GC
runs, the old-to-young scavenge task cleans a card if the
target objects of the (old-to-young) references contained in
the memory region represented by the card have been copied
to the old generation.

However, if a card contains two large arrays (sayA andB)
� e.g., A ends in the middle of the card whileB starts there
immediately � signi�cant ine�ciencies can result when they
are scanned by two di�erent GC threads. The card would
remain dirty even if all objects referenced byA andB have
been moved from the young to the old generation � neither
thread could clean the card due to its unawareness of the
status of the array scanned by another thread. This would
cause every minor GC to scan every element of each array
in the dirty card until a major GC occurs.

This is a serious problem for Big Data applications that
make heavy use of large arrays. Shared cards exist perva-
sively when these arrays are frequently allocated and deallo-
cated. Frequent scanning of such cards with multiple threads
can incur a large overhead on NVM due to its higher read
latency and reduced bandwidth. We implemented a simple
optimization that adds analignment paddingfor the alloca-
tion of each RDD array to make the end of the array align

with the end of a card. Although this leads to space ine�cien-
cies, the amount of wasted space is small (e.g., less than 512
bytes for each array of hundreds of megabytes) while card
sharing among arrays is completely eliminated, resulting in
substantial reduction in GC time.

4.3 Applicability

Our static analysis is designed speci�cally for Spark and
not easily reusable to other framework. However, the APIs
for data placement and migration provided by the Panthera
runtime system can be employed to manage memory for any
Big Data system that uses a key-value array as its backbone
data structure. Examples include Apache Hadoop, Apache
Flink, or database systems such as Apache Cassandra.

Panthera provides two major APIs, one for pre-tenuring
data structures with tags and a second for dynamic monitor-
ing and migration. The �rst API takes as input an array and
a tag, performing data placement as discussed earlier in this
section. The tag can come from the developer's annotations
in the program or from a static analysis that is designed
speci�cally for the system to be optimized.

To illustrate, consider Apache Hadoop where both a map
worker and a reduce worker may need to hold large data
structures in memory. Some of these data structures are
loaded from HDFS as immutable input, while others are fre-
quently accessed. In the case of HashJoin, which is a building
block for SQL engines, one input table is loaded entirely in
memory while the second table is partitioned across map
workers. If map workers are executed in separate threads,
they all share the �rst table and join their own partitions
of the second table with it. The �rst table is long-lived and
frequently accessed. Hence, it should be tagged DRAM and
placed in the DRAM space of the old generation, while di�er-
ent partitions of the second table can be placed in the young
generation and they will die there quickly.

Panthera's second API takes as input a data structure
object to track the number of calls made on the object. If
this API is used to track the access frequency of the data
structure, the data structure (and all objects reachable from
it) would not be pretenured (as speci�ed by the �rst API), but
rather, they are subject to dynamic migration performed in
the major GC. We can use this API to dynamically monitor
certain objects and migrate them if their access patterns are
not easy to predict statically.

Use of these two APIs enables a �exible allocation/migra-
tion mechanism that allows certain parts of the data structure
(e.g., for which memory tags can be easily inferred) to be
pretenured and other parts to be dynamically migrated.

5 Evaluation

We have added/modi�ed 9186 lines of C++ code in OpenJDK
(build jdk8u76-b02) to implement the Panthera GC and writ-
ten 979 lines of Scala code to implement the static analysis.
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5.1 NVM Emulation and Hardware Platform

Most of the prior works on hybrid memories used simulators
for experiments. However, none of them support Java ap-
plications well. We cannot execute managed-runtime-based
distributed systems on these simulators. There also exist em-
ulators such as Quartz [51] and PMEP [18] that support em-
ulation of NVM for large programs using commodity multi-
socket (NUMA) hardware, but neither Quartz nor PMEP
could run OpenJDK. These emulators require developers
to use their own libraries for NVM allocation, making it
impossible for the Panthera GC to migrate objects without
re-implementing the entire allocator and GC from scratch
using these libraries.

As observed in [8, 51], NUMA's remote memory latency
is close to NVM's latency, and hence, researchers have used
a NUMA architecture as the baseline to measure emulation
accuracy. Following this observation, we built our own emu-
lator on NUMA machines to emulate hybrid memories for
JVM-based Big Data systems.

