
A. Petrenko and A. Ulrich (Eds.): FATES 2003, LNCS 2931, pp. 70–85, 2004.
© Springer-Verlag Berlin Heidelberg 2004

JMLAutoTest: A Novel Automated Testing Framework
Based on JML and JUnit

Guoqing Xu and Zongyuang Yang

Software Engineering Lab, The Department of Computer Science,
East China Normal University

3663 N Zhongshan Rd., Shanghai 200062, P.R.China
{gqxu_02,yzyuan}@cs.ecnu.edu.cn

Abstract. Writing specifications using Java Modeling Language has been ac-
cepted for a long time as a practical approach to increasing the correctness and
quality of Java programs. However, the current JML testing system (the JML
and JUnit framework) can only generate skeletons of test fixture and test case
class. Writing codes for generating test cases, especially those with a compli-
cated data structure is still a labor-intensive job in the test for programs anno-
tated with JML specifications.
This paper presents JMLAutoTest, a novel framework for automated testing of
Java programs annotated with JML specifications. Firstly, given a method,
three test classes (a skeleton of test client class, a JUnit test class and a test case
class) can be generated. Secondly, JMLAutoTest can generate all nonisomor-
phic test cases that satisfy the requirements defined in the test client class.
Thirdly, JMLAutoTest can avoid most meaningless cases by running the test in
a double-phase way which saves much time of exploring meaningless cases in
the test. This method can be adopted in the testing not only for Java programs,
but also for programs written with other languages. Finally, JMLAutoTest exe-
cutes the method and uses JML runtime assertion checker to decide whether its
post-condition is violated. That is whether the method works correctly.

1 Introduction

Writing specifications of Java Modeling Language has been viewed as an effective
and practical way of increasing the correctness and quality of Java programs for
JML’ great expressiveness and easy grammar which is similar to Java’s. In addition,
JML allows assertions to be intermixed with Java code [3, 6], which brings conven-
ience to Java programmer. In the past few years, many tools have been implemented
to support JML, including the compiler, runtime assertion checker [1] as well as its
testing framework [2]. The current JML testing system (JML and JUnit testing
framework) can generate the test fixture and the skeleton of the test case class auto-
matically which sets programmers free from writing unit test codes, thus making unit
test more accessible to programmers.

JMLAutoTest: A Novel Automated Testing Framework Based on JML and JUnit 71

1.1 The Problem

However, programmers still need to spend a lot of time writing codes for generating
test cases, especially those which represent complicated data structures (i.e. binary-
tree, linkedlist). There have been some testing tools which can automatically generate
test cases, such as Korat [4] and Alloy Analyzer (AA)[22], but they either supply the
whole test case space generated to the test, never caring about how many test cases
are meaningless1 ones, or require programmers to write special predicates to get rid of
meaningless test cases. For example, in Korat[4] programmers should write an addi-
tional method “public boolean repOk” in the input class to keep the test cases gener-
ated meaningful. In our opinions, at first, only identifying meaningless cases when
test is run is not enough because a test with many meaningless inputs can tell little
about the execution of tested method although maybe this test is based on a very large
test case space and it might spend a lot of time dealing with meaningless ones. So
avoiding meaningless test case before running the test is very important. In the sec-
ond place, in many cases, the tester is not just the one who develops the class to be
tested or it is a black box test, therefore, handling test cases totally depending on
predicates provided by programmers is not a practical way.

Fig. 1. The work flow of JMLAuto Test

1.2 How JMLAutoTest Deals with These Problems

In this paper, we present JMLAutoTest, an automatic testing framework, which can
solve these problems well. Given a method annotated with JML specification, similar
to the JML and JUnit testing framework [2], JMLAutoTest firstly generates a JUnit
test class (*_JML_Test) which sets up test fixture and a test case provider class

1 Meaningless test case here means the one which violates the pre-condition of method to be

tested.

72 Guoqing Xu and Zongyuang Yang

(*_JML_TestCase) which is a sub class of the test class. In addition, JMLAutoTest
generates the skeleton of another class called test client (JMLTestClient), into which
programmers can easily set class domains for classes of arguments of method to be
tested or field domains for the fields in those classes. Then when test is run, the test
case provider can get test cases from test client automatically.

