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Abstract
Many large-scale Java applications suffer from runtime bloat. They
execute large volumes of methods, and create many temporary
objects, all to execute relatively simple operations. There are large
opportunities for performance optimizations in these applications,
but most are being missed by existing optimization and tooling
technology. While JIT optimizations struggle for a few percent,
performance experts analyze deployed applications and regularly
find gains of 2× or more.

Finding such big gains is difficult, for both humans and compil-
ers, because of the diffuse nature of runtime bloat. Time is spread
thinly across calling contexts, making it difficult to judge how to
improve performance. Bloat results from a pile-up of seemingly
harmless decisions. Each adds temporary objects and method calls,
and often copies values between those temporary objects. While
data copies are not the entirety of bloat, we have observed that they
are excellent indicators of regions of excessive activity. By opti-
mizing copies, one is likely to remove the objects that carry copied
values, and the method calls that allocate and populate them.

We introduce copy profiling, a technique that summarizes run-
time activity in terms of chains of data copies. A flat copy profile
counts copies by method. We show how flat profiles alone can be
helpful. In many cases, diagnosing a problem requires data flow
context. Tracking and making sense of raw copy chains does not
scale, so we introduce a summarizing abstraction called the copy
graph. We implement three clients analyses that, using the copy
graph, expose common patterns of bloat, such as finding hot copy
chains and discovering temporary data structures. We demonstrate,
with examples from a large-scale commercial application and sev-
eral benchmarks, that copy profiling can be used by a programmer
to quickly find opportunities for large performance gains.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—Debugging aids; D.3.4 [Program-
ming Languages]: Processors—Memory management, optimiza-
tion, run-time environments

General Terms Languages, Measurement, Performance
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1. Introduction
As a community, we have adopted guiding principles — code
quickly, favor reuse and dynamicity, integrate legacy functionality
rather than rewrite it — under the assumption that the compiler and
garbage collector will take care of the resulting runtime mess. This
situation is especially common in large-scale Java applications de-
veloped using many layers of custom and third party frameworks.
After initial tuning has found the low-hanging fruit, these applica-
tions still consume excessive resources for what they accomplish.

Java applications regularly suffer from systemic runtime bloat
[18, 17]. Bloat consists of operations that, while not strictly nec-
essary for forward progress, are executed nonetheless. For exam-
ple, we have worked with a commercial document management
server, deeply diving into its inefficiencies. We found that, to per-
form the seemingly simple task of inserting a single small docu-
ment in the database, this application invokes 25,000 methods and
creates 3000 temporary objects. This is after the Just In Time (JIT)
compiler’s best efforts. With less than one person-week of manual
tuning, work that only scratched the surface, a performance expert
was able to reduce the object creation rate by 66%. Vast improve-
ments are possible, if only tuning were easier, or more automated.

Consider a specific example where the server extracts name-
value pairs from a cookie that the client transmits in a serialized,
string form. The methods that use these name-value pairs expect
Java objects, not strings. They invoke a library method to decode
the cookie string into a Java HashMap, yet another transient form of
this very simple data. In the common case, the caller extracts one
or two elements from the 8-element map, and never uses that map
again. Figure 1 illustrates the steps necessary to decode a cookie in
this application. Decoding a single cookie, an operation that occurs
repeatedly, costs 1000 method invocations and 35 temporary ob-
jects, after JIT optimizations. A hand-optimized specialization for
the common case that only requires one name-value pair invokes 4
invocations and constructs 2 temporary objects.

Today’s JITs have sophisticated optimizers that offer important
performance improvements, but they are often unable to remove
the penalty of systemic bloat. One problem is that the code in
large applications is relatively free of hot spots. Table 1 shows a
breakdown of the top ten methods from the document management
server. This application executes over 60,000 methods, with no
single method contributing more than 3.19% to total application
time, and only 14 methods contributing more than 1%. JITs are
faced with a plurality of important methods. The burden, with
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Figure 1. The steps a commercial document management server
uses to decode a cookie; the original version tokenizes and returns
the entire map, even if the caller needs only one name-value pair.

method CPU time
HashMap.get 3.19%
Id.isId 2.84%
String.regionMatches 2.12%
CharToByteUTF8.convert 2.04%
String.hashCode 1.77%
String.charAt 1.70%
SimpleCharStream.<init> 1.65%
ThreadLocalMap.get 1.32%
String.toUpperCase 1.30%

Table 1. In a commercial document management server, there is
no hot method that can be optimized for an easy big gain.

current JIT technology, is on the method inliner to bundle together
code into larger, hopefully optimizable, regions.

Forming perfect code regions, and then optimizing them, is an
immensely challenging problem [24]. Optimizations that can be
easily performed by a programmer, such as a moving a call to a
side-effect-free method out of a loop, can require heroic JIT ef-
fort to achieve the same effect. That call may ultimately perform
thousands of method invocations with call stacks hundreds deep,
and allocate many objects. Automatically performing such a trans-
formation requires dozens of powerful analyses to work together
flawlessly; a single missed opportunity can render the call immov-
able. Add in language features that restrict optimization, such as
precise exceptions, and there is little hope for a fully automated
solution.

Our work advocates a new approach that is not intended to re-
place JIT optimization, but to complement it. Through a combina-
tion of metrics and analyses focused on bloat, we hope to quickly
guide developers to the problematic areas of the application, al-
lowing them to refactor to avoid the problem. A small handful of
performance experts are already capable of performing this task
manually; our goal is to automate as much of it as possible, thus
lowering the bar for tuning systemic bloat. The burden cannot re-
main solely on the shoulders of experts: the problems of excessive
bloat will become increasingly painful as cores become simpler,
bandwidth per core goes down, and we can’t rely on clock speed
increases to ameliorate ever-increasing levels of inefficiency.

Bellwethers of Bloat The inefficiencies at the heart of the cookie
decoding example are common to many bloated implementations.
In these implementations, there is often a chain of information flow
that carries values from one storage location to another, often via
temporary objects [18]; e.g. as visualized in Figure 1. Bloat of this
form manifests itself in a number of ways: temporary structures

to carry values, and a sea of method invocations that allocate and
initialize these structures, and copy data between them.

In our experience, it is this data copying activity that is an excel-
lent bellwether of bloat. This is not to say that one must only tune
copying activity to lessen the burden of good software engineer-
ing. Rather, by tuning in a way that reduces the need for copying,
one also reduces the attendant object creation and initialization, and
method invocation activity. The specialized cookie decoding pro-
cess avoids not only most of the copies, but also the construction
and population of the temporary HashMap data structure, and its
many unused key and value Strings.

In Section 2, we introduce a way of profiling information flows,
rather than control flows. These profiles distinguish copies from
other activities, such as arithmetic operations. We specifically use
the volume of copies as a way to quantify bloat. We show how
copies are not targeted by current production Java JIT compilers,
despite being highly concentrated. This is in contrast to the lack
of concentration in execution time: a small number of methods
explain most of the copies, but not most of the time. Copies are
concentrated, even in the more complex applications. For example,
in the document management server, the top fifty consumers of
time explain only 24% of total execution time; the top fifty copying
methods explain 82% of copies.

Flat summaries that count copies are a good first step, but
they are not sufficient to help programmers alleviate bloat. Copies,
by their nature, span methods and classes in cross-cutting ways.
The specialized cookie decoding process shown in Figure 1(b) is
neither the result of tuning the HashMap put or get methods,
nor of tuning the HashMap storage structure. To specialize this
scenario requires understanding the chains of copies: which storage
locations carry values, and which methods enact the copies. During
program execution, there will be billions of copy chains. To combat
this blowup, in Section 3, we introduce an abstraction, the copy
graph, that concisely summarizes chains of copies.