We followed Quartz [51] when implementing our emula-
tor. Quartz has two major components: (1) it uses thethermal
control registerto limit the DRAM bandwidth; and (2) it cre-
ates a daemon thread for each application process and inserts
delay instructions to emulate the NVM latency. For example,
if an application's CPU stall time isS, Quartz scales the CPU
stall time toS� NVM_latency

DRAM_latency to emulate the latency e�ect of
NVM. For (1), we used the same thermal control register to
limit the read/write bandwidth. Like Quartz, we currently do
not support di�erent bandwidths for reads and writes. For
(2), we followed Quartz's observation to use the latency of
NUMA's remote memory to model NVM's latency.

An alternative approach to emulating NVM's latency is
to instrument loads/stores during JIT compilation, injecting
a software-created delay at each load/store. The limitation
of this approach, however, is that it does not account for
caching e�ects and memory-level parallelism.

We used one CPU to run all the computation, the memory
local to the CPU as DRAM, and the remote memory as NVM.
In particular, DRAM and NVM are emulated, respectively,
using 2 local and 2 remote memory channels. The perfor-
mance speci�cations of the emulated NVM are the same as
those used in [51], reported in Table 2. To emulate NVM's
slow write speed, we used the thermal control register to
limit the bandwidth of remote memory � the read and write
bandwidth is 10GB/s each. The remote memory's latency in
our setting is 2.5� of that of the local memory.

Energy Estimation. We followed Lee et al. [32] to estimate
energy for NVM. We used Micron's DDR4 device speci�-
cations [39] to model DRAM's power. NVM's energy has a
staticanddynamiccomponent. The static component is neg-
ligible compared to DRAM [33]. The dynamic component
consists of the energy consumed by reads and writes. PCM

Table 2. Emulated DRAM and NVM parameters.

DRAM NVM
Read latency (ns) 120 300

Bandwidth (GB/s) 30
10 (limited by the ther-
mal control register)

Capacity per CPU 100s of GBs Terabytes
Estimated price 5� 1�

array reads consume about 2.1� larger energy than DRAM
due to its need for high temperature operation [32].

NVM writes consume much more energy than DRAM
writes. Upon a row-bu�er miss, the energy consumed by each
write has three components: (1) anarray write that evicts
data from the row bu�er into the bank array, (2) anarray read
that fetches data from the bank array to the row bu�er, and
(3) arow bu�er write that writes new data from the CPU last
level cache to the row bu�er. Assuming the row-bu�er miss
ratio is 0.5, we computed these three components separately
by considering the row bu�er's write energy (1.02pJ/bit), size
(i.e., 8K bits for DRAM [39], 32-bit-wide partial writeback to
NVM [32]) and miss rate (0.5), as well as the array's write-
back energy (16.8pJ/bit� 7.6% for NVM) and read energy
(2.47pJ/bit for NVM). The factor of 7.6% is due to Lee et al.'s
optimization [32] that writes only 7.6% of the dirty words
back to the NVM array.

CPU's uncore events, collected withVTune[6], were em-
ployed to compute the numbers of reads and writes. In par-
ticular, the events we used wereUNC_M_CAS_COUNT.RDand
UNC_M_CAS_COUNT.WR. VTune can also distinguish reads and
writes from/to local and remote memories.

5.2 Experiment Setup

We set up a small cluster to run Spark with one master node
and one slave node � these two servers have a special Intel
chipset with a �scalable memory bu�er� that can be tuned to
produce the 2.5� latency for remote memory accesses, which
matches NVM's read/write latency. Since our focus isnot
on distributed computing, this cluster is su�cient for us to
execute real workloads on Spark and understand their perfor-
mance over hybrid memories. Table 3 reports the hardware
con�gurations of the Spark master and Spark slave nodes.
Each node has two 8-core CPU and the Parallel Scavenge
collector on which Panthera was built creates 16 GC threads
in each GC to perform parallel tracing and compaction.

Table 3. Hardware con�guration for our servers.

Arch NUMA, 4 sockets
QPI 6.4GT/S, directory-based MESIF

CPU E7-4809 v3 2.00GHz, 8 cores, 16 HW threads
L1-I 8 way, 32KB/core, private
L1-D 8 way, 32KB/core, private
L2 8 way, 256KB/core, private
L3 20 way, 20MB, shared

Memory DDR 4, 1867MHz, SMI 2 channels
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The negative impact of the GC latency increases with the
number of compute nodes. As reported in [36], a GC run on
a single node can hold up the entire cluster � when a node
requests a data partition from another server that is running
GC, the requesting node cannot do anything until the GC is
done on the second node. Since Panthera can signi�cantly
improve the GC performance on NVM, we expect Panthera
to provide even greater bene�t when Spark is executed on a
large NVM cluster.