JMLAutoTest can avoid most meaningless test cases by running the test in a dou-
ble-phase way (runPreTest and runFinalTest in Figure 1). Double-phase way is a
statistic based testing approach. Firstly, programmers should make a standard to di-
vide the whole test case space into several partitions. This standard is somewhat like
the “Operational Profile” in Cleanroom testing [5, 15], so here we also call it opera-
tional profile. Programmers can make the operational profile in the method makeOp-
erationalProfile (shown in figure 1) in the test client. After the test case provider gets
the generated test cases, it passes the whole test case spaces to the method makeOp-
erationalProfile. Then this method divides the test case space into several partitions
according to the criteria made by programmers and returns these partitions. During
the first phase, tests with each group of test cases chosen from these partitions are run
respectively. Each group only contains a relatively small number (a few dozen) of test
cases.

Then based on the statistical principle we can know which partition of test case
space produces the most meaningless test cases and which produces the second most
... Thus, the probability of meaningless test cases contained in each partition can be
determined after the first phase test (pre-test). During the second phase, a large num-
ber of test cases should be taken out from each partition depending on proportion
obtained after the first phase test. From this point of view, meaningless test cases can
be avoided to a certain extent and programmer who runs the test only need to make
the operational profile without knowing the details about the method to be tested. But
the validity of this way is based on the quality of operational profile which is used to
create different partitions. This way of testing can be applied to not only Java pro-
grams, but also programs with other languages.

The rest of this paper is organized as follows. Section 2 presents the algorithm and
principle that JMLAutoTest uses to generate test case. Section 3 describes how dou-
ble-phase testing works. Section 4 presents the test oracle generation for testing meth-
ods. Section 5 illustrates some experimental results. Section 6 reviews related work
and Section 7 concludes.

2 Test Case Generation

The whole procedure of test case generation in JMLAutoTest includes three parts:
finitization, validity checking and nonisomorphism. Figure 2 gives an overview of the
algorithm of JMLAutoTest test case generation for the type “jmlautotest.example”.
JMLObjectSequence is a utility class defined in the package org.jmlspecs.model [3,
6] which implements a sequence to contain objects. We use class Finitization (Section
2.1) to finish the work of generation. After a test case candidate is generated,
JMLAutoTest uses JML runtime assertion checker to check its validity (Section 2.2)

JMLAutoTest: A Novel Automated Testing Framework Based on JML and JUnit 73

in order to kill it if Invalid. Then JMLAutoTest visits existing test cases to make sure
that this candidate is not isomorphic to a certain test case existing in the test case
space (Section 2.3).

// The following method is defined in the test client
public JMLObectSequence makeCase_jmlautotest_example () {

JMLObectSequence cases = new JMLObjectSequence () ;
Finitization f= new Finitization (jmlautotest.example.class);

//Create the value domain1 which contains 5 instances of
//the class “example.field1.class” for the field //“field1”

JMLObjectSequence valuedomain1
= f.createObjects(example.field1.class, 10);

// set value domain for the field “field1”
f.set (example.field1, valuedomain1);
f.generate() ;
cases = f.getResult() ;
return cases;
}
}

Fig. 2.The overview of the method makeCase_* in the test client

2.1 Finitization

JMLAutoTest provides a class Finitization for programmers to generate a finite test
case space of any kinds. The whole process of the working of a finitization includes
two parts: setting the value domain and generating.

Set Value Domain for Fields of the Input Class. Programmers can bind a certain
field with a set of bounds by setting the value domain for the field. Then
JMLAutoTest will create a candidate object by assigning to each field all possible
values from its corresponding domain. The field domain is represented by an object
either of the type JMLObjectSequence which contains objects or of the type
JMLPrimSequence which is another utility class to contain values of primitive types.
All of these domains are inserted into a hash table for use in generating.

Generate Test Case Space. There are two kinds of method generate in class
Finitization. One is to generate test case space for common classes and another is to
generate test cases for special classes which implement a certain linked data structure
such as binarytree and linkedlist.

Figure 3 illustrates how to generate test case for the class which implements a linked
data structure (linked list). The invariant clause at the beginning will be presented in
Section 2.2. The method generate here is with two arguments. The first one is the
name of the first node (or the root node) field in this recursive structure. The second
one is an array of String which contains names of pointer fields in this data structure.
In the example of linkedlist shown in Figure 3, the first argument of method generate
is the string “first”, the name of field first in class LinkedList which represents the
first node of a linked list. The second one is a string array which only contains
“pointer” , the name of the pointer field in LinkedList.