We have implemented a dynamic information flow framework
in the JIT compiler of the IBM J9 commercial JVM, which com-
putes copy profiles and forms a copy graph as the program runs.
Section 4 provides implementation details that were necessary to
make it possible to track information flow in a way that scales to
production applications. The copy graph itself consumes a small
amount of memory, plus two words for every live object in the ap-
plication. To facilitate our initial implementation, we store these
two words in a side “shadow” heap, to avoid modifying the object
header in the VM. The current implementation imposes a slow-
down of about 37 times, on average, across the test programs. Al-
though this overhead is significant, it has not limited our ability to
collect data from large production applications. The focus of this
work is on the results of the analysis, not how cheaply they can be
collected.

In Section 5, we introduce three client analyses that use the
copy graph to generate useful reports: hot copy chains, a clone
detection analysis, and an approximation of escape analysis. In
Section 6, we provide examples of using these client analyses to
find real problems of bloat. For example, we very quickly found
a performance defect in the DaCapo [4] bloat benchmark, and
quickly implemented a fix that reduced object creation rate by 65%,
and execution time by 30%. We also quickly found an issue in the
DaCapo Eclipse benchmark, and implemented a fix that resulted in
a 9.3% performance improvement to that benchmark.

The contributions of this paper are:
• A methodology, copy profiling, that identifies high-overhead

activity in terms of copies and chains of copies.
• A runtime framework, implemented in the JIT compiler of the

J9 VM, that generates profiles of information flow, and also
tracks the details of those flows during program execution.
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Figure 2. A breakdown of activity in a document processing server
application. The baseline, at 100%, is the original code run with JIT
optimizations disabled; we compare this to the original code with
JIT optimizations enabled, and to an implementation with a dozen
hand-tunings. The JIT optimizer does not tune the number of copies
or comparison instructions, and in some cases makes things worse.

• The copy graph, an abstraction of chains of copies.
• Three client analyses of the copy graph: one that identifies hot

copy chains, a second that finds pairs of allocation contexts
whose allocated data structures are deep clones of each other,
and a third that finds temporary data structures by identifying
the tops of structures that do not flow through the heap.

2. Copy Profiling
Bloat often stems from excessive work done along data flows. In
this section, we introduce the notion of profiling operations along
these flows, with a focus on copies. A copy is a load-store pair that
transfers a value, unmodified, from one storage location to another.
A flat copy profile is the analog of execution time profile, except
that it counts copies rather than time.

The copy profiles, and the rest of the reports described in this
paper, are in terms of heap locations and the methods that copy be-
tween them. In the profiles, a copy operation is associated with the
method that performed the write to the heap. Though it is necessary
to track through stack locations (as described in Section 4), in order
to determine whether a store is the second half of a copy, the reports
do not include that level of detail. Since stack variables will likely
be assigned to registers, chains of copies between stack locations
will usually involve only register transfer operations. They are also
more likely to be optimized by conventional dataflow analysis.

A simple count of the number of copies is a useful way to gauge
the goodness of an implementation, and the effectiveness of the JIT
at tackling certain classes of bloat. Figure 2 shows a comparison of
four scenarios of the document management server. The baseline,
at 100%, represents the performance of the original code with JIT
optimizations disabled, in terms of the number of copy operations
that were performed during a 10 minute load run. We compare this
baseline to the original code with JIT optimizations enabled, and to
a version of the code that had been hand-tuned to improve overall
performance (both with and without optimizations). We also show
the number of comparison operations, the number of ALU oper-
ations, and the total number of loads and stores. Observe that the
JIT is good at what you’d expect: reducing ALU operations, and
the total number of loads and stores; common subexpression elimi-
nation probably explains much of these effects. On the other hand,
the JIT does not greatly affect the number of copies; it also has
no great affect on the number of comparison instructions. Compar-
isons are often a sign of over-protective or over-general implemen-
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MR2, and the document management server.
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Figure 4. Time concentration: in contrast to copies, which are con-
centrated even for complex applications, the time spent in methods
is only concentrated for the simpler benchmarks.

tations. These coding practices also lead to bloat. The hand-tuned
implementation greatly lowers both the number of copies and the
number of comparison operations.

Flat copy profiles show that copies serve as good indicators of
problems. From them, we learn that copy activity is concentrated in
a small number of methods. From the copy profiles for the DaCapo
benchmark suite1 [4] and the document management server, we
observe the concentration of copies. Figure 3 shows that, across the
board, a small number of methods explain most of the copy activity
in these programs. Even just the top method explains at least 12%
of the copies, often much more. For comparison, Figure 4 shows
the concentration of execution time in methods. As expected, the
more complex applications, such as the Eclipse DaCapo benchmark
and the document management server, have very flat execution time
method profiles; this is in contrast to the highly concentrated copy
profiles for those same programs.

3. Profiling Copy Chains
Individual copies are usually part of longer copy chains. Optimiz-
ing for bloat requires understanding the chains as a whole, as they

1 We used DaCapo version 2006-10-MR2.



1 class List{
2 Object[] elems; int count;
3 List(){ elems = new Object[1000]; }
4 List(List l){ this(); // call default constructor
5 for(Iterator it = l.iterator(); it.hasNext();)
6 { add(it.next()); } }
7 void add(Object m){
8 Object[] t = this.elems;
9 t[count++] = m;
10 }
11 Object get(int ind){
12 Object[] t = this.elems;
13 Object p = t[ind]; return p;
14 }
15 Iterator iterator(){
16 return new ListIterator(this);
17 }
18 }
19 class ListIterator{
20 int pos = 0; List list;
21 ListIterator(List l){
22 this.list = l;
23 }
24 boolean hasNext(){ return pos < list.count - 1;}
25 Object next(){ return list.get(pos ++);}
26 }
27 class ListClient{
28 List myList;
29 ListClient(List l){ myList = l; }
30 ListClient slowClone(){
31 List j = new List(myList);
32 return new ListClient(j);
33 }
34 ListClient fastClone(){
35 return new ListClient(myList);
36 }
37 }
38 static void main(String[] args){
39 List data1 = new List();
40 for(int i = 0; i < 1000; i++)data1.add(new Integer(i));
41 List data2 = new List();
42 for(int i = 0; i<5; i++){data2.add(new String(args[i]));
43 System.out.println(data2.get(i));}
44 ListClient c1 = new ListClient(data1);
45 ListClient c2 = new ListClient(data2);
46 ListClient new_c1 = c1.slowClone();
47 ListClient new_c2 = c2.fastClone();
48 }

Figure 5. Running example.

may span large code regions that need to be examined and trans-
formed. We now show how to form an abstraction, the copy graph,
that can be used to identify chains of copies.

DEFINITION 1. A copy chain is a sequence of copies that carry a
value through two or more heap storage locations. Each copy chain
node is a heap location. Each edge represents a sequence of copies
that transfers a value from one heap location to another, abstract-
ing away the intermediate copies via stack locations, parameter
passing, and value returns.

The heap locations of interest are fields of objects and elements
of arrays. A copy chain ends if the value it carries is the operand
of a computation, which produces a new value, or is an argument
to a native method. It is important to note that, in a copy chain,
each maximal-length subsequence of stack copies is abstracted by
a single edge directly connecting two heap locations.

3.1 A Motivating Example
The code in Figure 5 is used for illustration throughout the paper.
The example is based on a common usage scenario of Java col-
lections. A simple implementation of a data structure List is used
by a client ListClient. ListClient declares two clone methods
fastClone and slowClone, which return a new ListClient ob-

6   add(it.next()); 

…

9   t[count++] = m; 

25   return list.get(pos ++);

…

…
13   p = t[ind]; return p; 

…

Read(O3.ELM)

Step 2Write(O3.ELM)

Step 3

Step 1

Figure 6. A copy chain due to ListClient.slowClone. Line
numbers 6, 9, 13, and 25 correspond to the code in Figure 5.

ject by reusing the old backing list and by copying list elements,
respectively. The entry method main creates two lists data1 and
data2 and initializes them with 1000 Integer and 5 String ob-
jects (lines 40 and 42). The two lists are then passed into two
ListClient objects and eventually two new ListClient objects
are created by calling slowClone and fastClone. For simplicity,
the approach is described at the level of Java source code, although
our implementation works with a lower-level virtual machine inter-
mediate representation (IR).