System Con�gurations. Each CPU has a 128GB DRAM.
We reserved 8GB of DRAM for the OS and the maximum
amount of DRAM that can be used for Spark is 120GB. We
experimented with two di�erent heap sizes for the Spark-
running JVM (64GB and 120GB) and three di�erent DRAM
sizes (1/4, 1/3, and 100% of the heap size; the rest of the heap
is NVM). The con�guration with 100% DRAM was used as a
baseline to compute the overhead of Panthera under hybrid
memories.

Prior works on NVM often used smaller DRAM ratios in
their con�gurations. For example, Write Rationing [9] used
1GB DRAM and 32GB NVM in their experiments. However,
as we deal with Big Data systems, it would not be possible
for us to use a very small DRAM ratio � in our experiments,
a regular RDD consumes 10-30GB memory, and hence, we
had to make DRAM large enough to hold at least one RDD.

The nursery space is placed entirely in DRAM. We have
experimented with several di�erent sizes (1/4, 1/5, 1/6, and
1/7 of the heap size) for the nursery space. The performance
di�erences between the 1/4, 1/5, and 1/6 con�gurations were
marginal (even under the original JVM), while the con�gu-
ration of 1/7 led to worse performance. We ended up using
1/6 in our experiments to achieve good nursery performance
and simultaneously leave more DRAM to the old generation.

Programs and Datasets. We selected a diverse set of 7 pro-
grams. Table 4 lists these programs and the datasets used to
run them. These are representative programs for a wide vari-
ety of tasks including data mining, machine learning, graph
and text analytics. PR, KM, LR, and TC run directly on Spark;
CC and SSSP are graph programs running on GraphX [22],
which is a distributed graph engine built over Spark; BC is a
program in MLib, a machine learning library built on top of
Spark. We used real-world datasets to run all the seven pro-
grams. Note that although the sizes of these input datasets
are not very large, there can be large amounts of intermediate
data generated during the computation.

Baselines.Our initial goal was to compare Panthera with
both Espresso [56] and Write Rationing [9]. However, nei-
ther of them is publicly available. Espresso proposes a pro-
gramming model for developers to develop new applications.
Applying it to Big Data systems would mean that we need
to rewrite each allocation site, which is clearly not practical.
In addition, Espresso does not migrate objects based on their
access patterns.

Table 4. Spark programs and datasets.
Program Dataset Initial Size

PageRank (PR) Wikipedia Full Dump, German [3] 1.2GB
K-Means (KM) Wikipedia Full Dump, English [3] 5.7GB
Logistic Regression (LR) Wikipedia Full Dump, English [3] 5.7GB
Transitive Closure (TC) Notre Dame Webgraph [2] 21MB

GraphX-Connected
Components (CC) Wikipedia Full Dump, English [3] 5.7GB

GraphX-Single Source
Shortest Path (SSSP) Wikipedia Full Dump, English [3] 5.7GB

MLlib-Naive Bayes Clas-
si�ers (BC) KDD 2012 [1] 10.1GB

The Write Rationing GC has two implementations:
Kingsguard-Nursery(KN) andKingsguard-Writes(NW). KN
places the young generation in DRAM and the old generation
in NVM. KW also places the young generation in DRAM.
Di�erent from KN, KW monitors object writes and dynami-
cally migrates write-intensive objects into DRAM. Although
we could not directly compare Panthera with these two GCs,
we have implemented similar algorithms in OpenJDK. Under
KW, almost all persisted RDDs were quickly moved to NVM.
The frequent NVM reads from these RDDs, together with
write barriers used to monitor object writes, incurred an
average of41%performance overhead for our benchmarks.
This is because Big Data applications exhibit di�erent charac-
teristics from regular, non-data-intensive Java applications.

KN appears to be a good baseline at the �rst sight. How-
ever, implementing it naïvely in the Parallel Scavenge collec-
tor can lead to non-trivial overhead � the reduced bandwidth
in NVM can create a huge impact on the performance of a
multi-threaded program; this is especially the case for Paral-
lel Scavenge that attempts to fully utilize the CPU resources
to perform parallel object scanning and compaction.