74 Guoqing Xu and Zongyuang Yang

In the process of this kind of generation, the field first and the pointer field pointer
share the same value domain. Each element of this value domain can only be used
once except null. After one element is used, it will be removed from the domain. A
special stack visitedStack is kept during the recursion to contain used elements of the
value domain. Another stack called fNames is used to contain names of pointer fields.
In the next recursion, one element in the value domain was assigned to the pointer
field represented by the first element in fNames of the object represented by the first
element in visitedStack.

For example, when JMLAutoTest is generating a binary tree, the situation of two
stacks and value domain are illustrated in Figure 4. At the beginning, stack visited-
Stack only contains binarytreeObj which is an object of input class BinaryTree. The
value domain contains four nodes: N0, N1, N2 and null. During the first recursion, N0
is assigned to the field root which is represented by the first element in fNames of the
Object binarytreeObj represented by the first element in visitedStack. That means let
binarytreeObj.root = N0. Then the first element in both fNames and visitedStack is
removed. Also, the used element N0 is inserted into visitedStack and its two pointer
fields left and right are inserted into fNames. Recursion follows this algorithm until it
reaches two states. One is that the value domain only contains null and another one is
that all elements in visitedStack are null. The first state means finding a candidate
while the second one means a failure.

To accelerate the generation of a linked data structure, programmers can choose to
generate the test case space in a fast way. If the value of field acceleratingEnabled in
the class Finitization is true, JMLAutoTest only considers a certain structure once
regardless of other non-pointer fields. JMLAutoTest implements this optimization by
assigning values to the pointer field only twice. For the first time, a non-null value in
the value domain is assigned to the pointer field, and for the second time let the
pointer field be null. Generating all cases of a binary tree with 7 nodes costs 1 second
while in the normal way, it costs more than 1000 seconds because candidates handled
by JMLAutoTest in the normal way are much more. However, the test case space
generated in the fast way is so limited that it only contains all kinds of the structure
without caring about non-pointer fields.

2.2 Validity Checking

After a candidate object is generated, JMLAutoTest checks its validity to judge
whether it can be used as a test case. The invariant clause in Figure 3 says that if the
field first is null, then the field length must be zero or if first is not null, then the field
length must equal the real number of nodes in this list (Method getLength returns the
value of field length and method toObjectSet functions at transforming the linked list
to a set of nodes. Both of them are omitted in Figure 3). The validity checking in
JMLAutoTest totally depends on the instance invariant specified in the input class.

The Invariant Clause in JML. An invariant [1] is a condition that remains true
during the execution of a segment of code. A instance invariant, which constraints
both static and non-static states of program execution, can refer to both static and

JMLAutoTest: A Novel Automated Testing Framework Based on JML and JUnit 75

instance members. In JML, invariants belong to both pre-state and post-state
specifications which are checked in both pre-state, i.e., right after a method call and
argument passing but just before the evaluation of the method body and post-state,
i.e., right after the evaluation of the method body but just before the method returns.

//@ public invariant (first == null&& getLength()==0)
//@ || (first!= null &&getLength() == toObjectSet().size());
public class LinkedList{

public Node first; // the first node of a linked list;
protected int length; // the length of this list
…
}
public class Node{
public int ID; // node ID
public Node pointer; // a pointer pointing to the next node

}

public JMLObjectSequence makeCase_LinkedList(){
 Finization f = new Finization (LinkedList.class) ;

//create 3 instances of Node with an argument array [0,1,2] for the
//constructor

 JMLObjectSequence nodes = f. createObjects(Node.class, new
JMLPrimSequence(new int[]{0,1,2}) , 3);

 f.add (nodes, null); // add null to this domain.
 f.set (“first”, nodes); // set the value domain for “first”

// set domain for the field “length”
 f.set (“length”, new JMLPrimSequence (1,4));
}

// Generate candidates recursively
 f.generate(“first”, new String[]{“pointer”});
return f.getResult();

}

Fig. 3. Generate the test case space for class LinkedList

Fig. 4. The difference of situations of value domain and stacks between at the beginning and
after a recursion when generating a binarytree

The Invariant Clause in JML. An invariant [1] is a condition that remains true
during the execution of a segment of code. A instance invariant, which constraints
both static and non-static states of program execution, can refer to both static and
instance members. In JML, invariants belong to both pre-state and post-state
specifications which are checked in both pre-state, i.e., right after a method call and