Figure 6 depicts the steps in the creation of a single-edge copy
chain. This chain results from the invocation of slowClone (line
46) which copies Integer object references from the array refer-
enced by field elems of one List to the array referenced by field
elems of another List. The source array and the target array will
be denoted by O3 since they are created at line 3 in the code. (For
now, the reader can ignore the naming scheme; it will be discussed
shortly.) The copy chain in Figure 6 is O3.ELM → O3.ELM ,
where ELM represents any array element.

To represent the source and the sink of the data propagated
along a copy chain, we can augment the chain with two nodes:
a producer node added at the beginning, and a consumer node
added at the end. The producer node can be a constant value,
a new X expression, or a computation operation representing the
creation of a new value. The consumer node has only one instance
(denoted by C ) in the copy graph, showing that the data goes to a
computation operation or to a native method. These two types of
nodes are not heap locations, and are added solely for the purpose
of subsequent client analyses. Note that not every chain has these
two special nodes. For the producer node, we are interested only
in reference-typed values because they are important for further
analysis and program understanding. Thus, chains that propagate
values of primitive types do not have producer nodes. Not every
piece of data goes to a consumer and therefore not every chain has
a consumer node. The absence of a consumer is a strong symptom
of bloat and can be used to identify performance problems. An
example of a full augmented copy chain starting from producer O42

(i.e., new String) is O42 → O3.ELM → C. This chain ends
in consumer node C because the data goes into method println
which eventually calls native method write.

Profiling copy chains can be extremely space expensive, be-
cause it requires maintaining a distinct node for each heap loca-
tion on each copy chain, regardless of whether chains have shared
heap locations. In addition, for each heap location, it is neces-
sary to maintain the history information regarding all chains that
go through this location, which may incur significant running time
overhead. To make the analysis scale to large applications, we ap-
ply a series of abstractions on copy chains. These abstractions are
also essential for producing summarized reports that do not over-
whelm the tool user with millions of chains. The first abstraction
is to merge all copy chains in a copy graph, so that nodes shared
among chains do not need to be maintained separately. In addition,
the copy graph construction algorithm can be designed to profile
only graph edges (i.e., one-hop heap copy), which is much more
efficient than profiling of entire chains.
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DEFINITION 2. A copy graph G = (N , E) has node set N ⊆
AL∪IF ∪SF ∪ {C}. Here AL is the domain of allocation sites
Oi which serve as producer nodes and do not have any incoming
edges. IF is the domain of instance field nodes Oi .f . SF is the
domain of static field nodes. C is the consumer node; it has only
incoming edges. The edge set is E ⊆ N × Integer × Integer ×N .
Each edge is annotated with two integer values: the frequency of
the heap copy and the number of copied bytes (i.e., 1, 2, 4, or 8).

There could be many different ways to map the run-time exe-
cution to these abstractions. The rest of this section describes the
mapping used in our current work; future work could explore other
choices with varying cost, precision, and usefulness for tool users.

Object naming scheme. Following an abstraction technique
widely adopted in static analysis, an allocation site is used to repre-
sent the set of run-time instances that it creates. Similarly, all heap
locations that an instance field dereference expression a.f repre-
sents are projected to a set of nodes {Oi.f} such that the objects
that a points to are projected to set {Oi}. Applying this abstraction
reduces the number of allocation site nodes AL and instance field
nodes IF . Each element of an array a is represented by a special
field node Oa .ELM , where Oa denotes the allocation site of a and
ELM represents the field name. Individual array elements are not
distinguished: considering each element separately may introduce
infeasible time and space overhead.

For illustration, consider the partial copy graph in Figure 7(a).
The figure shows only paths starting from nodes in method main
in the running example. An allocation site is named Oi, where i is
the number of the code line containing the site. Each copy graph
edge is annotated with two numbers: its frequency and the number
of bytes it copies. For example, edge O40

1000,4−−−−→ O3.ELM copies
the Integer objects created at line 40 into the array referenced by
data1’s elems field. This edge consists of a sequence of copies

via parameter passing (line 40 and line 9). This sequence of copies
occurs 1000 times, and each time 4 bytes of data are transferred.
Both O40

1000,4−−−−→ O3.ELM and O3.ELM
1000,4−−−−→ O3.ELM are

hot edges: their frequencies and the total number of bytes copied
are much larger than those of other edges. When there exists a
performance problem in the program, a better design might be
needed to eliminate these copies.

It is important to note again that nodes that represent different
objects may be merged due to the employed abstraction. For exam-
ple, although variable t at line 9 points to different objects at run
time, the array element node t[count++] is represented by a sin-
gle node O3.ELM , regardless of the List object that owns the ar-
ray. Consider the self-pointing edge

1000,4−−−−→ at node O3.ELM . The
edge captures the data flow illustrated in Figure 6. This sequence
of copies moves object references from the array pointed-to by
O39.elems to the array pointed-to by O31.elems . Since both arrays
are represented by O3, their elements are merged into O3.ELM in
the copy graph and this self-pointing edge is generated.

Merging of nodes could lead to spurious copy chains that are
inferred from the copy graph. For example, from Figure 7(a), one
could imprecisely conclude that both O40 and O42 will eventually
be consumed, because both edges 1000,4−−−−→ and 5,4−−→ can lead to con-
sumer node C . The cause of the problem is the context-insensitive
object naming scheme, which maps each run-time object to its al-
location site, regardless of the larger data structure in which the
object appears. In order to model copy chains more precisely, we
introduce a context-sensitive object naming scheme.

3.2 Context Sensitivity
When naming a run-time object, a context-sensitive copy graph
construction algorithm takes into account both the allocation site
and the calling context of the method in which the object is al-
located. Existing static analysis work proposes two major types
of context sensitivity for object-oriented programs: call-chain-
based context sensitivity (i.e., k-CFA) [25], which considers a
sequence of call sites invoking the analyzed method, and object-
sensitivity [16], in which the context is the sequence of static ab-
stractions of the objects (i.e., allocation sites) that are run-time re-
ceivers of methods preceding the analyzed method on the call stack.
Of particular interest for our work is the object-sensitive naming
scheme because, to a large degree, it reflects object ownership and
is suitable for improving the analysis precision for real-world ap-
plications making use of a large number of object-oriented data
structures.

Figure 7(b) shows the 1-object-sensitive version of the copy
graph, in which an object is named using its allocation site together
with the allocation site of the receiver object of the method in
which the object is created. For objects created in a constructor,
the context is usually their run-time owner. By adding context
sensitivity, paths that start from O40 and O42 do not share any
nodes. Note that there are no contexts for nodes O39, . . . , O45

because they are created in static method main which does not have
a receiver object. Although longer context strings may increase
precision, our tool limits the length of the context to 1 since it
could be prohibitively expensive (both in time and space) to employ
longer contexts in a dynamic analysis.

4. Runtime Information Flow Tracking
This section presents the details of the copy profiling technique. We
modified J9, a production virtual machine developed by IBM, to
support dynamic information flow profiling: all memory locations
in the program have a corresponding shadow location (c.f. [19]).
This allows a dynamic analysis to tag all application data with
dataflow metadata information, which we refer to as tracking data.



As the program executes and application data is read or written, the
information flow analysis updates the corresponding tracking data.
Although we focus on profiling of copies in this paper, various other
client analyses can be implemented in this framework by redefining
the shadow data initialization and flow transfer functions.

4.1 Shadow Locations
Our information flow infrastructure supports shadowing of all
memory in the application, including local variables, static fields,
arrays, and object fields. Local variables are shadowed simply by
introducing an extra location on the stack. Tracking data is also
passed interprocedurally through parameters and return values. A
tracking stack is maintained for passing shadow variables for pa-
rameters, as well as return values.