To obtain a better baseline, we placed the young genera-
tion in DRAM and supported the old generation with a mix
of DRAM and NVM. In particular, we divided the virtual
address space of the old generation into a number of chunks,
each with 1GB, and used a probability to determine whether
a chunk should be mapped to DRAM or NVM. The prob-
ability is derived from the DRAM ratio in the system. For
example, in a system where the DRAM-to-memory ratio is
1/4 (1/4 DRAM), each chunk is mapped to DRAM with 1/4
probability and to NVM with 3/4 probability. Note that this
is common practice [21, 53] to utilize the combined band-
width of DRAM and NVM. We refer to this con�guration as
unmanaged, which outperforms both KN and KW for our
benchmarks.

5.3 Performance and Energy

Figure 4 reports the overall performance and energy results
when a 64GB heap is used and DRAM to memory ratio is
1/3 (1/3 DRAM). The performance and energy results of
each con�guration are normalizedw.r.t. those of the 64GB
DRAM-only version. Compared to the DRAM-only version,
the unmanaged version reduces energy by 26.7% with a
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21.4% execution time overhead. In contrast, Panthera reduces
energy by 32.3% at a 4.3% execution time overhead.

Figure 4. Overall performance and energy results under a
64GB heap; DRAM to memory ratio is 1/3.

When the heap size is 120 GB (not shown in Figure 4, but
summarized later in Figure 6 and Figure 7), the unmanaged
version reduces energy by 39.7% at a 19.3% execution time
overhead. In contrast, Panthera reduces energy by 47.0%
with less than 1% execution time overhead. Clearly, consider-
ing the RDD semantics in data placement provides signi�cant
bene�ts in both energy and performance.
GC Performance.To understand the GC performance, we
broke down the running time of each program into the mu-
tator and GC time; these results (under the 64GB heap) are
shown in Figure 5. Compared to the baseline, the unmanaged
version introduces performance overhead of 60.4% and 6.9%
in the GC and computation, respectively; while for Panthera
these two overheads are, respectively, 4.7% and 4.5%. Under
the 120GB heap, the GC performance overhead of the un-
managed version and Panthera are, respectively, 58.0% and
3.1%. Note that due to large amounts of intermediate data
generated, the GC is frequently triggered for these programs.

Figure 5. GC performance (64GB heap).

Since the GC is a memory-intensive workload, inappropri-
ate data placement can lead to signi�cantly higher memory
access time and thus a large penalty. The penalty comes from
two major sources. First, NVM's limited bandwidth (which
is about 1/3 of that of DRAM) has a large negative impact
on the performance of Parallel Scavenge, which launches
16 threads to perform parallel tracing and object copying in
each (nursery and full-heap) GC. Given this high degree of

parallelism, the performance of the nursery GC is degraded
signi�cantly when scanning objects in NVM. Second, object
tracing is a read-intensive task, which su�ers badly from
NVM's higher read latency.

Panthera improves the GC performance by pretenuring
frequently-accessed RDD objects in DRAM and performing
optimizations including eager promotion(Ÿ4.2.2) andcard
padding(Ÿ4.2.3).Eager promotionreduces the cost of (old-
to-young) tracing in each minor GC, whilecard padding
eliminates unnecessary array scans in NVM, which are sen-
sitive to both latency and bandwidth. A further breakdown
shows thateager promotion, alone, contributes an average of
9% of the total GC performance improvement. The contribu-
tion of card paddingis much more signi�cant � without this
optimization, the GC time increases by 60% due to the impact
of NVM's substantially limited bandwidth and increased la-
tency on the performance of parallel card scanning. In fact,
this impact is so large that the other optimizations would
not work well when card padding is disabled.

Varying Heaps and Ratios. To understand the impact of
the heap sizes and DRAM ratios (DRAM to total memory),
we have conducted experiments with two heap sizes (64GB,
120GB) and two DRAM ratios (1/3, 1/4) on four programs PR,
LR, CC, and BC. Figure 6 reports the time results of these
con�gurations. Panthera's time overheads are, on average,
9.5%, 3.4%, 2.1%, and 0%, respectively, under the four con�g-
urations (64GB, 1/4), (64GB, 1/3), (120GB, 1/4), and (120GB,
1/3). The overheads for the unmanaged version are 25.9%,
20.9%, 23.9%, and 19.3%, respectively, under these same four
con�gurations.

(a) 120GB Heap. (b) 64GB Heap.

Figure 6. Performance for two DRAM ratios + two heaps.