76 Guoqing Xu and Zongyuang Yang

argument passing but just before the evaluation of the method body and post-state,
i.e., right after the evaluation of the method body but just before the method returns.

public void checkInv$instance$T(){

 Boolean rac$v = false;

 [P, rac$v]

 if (! rac$v){throw new JMLInvariantError() ;}

}

Fig. 5. The method to check the instance invarianttranslated by JML runtime assertion checker

public boolean checkValidity(Object obj){
try{
 //get the name of the input class
 String className = obj.getClass().getName();
//get the name of the method of checking invariant

 String invName = "checkInv$instance$"+className;
 Method thisMethod = obj.getClass().getMethod(invName, new

Class[]{}); // get the method of checking invariant
 //invoke this method

thisMethod.invoke(obj, new Object[]{});
 }
catch(java.lang.NoSuchMethodException ex){
 throw new Exception("code for class

"+obj.getClass().getName() +" was not compiled with jmlc so
no assertions will be checked");

 } // There is no such a method in the class
catch(JMLInvariantError ex){
 return false; // Invariant has been violated.
 }
return true; // Okay
}

Fig. 6. Check whether the candidate is valid

Let T be a type with a set of instance invariants, P1…Pn .The invariants are first
conjoined to form a single invariant predicate, i.e., P P1^ ...^ Pn. The conjoined
invariant predicates are translated into instance invariant methods, whose general
structures are shown in Figure 5. The notation [P, rac$v] denotes translated code that
evaluates the predicate P and stores the result into the variable rac$v. The invariant
methods evaluate the conjoined invariant predicates and throw invariant violation
errors if the predicates do not hold.

Invariant Checking in JMLAutoTest. Figure 6 illustrates how invariant is checked
in JMLAutoTest. If the method checkInv$instance$T is not found in the input class,
this class was not compiled by JML compiler that a new exception was thrown.

JMLAutoTest: A Novel Automated Testing Framework Based on JML and JUnit 77

If a JMLInvariantError exception is caught when the method is invoking, this can-
didate is not valid because the invariant is violated. If no exceptions are caught, this
candidate is valid and the method checkValidity returns true. If no invariants specified
in the input class, the method checkValidity always returns true.

2.3 Nonisomorphism

At the end of the process of generation, JMLAutoTest explores the space of generated
test cases to make sure the candidate is not isomorphic to a certain existing test case.
We do not define what isomorphism is in JMLAutoTest. Our solution is totally based
on the method equals defined in the input class.

Let Obj be the candidate object and let S be the set of test cases generated. Obj is
isomorphic to an existing test case iff ∃c∈S. Obj.equals(c). There is an advantage of
this solution that programmers can easily change the criteria to make different kinds
of test cases by modifying the equals method.

3 Double-Phase Testing

This section presents how JMLAutoTest avoids meaningless test cases. After the
generation of the test case space presented by the previous section, there might be
many meaningless ones in the space whereas individual candidate itself is valid. The
major idea of double-phase testing is to use two phases of testing based on statistics.

Double-phase testing is especially fit for the black box test and the test with a large
test case space although it will spend some time running pre-test. If the test case space
is not very large (maybe only contains a few dozen of cases), we do not need to use
the double-phase testing. Programmers can decide whether to use this method by
choosing whether to run the test with an argument “-pre”. Running the test case pro-
vider (class *_JML_TestCase) without any arguments means the test will be run in a
conventional way.

3.1 Making an Operational Profile

There is a method makeOperationalProfile in the test client. Programmers can modify
this method to divide the whole test case space into several partitions. JMLAutoTest
can generate the skeleton codes of this method. Test case spaces of different types are
put into a hash table spaces in the test case provider. Then this hash table is passed to
the method makeOperationalProfile in test client. For example, we can put linked lists
which contain more than three nodes into partition_LinkedList[0] and put those
which contain less than three nodes into partition_LinkedList[1]. Variable parti-
tion_LinkedList is a JMLObjectSequence array, each element of which represents a
partition of this test case space. Finally partitions of each type are put into a hash
table partitions which will be returned by this method.