Shadowing of object fields is supported by use of a shadow
heap [19]. The shadow heap is a contiguous region of memory
equal in size to the Java heap. Scratch space for every byte of data in
the Java heap can be referenced quickly by adding a constant offset
to the address location. A non-moving garbage collector is used
so the address of objects does not change during the execution. A
moving collector could be used as long as it is modified to move
the corresponding shadow data when moving an object.

Doubling size of the heap is a significant space overhead, but
is not a limitation in practice, even for large applications. With a
1-gigabyte Java heap and a 1-gigabyte shadow heap, we were able
to successfully run all programs we encountered, including large
production web server applications.

4.2 Copy Graph Construction
The copy graph construction algorithm consists of two main com-
ponents: (1) “compile time” instrumentation, which occurs at run
time during JIT compilation, and (2) run-time profiling. To avoid
having to modify both the interpreter and the JIT, we run the VM
in a JIT-only mode such that all methods in the program are com-
piled by the JIT prior to their first invocation, allowing the tool to
track data flow throughout the entire program.

Copy graph construction requires the ability to tag an object
with its allocation site, so the allocation site information can be
efficiently looked up at run time. To perform this lookup quickly
we rely on the shadow heap. When an object is allocated, we store
its allocation site ID and its context allocation ID in its shadow
location, so it can be referenced through operation ∗(objAddr +
distance). This provides the ability to quickly store and retrieve
the allocation site for every object.

4.3 Data Structure Design
The data structure design for the copy graph is important for mini-
mizing overhead. The goal of the design is to allow efficient map-
ping from a run-time heap location to its name (which in our analy-
sis is a copy graph node address). Figure 8 shows an overview of the
data structures for the copy graph. Static field nodes are stored in
a singly-linked-list that is constructed at instrumentation time. The
node address is hard-coded in the generated executable code, so
that the retrieval of nodes does not contribute to running time (thus,
the analysis does not need to use the shadow locations for static
fields). Each node has an edge pointer, which points to a linked list
of copy graph edges that leave this node. Edge adding occurs at run
time. If an existing edge is found for a pair of a source node and a
target node, a new edge is not added. Instead, the frequency field
of the existing edge is incremented. The size field (i.e., number of
bytes) can be determined at compile time by inspecting the type of
data that the copy transfers.

Allocation site nodes and instance field nodes are implemented
using arrays to allow fast access. For each allocation site, a unique
integer ID is generated at compile time (the IDs start from 0). The
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Figure 8. Data structure overview.

ID is used as the index into an array of allocation headers. Each
allocation header corresponds to one ID, and points to an array of
allocation nodes and to an array of field nodes, both specific to this
ID. For a context-insensitive copy graph, the allocation node array
for the ID has only one element. For the context-sensitive copy
graph that requires a unique allocation node for each calling context
(i.e., the allocation site ID of the receiver object of the surrounding
method), each element of the allocation node array corresponds to
a different calling context. In the current implementation the array
does not grow dynamically, thus the number of calling contexts
for each allocation site is limited to a pre-defined value c. We
have experimented with different values of c and these results are
reported in Section 7. An encoding function maps an allocation site
ID representing a context to a value in [0, c –1]; currently, we use a
simple mod operation contextAllocId % c to encode contexts. As
reported in Section 7, very few contexts for an object have conflicts
(i.e., they map to the same value) when using this function. A
default c value of 4 was used for the studies described in Section 6.

The field node array is created similarly. The order of different
fields in the array is dependent on the offsets of these fields in
the class. We build a class metadata table at the time the class is
resolved by the JIT. The table sorts fields based on their offsets,
and maps each field to a unique ID (starting from 0) indicating its
order in the field node array. For each instance field declared in the
type (and all its supertypes) instantiated at the allocation site, there
are 1 (i.e., for context-insensitive naming) or c (i.e., for 1-object-
sensitive naming) entries in the field node array. For example,
consider an instance field dereference a.f for which the allocation
site ID of the object pointed-to by a is 1000, the corresponding
context allocation ID is 245, the offset of f is 12, and this offset
(at compile time) is mapped to field ID i = class metadata [12].
The corresponding copy graph node address can be obtained from
the element with index c ∗ i + 245 % c in the array pointed-to by
column Fields of alloc headers [1000].



[1. local=alloc]
SH (i) = (AllocID(new O),SH (this)&0xFFFFFFFF )
CG′ = CG ∪ CreateAllocHeaderEntry(O, AllocID(new O))
E � SH (i) : addr rhs

shadow i = addr rhs

CG ⇒i=new O CG′

[2. local=static]
E � F : addr rhs

CG′ = CG
shadow i = addr rhs

CG ⇒i=F CG′

[3. local=instance field dereference]
E � (SH (a), Offset(f)) : addr rhs
CG′ = CG
shadow i = addr rhs

CG ⇒i=a.f CG′

[4. local=local]
CG′ = CG
shadow i = shadow j

CG ⇒i=j CG′

[5. static=local]
E � F : addr lhs

CG′ = CG ∪ CreateEdge(shadow i, addr lhs)

CG ⇒F=i CG′

[6. instance field dereference=local]
E � (SH (a), Offset(f)) : addr lhs
CG′ = CG ∪ CreateEdge(addr lhs , shadow i)

CG ⇒a.f=i CG′

[7. local=computation]
edgec = CreateEdge(shadow c, C )
edged = CreateEdge(shadowd,C )
CG′ = CG ∪ edgec ∪ edged

CG ⇒i=c+d CG′

Figure 9. Run-time effects of instrumentation.

4.4 Instrumentation Relation CG ⇒a CG′

Our instrumenter takes the assembly-like J9 intermediate represen-
tation (IR) as input, and feeds the instrumented IR to the code gen-
erator. The goal of the instrumentation is to insert code to propagate
the address of a copy graph node at run time. The copy graph node
represents the heap location from which a piece of data comes.

The intraprocedural instrumentation is illustrated at a high-level
in Figure 9. Based on the techniques described earlier, the name
environment E maps each heap location to the address of its cor-
responding copy graph node. Function SH (i.e., shadow heap) re-
turns, for each object, its allocation site ID and its context allo-
cation site ID. For example, E � SH (i) : addr rhs in rule 1 says
that given the (allocation ID, context ID) pair for the heap object
pointed-to by local variable i, E maps this pair to the copy graph
node at address addr rhs . Here addr rhs and addr lhs represent the
addresses of the copy graph nodes for the heap locations corre-
sponding to the right/left-hand-side expressions of an instruction.
Each rule describes the update of the copy graph (i.e., CG) for a
type of instruction, with unprimed and primed symbols represent-
ing the copy graph before and after the instruction is executed.

In rule 1, the shadow of local variable i is assigned the address
of the copy graph allocation node representing the newly-created
heap object. If the method containing the allocation site is an in-

stance method, the context object is the object referenced by this.
The bit operation (& 0xFFFFFFFF) retrieves the lower 4 bytes
from the shadow heap location, which stores the allocation site ID
for this itself (while the higher 4 bytes contain the allocation site
ID of this’s context). A static method does not have a context.

Before each call site in a caller, the shadow variables for the
actual parameters are pushed on the tracking stack, and they are
popped at the entry of the callee method. Similarly, at the exit of
the callee method, the shadow variable for the returned value is
pushed, and it is popped after the call site in the caller. Data carried
by exception flow is not tracked by the tool.

Once a heap load operation is seen (rules 2 and 3), the address
of the node representing the heap location is stored in the shadow
variable. Upon a heap store (rules 5 and 6), an edge with the source
node address (contained in the shadow variable) and target node
address (obtained from the heap location) is created, and the graph
is updated with this new edge. In rule 7, once data comes to a
computation instruction, we create edges to connect the copy graph
node for each participating variable with the consumer node C .