We make two interesting observations. First, Panthera
is more sensitive to the DRAM ratio than the heap size.
The time overhead can be reduced by almost 10% when the
DRAM ratio increases from 1/4 to 1/3. The reason is that more
frequently accessed RDDs are moved to DRAM, reducing
the memory latency and bandwidth bound of NVM. Another
observation is that the unmanaged version is much less sensi-
tive to DRAM ratio � the time overhead is reduced by only 5%
when the DRAM ratio increases to 1/3. This is because arbi-
trary data placement leaves much of the frequently-accessed
data in NVM, making CPUs stall heavily when accessing
NVM.

Figure 7 depicts the energy results for the two heaps and
two DRAM/NVM ratios. For the 64GB heap, the unmanaged
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version reduces energy by an average of 32.2% and 26.5%, re-
spectively, under the 1/4 and 1/3 DRAM ratio, while Panthera
reduces energy by 36.0% and 32.7% under these same ratios.
The energy reductions for the 120GB heap are much more
signi�cant � the unmanaged version reduces energy by
45.7% and 39.7%, respectively, under the 1/4 and 1/3 DRAM
ratios, while the energy reduction under Panthera increases
to 51.7% and 47.0% for these two ratios.

(a) 120GB Heap. (b) 64GB Heap.

Figure 7. Energy for two DRAM ratios + two heaps.

5.4 Memory Access Analysis

NVM has high latency and low bandwidth. In general, the
performance penalty caused by high latency increases with
the number of memory accesses. For the same number of
memory accesses, NVM incurs higher performance penalty
for applications that have instantaneous bandwidth require-
ments which are beyond NVM's bandwidth. Figure 8 depicts
the read/write bandwidth for unmanaged and Panthera on
GraphX-CC. Compared to the unmanaged version, Panthera
migrates most of the memory reads/writes from NVM to
DRAM and reduces the high instantaneous memory access
bandwidth requirements (i.e., peaks in the �gure). Because
Panthera allocates/moves frequently accessed data to DRAM,
it reduces unnecessary NVM accesses (Ÿ4.2.2, Ÿ4.2.3).

5.5 Overhead of Monitoring and Migration

As discussed in Ÿ4.2, Panthera performs lightweight method-
level monitoring on RDD objects to detect misplaced RDDs
for dynamic migration. This subsection provides a closer
examination of dynamic migration's overhead.

As we monitor only method calls invoked on RDD objects,
we �nd dynamic monitoring overhead is negligible,i.e.it is
less than 1% across our benchmarks. For example, for PageR-
ank, only about 300 calls were observed on all RDD objects
in a 20-minute execution. The second column of Table 5
reports the number of calls monitored for each application.
For GraphX applications, which has thousands of RDD calls,
the monitoring overheads are still less than 1%.

Dynamic migration (performed by the major GC) rarely
occurs in our experiments, as can be seen from the third
column of Table 5. There are two main reasons. First, the
frequency of a major collection is very low because a majority
of objects die young and most of the collection work is done
by the minor GC. Second, for four applications (PR, KM, TC,
and LR), our static analysis results are accurate enough and,
hence, dynamic migration is never needed.

(a) Unmanaged, DRAM ratio = 1/3

(b) Panthera, DRAM ratio = 1/3

Figure 8. GraphX-CC's memory access bandwidth.

Table 5. Dynamic monitoring and migration.
Program # Calls monitored # RDDs migrated

PR 328 0
KM 550 0
LR 333 0
TC 217 0
CC 2945 1
SSSP 3632 1
BC 336 0

We observed that only two RDDs (during the executions
of CC and SSSP) were migrated dynamically. Note that both
CC and SSSP are GraphX applications. Each iteration of
the processing creates new RDDs representing the updated
graph and persists them. At the end of each iteration, the
RDDs representing the old graph are explicitlyunpersisted.
Our static analysis, due to lack of support for theunpersist
call, marks both old and new graph RDDs as hot data and
generates a DRAM tag for all them. These RDD objects are
then allocated in DRAM and their data objects are promoted
eagerly to the DRAM space of the old generation. The RDD
objects representing the old graphs, if they can survive a ma-
jor GC, are migrated to the NVM space of the old generation
due to their low access frequency.

To have better understanding of the individual contri-
butions of pretenuring and dynamic migration, we have
disabled the monitoring and migration and rerun the en-
tire experiments. The performance di�erence was negligible
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