78 Guoqing Xu and Zongyuang Yang

3.2 The First Phase

During the first phase, a small number of test cases taken from each partition ran-
domly make several groups. The percentage of test cases which should be taken out
from each partition is provided by the programmer as the second argument of the
main method (i.e., if arguments are “-pre 0.3”, the percentage is 30%.). Tests with
each group are run respectively. Figure 7 illustrates the generated codes for the first-
phase test. If the pre-test is not disabled by programmer, let isPre (a flag to show
whether it is a pre-test or a final test) be true.

Taking Test Cases Out from Partitions. The technique of getting these test cases is
based on the following principle.

Let p be the percentage provided by the programmer. Let P be a partition of a cer-
tain test case space, and Let C be a sub set of P. C is the set of cases which should be
taken out iff C.size == P.size*p  and ∀ n ∈ [0, C.size-1], C.elementAt(n)==
P.elementAt( n/p ). The operator == is Java’s comparison by object identity. The
definition above illustrates that the process of getting test cases is totally based on the
average distribution in statistic.

Algorithm Used in Running the Pre-test. In section 3.1, we have presented that
each partition of test case space of a certain type is represented by an element in a
JMLObjectSequence array. We use an algorithm to record the number of meaningless
test cases during the first phase that we shift the sequence of elements in a partition
backward and let the first unit contain the number of meaningless cases. At first, we
put zero into its first unit.

When the test suite is run, the sum of number of meaningless test cases taken from a
certain partition in the current test and the value in its first unit is put into this unit of
the partition. So during the first phase, the value in the first unit of a partition changes
for several times. Through comparing the final value in the first unit of a partition
with one another in the same test case space, we can get the approximate proportion
of meaningless cases in this partition among all those meaningless in the whole test
case space.

Method runPreTest shown in Figure 7 is a recursive method which explores every
partition in test case space of each type. We keep a hash table arg_ind which repre-
sents a vector of indices of partitions in test case space of each type. We continue
with the example method findSubList. There are two test case spaces generated for
the type LinkedList and Node. If test case space of LinkedList has been divided into
two partitions and the space of Node has been divided into three partitions, in the first
phase, test suite should be run for six times. Each time before test suite is run; the
value of arg_ind should be changed to show the indices of partitions in these two test
case spaces. At the beginning, arg_ind is the vector (0, 0) which means test cases of
both type LinkedList and Node should be taken out from No.0 partition in the two test
case spaces. During the first recursion, arg_ind should be changed to (0, 1) and the

JMLAutoTest: A Novel Automated Testing Framework Based on JML and JUnit 79

recursion ends when arg_ind reaches (1, 2) which means all partitions have been
visited. When test suite is run, the init_vT methods presented in the next section get
the test cases from different partitions according to the vector represented by arg_ind.

Fig. 7. Generated codes in test case provider (*_JML_TestCase) for the first phase test

3.3 The Second Phase

During the second phase, test cases from partitions should be reorganized and the
final test is run.

Reorganization of Test Cases. After the first phase test, the first unit of each
partition has contained the number of all meaningless test cases taken from this
partition. Although this number might be more than the real one, it can reflect the real
situation of each partition in a certain test case space. After the disposal of these
numbers, we can get the proportion of test cases which should be taken out from each
partition of a certain test case space in the final test. Let S be the set of such
proportions. Let C be the set of values contained in the first unit of each partition in a
test case space. The following algorithm is used in JMLAutoTest to get the test cases
in the final test.

Algorithm: s = sum(C);
forall n∈ [0, C.size-1], S.elementAt(n)= (s – C.elementAt(n))/s;

Finally, in a certain test case space, let T1 be the set of test cases taken from parti-
tion P1, T2 be the set of cases taken from the partition P2… Tn be the set taken from
partition Pn. The operation of taking test cases from Pi is also based on the average
distribution with the proportion S.elementAt(i-1). Then we have the equation

80 Guoqing Xu and Zongyuang Yang

∀ i∈ [1 , n], Ti.size == Pi.size * S.elementAt(i-1) . Let T be T0 U T1 …U Ti. Then T
is the set of test cases to be supplied in the final test.

Fig. 8. The method init_vT in test case provider class

4 Test Oracle Generation

JMLAutoTest uses the same way of generating test oracles as JML+JUnit testing
framework [2] which combines JML [3] and JUnit [7] to test individual method.