5. Copy Graph Client Analyses
This section presents three client analyses implemented in J9.
These clients analyze the copy graph and generate reports that are
useful for understanding run-time behavior and pinpointing per-
formance bottlenecks. Due to space limitations, the analyses are
described informally, without low-level details.

5.1 Hot Copy Chains
Given a copy chain with frequency n and data size s, its copy
volume is n× s. The copy volume of a chain is the total amount of
data transmitted along that chain. Chains with large copy volumes
are more likely to be sources of performance problem. Another
important metric is chain length—the longer a copy chain is, the
more wasteful memory operations it contains. Considering both
factors, we compute a waste factor (WF) for each chain as the
product of length and copy volume. The goal of the hot chain
analysis is to find copy chains that have large WF values.

The first issue is how to recover chains from copy graph edges.
We use a brute-force approach which traverses the copy graph and
computes the set of all distinct paths whose length is smaller than
a pre-defined threshold value. If a path is a true copy chain, all its
edges should have the same frequency. Based on this observation,
the WF for each path is computed by using its smallest edge
frequency as the path frequency. The resulting copy graph paths are
ranked based on their WF values, and the top paths are reported. An
example of a chain reported for benchmark antlr from DaCapo is
as follows:
(355162, 2):
array[antlr/PreservingFileWriter:61].ELM

— [java/io/BufferedWriter.write:198, 177581, 2] →
array[java/io/BufferedWriter:108].ELM

— [sun/io/CharToByteUTF8.convert:262, 177759, 2] →
array[sun/nio/cs/StreamEncoder$ConverterSE:237].ELM

The chain contains three nodes connected by two edges. The pair
(355162,2) shows the WF and the chain length. Each node in this
example is an array element node. For instance field nodes and
array element nodes, the allocation site of the base object is also
shown. In this example, line 61 in class antlr.PreservingFileWriter
creates the array whose elements are the sources of the copy chain.
An edge shows the method where its last copy operation occurs
(e.g., line 198 in method java.io.BufferedWriter.write), the edge
frequency (e.g., 177581), and the data size (e.g., 2 bytes).

5.2 Clone Detector
Many applications make expensive clones of objects. A cloned ob-
ject can be obtained via field-to-field copies from another object



(e.g., as usually done in clone methods), or by adding data held
by another object during initialization (e.g., many container classes
have constructors that can initialize an object from another con-
tainer object). Although clones are sometimes necessary, they in-
dicate the existence of wasteful operations and redundant data. For
instance, in our running example, slowClone initializes a new list
by copying data from an existing list. Invoking this method many
times may cause performance problems. The goal of this analysis
is to find pairs of allocation sites, each of which represents the top
(i.e., root) of a heap object subgraphs, such that a large amount of
data is copied from one subgraph to the other.

For each copy graph edge O1.f
a,b−−→ O2.g, where f and g are

instance fields, the value of a×b is counted as part of the direct flow
from O1 to O2. The total direct flow for pair (O1, O2) shows how
many bytes are copied from fields of O1 to fields of O2. Next, the
analysis considers the indirect flow between objects. Suppose that
some field of O1 points to an object O3, and some field of O2 points
to an object O4. Furthermore, suppose that there is direct flow (i.e.,
some copy volume) from O3 to O4. In addition to attributing this
copy volume to the pair (O3, O4), we want to also attribute it to the
pair (O1, O2). This is done because O1 may potentially be the root
of an object subgraph for a data structure containing O3. Similarly,
O2 may be the root of a data structure containing O4. If copying is
occurring for the entire data structures, the copy volume reported
for pair (O1, O2) should reflect this.

The analysis considers all objects Oi reachable from O1 along
reference chains of a pre-defined length (length 3 was used for the
experiments). Similarly, all objects Oj reachable from O2 along
reference chains of this length are considered. The copy volume
reported for (O1, O2) is the sum of the direct copy volumes for
all such pairs (Oi, Oj), including the direct flow from O1 to O2.
To determine all relationships of the form “O′ points to O”, the
analysis considers chains such that O is the producer node—that
is, the value propagated along the chain is a reference to O. For any
field node O′.h in such a chain, object O′ points to object O.

In the running example, slowClone illustrates this approach. At
line 31, a new List object is created. Its field elems points to an
array which is initialized with the contents of the array pointed to by
the List created at line 39. In the first step of the analysis, volume
4000 is associated with the two array objects (1000 copies of 4-byte
references to Integer objects). This volume is then also attributed
to the two List objects, represented by pair (O39, O31), and to
the two ListClient objects that own the lists, represented by pair
(O44, O32). Ultimately, the reason for this entire copy volume is
the cloning of a ListClient object, even though it manifests in the
copying of the array data owned by this ListClient. Reporting
the pair (O44, O32) highlights this underlying cause.

5.3 Not Assigned To Heap (NATH)
The third client analysis detects allocation sites that are instantiated
many times and whose object references do not flow to the heap.
For instance, O44 and O45 in the running example represent objects
whose references are never assigned to any heap object or static
field. These allocation sites are likely to represent the tops of tem-
porary data structures that are constructed many times to provide
simple services. For example, we have observed an application that
creates GregorianCalendar objects inside a loop. These objects are
used to construct the date fields of other objects. This causes signif-
icant performance degradation, as construction of GregorianCalen-
dar objects is very expensive. In addition, these objects are usually
temporary and short-lived, which may lead to frequent garbage col-
lection. A simple fix that moves the object construction out of the
loop can solve the problem. The escape analysis performed by a
JIT usually does not remove this type of bloat, because many such
objects escape the method where they are created, and are even-

tually captured far away from the method. Using copy graph, this
analysis can be easily performed by finding all allocation nodes
that do not have outgoing edges. These nodes are ranked based on
the numbers of times that they are instantiated. Using the informa-
tion provided by this analysis, we have found in Eclipse 3.1 a few
places where NATH objects are heavily used. Running time reduc-
tion can be achieved after a simple manual optimization that avoids
the creation of these objects.

5.4 Other Potential Clients
There are a variety of performance analyses that can take advantage
of the copy graph. For example, one can measure and identify use-
less data by finding nodes that cannot reach the consumer node, and
by aggregating them based on the objects that they belong to. As
another example, developers of large applications usually maintain
a performance regression test suite, which will be executed across
versions of a program to guarantee that no performance degrada-
tion results from the changes. However, these performance regres-
sion tests can easily fail due to bug fixes or the addition of new
features that involve extra memory copies and method invocations.
It is labor-intensive to find the cause of these failures. Differenti-
ating the copy graphs constructed from the runs of two versions
of the program with the same input data can potentially help pin-
point performance problems that are introduced by the changes. A
possible direction for future work is to investigate these interesting
copy-graph-based analyses.

6. Using Copy Profiles to Find Bloat
This section presents three case studies of using copy profiles, both
flat and ones derived from the copy graph, to pinpoint sources of
useless work.

6.1 DaCapo Bloat
Recall from Figure 4 that most of the simple benchmarks, including
the DaCapo bloat benchmark, have highly concentrated method
profiles: a few methods explain most of the time. However, it is
difficult to know whether these methods are important or merely
excessive. Inspecting the total copy count of the DaCapo bloat
benchmark, we found a high volume of data copies. Averaged
across all method invocations, 28% of all operations were copies
from one memory location to another. This lead us to suspect
that there were big opportunities for optimizing away excessive
computations and temporary object construction.