4.1 Setting up Test Fixture

The test fixture for the class C is defined as:
C[] receivers; T1[] vT1; ... ; Tn[] vTn;
The first array named receivers is for the set of receiver objects (i.e., objects to be

tested) and the rest are for argument objects.
The receiver and argument objects are initialized by the method init_receivers and

init_vTi in the test case provider class. Figure 8 describes generated codes in method
init_vLinkedList for initializing vLinkedList. If it is in the first phase, test cases are
taken from the partition, the index of which is represented by the value in the hash
table arg_ind and test cases should be taken out from all partitions and mixed together
in the second phase.

4.2 Testing a Method

For each instance (i.e., non-static) method of the form:
T M(A1 a1,: : :, An an) throws E1,..., Em { /* ... */ }

of the class C, a corresponding test method testM is generated in the test class
C_JML_Test. Let n be the value of vT1.length * vT2*…* vTn.length. Then, the

JMLAutoTest: A Novel Automated Testing Framework Based on JML and JUnit 81

method to be tested is executed for n times until each element in each array (vTi) has
been visited. Pre-condition of the target method is checked firstly. If the pre-condition
has been violated and the current test is the pre-test (isPre==true), let the variable
meaningless shown in figure 8 increase. If the post-condition of the method is vio-
lated, JMLAutoTest handles it in different ways in two phases. During the first phase,
this exception is ignored and the test continues since we just want to know the num-
ber of meaningless test cases not caring about whether the execution fails or suc-
ceeds. But during the second phase, this exception should be thrown to let program-
mer know execution of the method is not correct.

5 Experimental Results

This section presents performance of JMLAutoTest on testing a method. To monitor
the process of test case generation and testing a method, JMLAutoTest uses a class
JMLTestDataStat to record some key data. We use method findSubTree(BinaryTree
parentTree, Node thisNode) whose function is to find a sub tree whose root is repre-
sented by thisNode in the parentTree as the benchmark for which we show
JMLAutoTest’s performance.

5.1 Generating Test Cases and Dividing Test Case Spaces

Figure 9 describes the definition of the BinaryTree and Node. The invariant clause
tells us if root is null, the size must be 0. If root is not null, the size must equal the
number of total nodes in the tree. What Figure 10 illustrates is the JML specifications
for the method public BinaryTree findSubTree(BinaryTree parentTree, Node this-
Node). The pre-condition of the method requires that neither of its arguments can be
null and there must be a node in parentTree whose ID equals the ID of thisNode.

We generate the test case space of type BinaryTree with a few nodes whose ID are
ranging from 5 to 8. We also generate the case space of type Node which contains 12
nodes whose IDs are from 0 to 11.

For the test case space of type BinaryTree, We do not divide it and leave it as the
only partition. For the space of type Node, We divide it into two partitions. The first
one contains nodes whose ID varies from 0 to 5 and the second one contains the rest.

5.2 Test Results

Table 1 shows JMLAutoTest’s performance when we test the method with binary
trees containing nodes from 5 to 8. We generate the test case space of BinaryTree in
the fast way, so the number of candidates considered is close to that of test cases
generated. We use the arguments “-pre 0.25” to run the test. Note that for all kinds of
binary trees listed in table 1, almost all test cases in the final test are meaningful.

82 Guoqing Xu and Zongyuang Yang

public class BinaryTree{
//@ public invariant (root ==null &&
//@ getSize() ==0)||(root!=null&&getSize()!=0
//@ &&toObjectSet(root).size() == getSize());
public Node root;
protected int size;
public int getSize(){… }
public JMLObjectSequence toObjectSet(){…}

… }
public class Node{

public Node left;
public Node right;
public int ID; }

Fig. 9. The Definition of class BinaryTree and Node

/*+@ public normal_behavior
 @ requires parentTree!=null && thisNode!=null &&

@(\exists Node n; @parentTree.toObjectSet().has(n);
@n.ID== thisNode.ID);

 @ assignable \nothing;
 @ ensures \result.root.ID == thisNode.ID ;
 @+*/

Fig. 10. The pre-condition of method findSubTree

Then we make a comparison between the performance of testing in double-phase
way and the conventional way (Table 2). Note that for all binary trees with more than
five nodes, total time of the test in double-phase way is less than the corresponding
time in the conventional way and the more test cases are, the more time double-phase
testing can save. Although some meaningful test cases have also been filtered out in
double-phase testing, the test case space is still large enough to test the correctness of
the method.