When inspecting the cumulative copy profile (i.e. a copy pro-
file that counts copies in a method and any methods it invokes),
we found that approximately 50% of all data copies came from a
variety of toString and append methods. Inspecting the source
code, we found that most of these calls centered around code of the
form: Assert.isTrue(cond, "bug: " + node). This bench-
mark was written prior to the existence of the Java assert key-
word. This coding pattern meant that debugging logic resulted in
entire data structures being serialized to strings, even though most
of the time the strings themselves were unused; the isTrue method
does not use the second parameter, if the first parameter is true.
We made a simple modification to eliminate the temporary strings
created during the most important copying methods2. This resulted
in a 65% reduction in objects created, and a 29–35% reduction in
execution time (depending on the JVM used; we tried Sun 1.6.0 10
and IBM 1.6.0 SR2).

The DaCapo suite is geared towards JVM and hardware design-
ers. Therefore, it is important to reevaluate the benchmarks so as to

2 We commented out the toString methods of Block, FlowGraph,
RegisterAllocator, Liveness, Node, Tree, Label, MemberRef,
Instruction, NameAndType, LocalVariable, Field, and Constant.



distinguish inefficiencies that a JIT could possibly eliminate from
ones that require a programmer with good tooling. It may be better
for such a benchmark suite not to contain an excess of the latter.

6.2 Java 5 GregorianCalendar
A recurring problem with the Java 1.5 standard libraries is the slow
performance of calendar-related classes [27]. Many users experi-
enced a 50× slowdown when upgrading from Java 1.4 to Java
1.5. The problems centered around methods in class Gregorian-
Calendar, which is an important part of date formatting and pars-
ing. We ran the test case provided by a user and constructed a
context-sensitive copy graph. The test case makes intensive calls of
the before, after, and equals methods. The report of hot copy
chains includes a family of hot chains with the following structure:
array[Calendar:907].ELM

— [Calendar.clone:2168,510000] →
array[Calendar:2169].ELM

This chain (and others similar to it, for the fields of a calendar)
suggests that clone is invoked many times to copy values from
one Calendar to another. To confirm this, we ran the clone detector
and the top four pairs of allocation sites were as follows:
340000: (GregorianCalendar[GregorianCalendarTest:11],array[Calendar:2168])
340000: (array[Calendar:906],array[Calendar:2168])
340000: (array[Calendar:907],array:[Calendar:2169])
340000: (array[Calendar:908],array[Calendar:2170])

The first pair shows that an array created at line 2168 of Calendar
gets a large amount of data from the GregorianCalendar object
created in the test case. The remaining three pairs of allocation sites
also suggest the occurrence of clones, because the first group of ob-
jects (i.e., at lines 906, 907, 908) are arrays created in the construc-
tor of Calendar, while the second group (i.e., at lines 2168, 2169,
and 2170) are arrays created in clone. By examining the code, we
found that clone creates a new object by deep copying all array
fields from the old Calendar object. These copies also include
the cloning of a time zone from the zone field of the existing ob-
ject. Upon further inspection, we found the cause of the slowdown:
methods before, after, and equals invoke method compareTo
to compare two GregorianCalendar objects, which is imple-
mented by comparing the current times (in milliseconds) obtained
from these objects. However, getMillisof does not compute time
directly from the existing calendar object, but instead makes a clone
of the calendar and obtains the time from the clone.

The JDK 1.4 implementation of Calendar does not clone any
objects. This is because the 1.4 implementation of getMillisof
mistakenly changes the internal state of the object when computing
the current time. In order to avoid touching the internal state, the
implementers of JDK 1.5 made the decision to clone the calendar
and get the time from the clone. Of course, it is not a perfect
solution as it fixes the original bug at the cost of introducing a
significant performance problem. Our tool highlighted the useless
work being done in order to work around the getMillisof issue.

6.3 DaCapo Eclipse
As a large framework-based application, Eclipse suffers from per-
formance problems that result from the pile-up of wasteful opera-
tions in its plugins. These problems impact usability, and even pro-
grammers’ choice when comparing Java development tools [12].
We ran Eclipse 3.1 from the DaCapo benchmark set and used the
NATH analysis to identify allocation sites whose run-time objects
are never assigned to the heap. The top nine allocation sites are
shown below:
(1) 295004: org/eclipse/jdt/internal/compiler/ISourceElementRequestor$MethodInfo
[SourceElementParser:968]
(2) 161169: .../SimpleWordSet[SimpleWordSet:58]
(3) 145987: .../ISourceElementRequestor$FieldInfo[SourceElementParser:1074]

Class Modification #Objs #GCs Time(s)

Original — 273991250 478 143.6
MethodInfo, Field- Directly pass the data 272461138 460 139.6
Info, TypeInfo
PackageFragment Get IResource 272429471 448 138.3

directly from String
SimpleWordSet In-place rehash 272395776 430 136.8
HashtableOfObject In-place rehash 272320499 424 134.0

Table 2. Eclipse 3.1 performance problems, fixes, and perfor-
mance improvements.

(4) 46603: .../ContentTypeCatalog$7[ContentTypeCatalog:523]
(5) 46186: .../ISourceElementRequestor$TypeInfo[SourceElementParser:1190]
(6) 45813: .../Path[PackageFragment:309]
(7) 44703, .../Path[CompilationUnit:786]
(8) 37201, .../ContentTypeHandler[ContentTypeMatcher:50]
(9) 30939, .../HashtableOfObject[HashtableOfObject:123]

Each line shows an allocation site and the number of times it is
instantiated. For example, the first line is for an allocation site at
line 968 in class SourceElementParser, which creates 295004
objects of type ISourceElementRequestor$MethodInfo. Sites
4 and 8 are from plugin org.eclipse.core.resources. The remaining
sites are located in org.eclipse.jdt.core. Because the Eclipse 3.1 re-
lease does not contain the source code for org.eclipse.core.resources,
we inspected only the seven sites in the JDT plugin.

The first site is located in class SourceElementParser, which
is a key part of the JDT compiler. JDT provides many source code
manipulation functionalities that can be used for various purposes,
such as automated formating and refactoring. The observer pat-
tern is used to provide source code element objects when a client
needs them. Method notifySourceElementRequestor, which
contains this site, plays the observer role: once a requestor (i.e.,
a client) asks for a compilation unit node (i.e., a class), the method
notifies all child elements (i.e., methods) of the compilation unit
by calling method enterMethod, which will subsequently notify
source code statements in each method. Method enterMethod
takes a MethodInfo object as input; this object contains all nec-
essary information for the method that needs to be notified.

The site creates MethodInfo objects which are then provided
to enterMethod. Because enterMethod is defined in an inter-
face, we checked all implementations of the method. Surprisingly,
none of these implementations invoke any methods on this param-
eter object. They extract all information about the method to be
notified from fields of the object; these fields are previously set
by notifySourceElementRequestor. The third and the fifth al-
location sites from above tell the same story: these hundreds of
thousands of objects are created solely for the purpose of carrying
data across one-level method invocations. It is expensive to create
and reclaim these objects, and to perform the corresponding heap
copies. We modified the interface and all related implementations
to pass data directly through parameters. This modification reduces
the number of allocated objects by millions and improves the run-
ning time by 2.8%. In large applications with no single hot spot,
significant performance improvements are possible by accumulat-
ing several such “small” improvements, as illustrated below.

Table 2 shows a list of several problems we identified with the
help of the analyses. For each problem, the table shows the prob-
lematic class (Class), our code modification, the number of allo-
cated objects (#Objs), the total number of GC invocations (#GCs),
and the running times. Row Original characterizes the original ex-
ecution. Each subsequent row shows the cumulative improvements
due to our changes in the JDT plugin. The second row corresponds
to allocation sites 1, 3, and 5 listed above, the third row is for sites
6 and 7, the fourth row is for site 2, and the last row is for site 9.



By modifying the code to eliminate redundant copies and the
related creation of objects, we successfully reduced the number of
GC runs, the number of allocated objects, and the total running
time. With the help of the tool, it took us only a few hours to find
these problems and to make modifications in a large application we
had never studied before.

It is important to note that this effort just scratches the surface:
significant performance improvement may be possible if a devel-
oper or a performance expert carefully examines the tool reports
(with different tests and workloads) and eliminates the identified
useless work. This is the kind of manual tuning that is already be-
ing done today for large Java applications with performance prob-
lems that cannot be attributed to a single hot spot. This tedious and
labor-intensive process can be made more efficient and effective by
the dynamic analyses proposed in our work. Future studies should
investigate such potential performance improvements for a broad
range of Java applications.

7. Copy Graph Characteristics
This section presents characteristics of the copy graph and its con-
struction. All experiments were performed on a machine with a
1.99GHz Dual Core AMD Opteron processor, running Linux 2.6.9.
The programs were run with JIT optimizations turned off to collect
a copy graph of the unmodified source program. The maximum
heap size specified for each run was 500Mb. Hence, the size of
shadow for each run was 500Mb. IBM DMS is the IBM document
management server mentioned in the first section, which is run on
top of a J2EE application server. Each DaCapo benchmark was run
with large workload for two iterations, and the running time for the
second iteration is shown. SPECjbb and IBM DMS are server ap-
plications that report throughput, not total running time; both were
run for 30 minutes with a standard workload.

Table 3 presents the time and space overhead of context-
insensitive copy graphs. The second column, labeled Torig , presents
the original running times in seconds. The remaining columns show
the total numbers of nodes N0 and edges E0, the amount of memory
M0 needed by the analysis (in megabytes), the running times T0 (in
seconds), and the performance slowdowns (shown in parentheses).
The slowdown for each program is T0/Torig. Because the shadow
heap is 500Mb, the space overhead of the copy graph is M0–500.

In Table 4, the same measurements are reported for 1-object-
sensitive copy graphs. To understand the impact of the number of
context slots (i.e., parameter c from Section 4.3), we experimented
with values 4, 8 and 16 when constructing the 1-object-sensitive
copy graph. The slowdown for each program was calculated as
Ti/Torig (the original time from Table 3), where i ∈ {4, 8, 16}.

The copy graph itself consumes a relatively small amount of
memory. Other than for IBM DMS, the space overhead of the copy
graph does not exceed 27Mb even when using 16 context slots. As
expected, a context-sensitive copy graph consumes more memory
than the context-insensitive one, and using more context slots leads
to larger space overhead.

The running time overheads for profiling the context-insensitive
copy graph and the three versions of 1-object-sensitive copy graphs
are, on average, 36×, 37×, 37×, and 37× respectively. This over-
head is not surprising because the analysis tracks the execution of
every instruction in the program. The overhead also comes from
synchronization performed by the instrumentation of allocation
sites, which sequentially executes the allocation handler to cre-
ate allocation header elements. The current implementation pro-
vides a general facility for mapping an object address to a context
ID. This is done even for the context-insensitive analysis, where
the ID is always 0. Since the cost of this mapping is negligible,
we have not created a specialized context-insensitive implementa-
tion. Hence, the difference between the running times of profiling

Program Original Context-insensitive
Torig (s) #N0 #E0 M0(Mb) T0(s) (×)

antlr 8.9 12516 56703 503.7 284.2 (31.9)
bloat 157.5 14058 14471 502.2 9812.2 (62.4)
chart 32.5 18113 12810 502.5 1053.2 (32.4)
fop 3.6 12419 7675 501.8 38.2 (10.6)
pmd 46.6 11289 8418 501.7 1542.4 (33.1)
jython 74.7 25653 21893 503.2 2826.1 (37.8)
xalan 64.8 13505 28678 502.6 3030.5 (46.8)
hsqldb 13.5 12294 9102 501.7 350.0 (25.9)
luindex 12.1 10154 10227 501.6 583.4 (48.2)
lusearch 19.2 8390 13849 501.5 662.8 (34.5)
eclipse 124.7 34074 52957 506.5 4343.8 (34.8)
SPECjbb 1800* 17146 12637 502.4 1800*
IBM DMS 1800* 147517 87531 519.6 1800*

Table 3. Copy graph size and time/space overhead, part 1. Shown
are the original running time Torig , as well as the total numbers
of graph nodes N0 and edges E0, the total amount of memory
consumed M0, the running time T0, and the slowdown (shown in
parentheses) when using a context-insensitive copy graph.

context-insensitive and context-sensitive copy graphs is noise. The
only significant difference between context-insensitive and context-
sensitive analysis is the space overhead.

Although significant, these overheads have not hindered us from
running the tool on any programs, including real world large-scale
production applications. It was an intentional design decision not to
focus on the performance of the analysis, but instead focus on the
content collected and on demonstrating that the results are useful
for finding performance problems in real programs. Now that the
value of the tool has been established, a possible future direction
is to use sampling-based profiling to obtain the same or similar
results. Another possibility is to employ static pre-analyses that
reduce the cost of the subsequent dynamic analysis.

Table 5 shows measurements for the copy chains obtained from
a context-insensitive copy graph, including the total number of
generated chains (#Chains) and the average length of these chains
(Length). The table also shows the number of NATH allocation sites
and NATH run-time objects. The significant numbers of NATH
objects indicate that eliminating such objects may be a worthwhile
goal for future work on manual and automatic optimizations.

The first part of Table 6 lists the average node fan-out for the
context-insensitive copy graph (CIFO) and the three versions of
context-sensitive copy graphs (CSFO-i, where i is the number of
context slots for each object). A node’s fan-out is the number of its
outgoing edges. The average fan-out indicates the degree of node
sharing among paths in the graph. Note that CIFO and CSFO-i
are small, because there exist a large number of producer nodes
(allocation site) that do not have outgoing edges. In addition, the
more slots are used to represent contexts, the smaller the average
fan-out, because more nodes are created to avoid path sharing.

In addition, for each context-sensitive copy graph, the table
reports the average context conflict ratio (CCR-i). The CCR for an
object o is defined as follows:

CCR-i(o) =

(
0 max0≤k≤i (nc[k]) = 1

max (nc[k])/
P

nc[k] otherwise

Here nc[k] represents the number of distinct contexts that fall
into context slot k. The CCR value captures the degree to which
our encoding function (i.e., id % k) causes distinct contexts to be
merged in the copy graph. For example, the CCR is 0 if each
context slot represents at most one distinct context; the CCR is
1 if all contexts for the object fall into the same slot. The table
reports the average CCR for all allocation sites in the copy graph.
As expected, the average CCR decreases with an increase in the



Program 1-object-sensitive (c = 4) 1-object-sensitive (c = 8) 1-object-sensitive (c = 16)
#N4 #E4 M4(Mb) T4(s) (×) #N8 #E8 M8(Mb) T8(s) (×) #N16 #E16 M16(Mb) T16(s) (×)

antlr 48556 112907 506.9 294.8 (33.1) 96609 159042 510.2 300.7 (33.8) 192713 210522 515.2 309.5 (34.8)
bloat 54960 35678 504.3 10182.9 (64.7) 109494 48840 506.5 10147.4 (64.4) 218558 60483 510.5 10068.2 (63.9)
chart 69438 25951 504.6 1079.4 (33.2) 137945 39133 507.3 1054.4 (32.4) 274903 45071 511.9 1056.5 (32.5)
fop 47893 11985 503.1 37.4 (10.4) 95180 13509 504.6 37.2 (10.3) 189757 14388 507.7 36.8 (10.2)
pmd 43740 15576 503.0 1586.7 (34.0) 86980 19568 504.5 1568.5 (33.7) 173484 21339 507.3 1555.5 (33.4)
jython 95493 32256 505.8 2865.6 (38.4) 188583 37005 509.0 2879.9 (38.6) 374791 41027 515.0 2861.4 (38.3)
xalan 52485 55367 504.9 2983.3 (46.0) 85751 88001 507.7 3067.6 (47.3) 208119 117760 512.2 3067.6 (47.3)
hsqldb 47666 13432 503.0 358.0 (26.5) 94846 15201 504.6 346.7 (25.7) 189183 17190 507.7 345.9 (25.6)
luindex 39319 17695 502.8 568.7 (47.0) 78232 22912 504.3 581.1 (48.0) 156033 28333 507.0 564.8(46.7)
lusearch 32354 22163 502.6 643.5 (33.5) 64280 26629 503.8 651.6 (33.9) 128152 32544 506.1 658.4(34.3)
eclipse 131065 124043 512.3 4521.5 (36.3) 259168 154004 517.4 4545.3 (36.4) 516030 174846 526.4 4746.4 (38.1)
SPECjbb 66102 23909 503.3 1800* 131413 27660 507.2 1800* 261915 29017 511.0 1800*
IBM DMS 193707 180187 533.7 1800* 381072 242049 571.2 1800* 755829 304759 652.3 1800*

Table 4. Copy graph size and time/space overhead, part 2. The columns report the same measurements as Table 3, but for 1-object sensitive
copy graph with 4, 8 and 16 context slots.

Program #Chains Length #NATH Sites #NATH Objects
antlr 250680 2.60 811 411536
bloat 6955316 4.00 1160 31217025
chart 29490 1.16 1652 15080848
fop 275835 3.36 1282 167808
pmd 436397 2.96 1062 54103059
jython 6827057 4.00 493 35926287
xalan 93263 2.60 1218 6186112
hsqldb 8595 1.80 828 3059666
luindex 30183 2.24 749 5543579
lusearch 10640 3.8 302 4200325
eclipse 10070910 1.24 3030 3494187
SPECjbb 21468 2.00 575 722800
IBM DMS 1937646 3.75 4695 1413528

Table 5. Copy chains and NATH objects. All copy graph paths
with length ≤ 5 are traversed to compute hot chains. The columns
show the total number of generated chains, the average length of
these chains, and the number of NATH allocation sites and NATH
run-time objects.

number of context slots. Note that very few context conflicts occur
even when c = 4, because a large number of objects have only one
distinct context during theirs lifetimes.

8. Related Work
Dynamic Data Flow Dynamic taint analysis [20, 30, 21, 7] tracks
input data from untrusted channels to detect potential security at-
tacks. Debugging, testing, and program understanding tools track
dynamic dataflow for other specialized purposes (e.g., [15]). The
work of [6] tracks the origin of undefined values. Dynamic slic-
ing [34, 31, 32] generates a trace of control and data flow during
an execution, in order to enable postmortem analyses for bug de-
tection. Dynamic slicing is expensive in both time and space, as it
records complete data and control flow dependencies. Our analysis
records only copy flow. In addition, it applies static abstractions on
dynamic information flow, and thus makes it possible to scale to
large and long-running applications such as IBM Websphere.

Profiling When profiling to find performance problems, all tech-
niques that we are aware of concentrate on control flow, rather than
data flow, from path profiling [3, 14, 5, 28] to feedback-directed
profiling [2], all to identify heavily-executed paths for further opti-
mization. The work of [1] develops a dynamic analysis tool to ex-
plore calling context trees in order to find performance bottlenecks.
The work of [26] uses a dynamic analysis technique that identifies
important program components, also by inspecting calling context
trees. Xu and Rountev propose container-centric profiling [29], and
Rayside and Mendel propose object ownership profiling [23], both

Program Average fan-out Context conflict ratio
CIFO CSFO CSFO CSFO CCR CCR CCR

4 8 16 4 8 16
antlr 4.66 2.33 1.64 1.09 0.237 0.131 0.081
bloat 1.03 0.64 0.44 0.27 0.199 0.090 0.068
chart 0.70 0.36 0.28 0.16 0.118 0.059 0.028
fop 0.62 0.25 0.15 0.08 0.134 0.060 0.043
pmd 0.75 0.35 0.22 0.12 0.131 0.059 0.051
jython 0.80 0.31 0.18 0.10 0.079 0.071 0.024
xalan 2.13 1.79 0.81 0.56 0.128 0.067 0.040
hsqldb 0.74 0.28 0.16 0.09 0.169 0.080 0.051
luindex 1.02 0.45 0.29 0.18 0.148 0.073 0.051
lusearch 1.68 0.68 0.41 0.25 0.127 0.082 0.052
eclipse 1.53 0.91 0.57 0.33 0.193 0.114 0.071
SPECjbb 0.75 0.36 0.21 0.11 0.144 0.065 0.026
IBM DMS 0.76 0.32 0.17 0.09 0.112 0.047 0.027

Table 6. Average node fan-out for context-insensitive (CIFO) and
context-sensitive (CSFO-i) copy graphs, as well as average context
conflict ratios (CCR-i) for the context-sensitive copy graphs.

to detect memory leaks in Java programs. Zhang and Gupta pro-
pose whole execution traces [33] that includes complete data infor-
mation of an execution to enable the mining of program profiles
that require understanding of relationships among various profiles.

Bloat Dufour et al. propose dynamic metrics for Java [8], which
provide insights by quantifying run-time bloat. Many memory pro-
filing tools have been developed to take heap snapshots for un-
derstanding memory usage [13], and identify objects of suspicious
types [22, 11] that consume a large amount of memory. However,
none of these tools attempt to understand the underlying causes
of memory bloat, and thus cannot help programmers pinpoint the
problematic areas. The research in [18] structures behavior accord-
ing to the flow of information, though using a manual technique.
Their aim is to allow programmers to place judgments on whether
certain classes of computations are excessive. Our work is in this
same spirit, and automates an important component of it. The work
of [17] introduces a way to find data structures that consume ex-
cessive amounts of memory. Recent work finds excessive use of
temporary data structures [9, 10] and summarizes the shape of the
temporary structures. In contrast to the purely dynamic approxima-
tion introduced here, it employs a blended escape analysis, which
applies static analysis to a region of dynamically collected calling
structure with observed performance problem. By approximating
object effective lifetimes, the analysis has been shown to be useful
in classifying the usage of newly created objects in the problem-
atic program region. Another recent work also identifies regions
that make heavy use of temporary objects, in order to guide ag-
gressive method inlining [24]. Our paper addresses the challenge



of automatically detecting bloated computations that fall out of the
purview of conventional JIT optimization strategies.

9. Conclusion
Programmers must have some level of trust in the optimizations
that will be performed on their behalf. This is especially true,
because software is now assembled from so many abstractions. We
trust compilers enough to avoid low-level tuning, in the hope that
automated optimizations will take care of those details. At every
juncture, we make such assumptions, and add delegation to our
data models, and employ over-general libraries. What’s one extra
method call or object? At some point, however, these decisions pile
up, and our assumptions are no longer true: the JIT can no longer
clean up the mess. Most of the temporary strings in DaCapo bloat
benchmark are never used beyond their construction, and yet state
of the art JITs do not identify this fact.

Compilers and tools are currently focused on control flow, and
largely make optimization decisions based on time spent in con-
trol dependence regions. In large-scale systems, what makes code
suspicious, and worthy of a focused optimization, is not time, but
other signs of excess — such as data copying. In this paper, we in-
troduced a way to help developers find larger performance improve-
ments that are beyond the scope of local calling contexts. We are
hopeful that this analysis can also expose unexplored opportunities
for the JITs to optimize more globally, such as specializing across
multiple components, or hoisting complex, many-layered compu-
tations.

This attention to the typical patterns of excess, i.e. that which
should be optimizable at some level, can also help with benchmark
design and validation. Benchmark designers can use metrics such
as the ones we have presented to ensure that the benchmarks mimic
the kinds of bloat we see in real applications. If benchmark suites
came with copy profiles for each benchmark, then researchers could
use these same metrics to evaluate how well their techniques target
bloat. We would like to avoid a situation where, for example,
hardware designers add features to help an application better digest
its short-lived objects, all so that it runs 5% faster. We know that
there are larger opportunities, if we optimize at the right level.
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