6 Related Work

There are now quite a few testing facilities and approaches based on formal specifica-
tions developed and advocated by many different research groups. One of the earliest
papers by Goodenough and Gerhart [8] presents its importance. Approaches like
automated test case generation from UML statecharts [9,21] and Z specifications
[10,20] present ways of generating test cases from formal specifications. There are
also some tools which can generate Java test cases like the TestEra framework
[11,22] which requires programmers to learn a specification language based on
which, test cases can be generated. All these specifications do not generate test cases
for Java programs annotated with JML specification which is widely accepted as the
ancillary tool tailored for Java to keep the correctness of programs.

Several researchers noticed that if a program is formally specified, it should be
possible to use the specification as a test oracle [12, 13, 14]. Cheon and Leavens [2]
present the JMLUnit framework which can generate test oracles for JUnit [17] from

JMLAutoTest: A Novel Automated Testing Framework Based on JML and JUnit 83

JML specifications. This framework uses JML runtime assertion checker to decide
whether methods are working correctly, thus automating the writing of unit test ora-
cles. However it has not automated the generation of test cases which is still a labor-
intensive for programmers.

Table 1. Performance of JMLAutoTest for testing the method findSubTree with arguments “-
pre 0.25” (test cases is generated in the fast way).

nodes in
binary tree

generated
binary trees

candidates
considered

meaningful cases
in the final test

total test cases
in the final test

5 42 64 410 492
6 132 196 1572 1572

7 429 625 5136 5136
8 1430 2055 17148 17148

Table 2. Performance comparison between the double-phase testing in JMLAutoTest and the
conventional way in JMLUnit testing framework.

 Double-phase way Conventional way
nodes
in
binary
tree

meaningful
/total in
final test

time in
the first
phase
(s)

total
time of
the test
(s)

meaningful
/total in final
test

time in
the first
phase

(s)2

total time
of the test
(s)

5 410/492 0.079 0.266 420/1008 0 0.219

6 1572/1572 0.188 0.422 1584/3168 0 0.468

7 5136/5136 0.36 0.766 6006/10296 0 1.25

8 17148/17148 0.703 2.016 22880/34320 0 3.484

Boyapati, Khurshid and Marinov describe Korat [4] which can finish automated

generation of test cases for Java programs with formal specifications. Korat generates
linked data structures based on additional Java predicates. However Korat requires
that the programmer who runs the test must know well about the details of the pro-
gram to be tested, therefore it is not fit for a black box test. Also, it can not keep
meaningless test cases from being handled.

There are quite a few approaches to applying the statistical models to Testing
[16,18,19]. Statistical testing has been widely adopted during the development of the
Cleanroom software[5] in test cases acquisition, results evaluation and reliability
modeling. So it is not a new idea to use the statistical analysis in testing. But in
JMLAutoTest the novelty lies in applying the statistical analysis to filtering out mean-
ingless cases. This idea can also be used in testing of programs written with other
languages.

2 All the time in this column is zero because there is no the first phase test in conventional

testing.

84 Guoqing Xu and Zongyuang Yang

7 Conclusions

This paper presents JMLAutoTest, a novel testing framework designed for Java pro-
grams annotated with JML specifications.

JMLAutoTest automatically generate three classes for a target method. In the test
client, testers can generate test cases for any kinds of types including linked data
structures and common types in either a fast way or a normal way very easily.
JMLAutoTest verifies the validity of a candidate by checking its invariant with JML
runtime assertion checker.

JMLAutoTest provides a double-phase testing way for the test of a method. It is
the statistic based testing which filters out meaningless test cases without requiring
testers to know the details of the method to be tested. According to the operational
profile made by the tester, the generated test case space can be divided into several
partitions. During the first phase, a small number of test cases are taken out from each
partition. Then the test suite is run for several times to record the number of meaning-
less cases of each group. Based on statistical principles, we should estimate the ap-
proximate proportion of the meaningless test cases in each partition. During the sec-
ond phase, test cases taken out from each partition according to these calculated
proportions are mixed together and supplied to the test. Time spent visiting meaning-
less test cases in the final test is saved.

References

1. Y.Cheon. A Runtime Assertion Checker for the Java Modeling Language. Technical Report
03-09, Department of Computer Science, Iowa State University, Apr. 2003.

2. Y.Cheon and G.T.Leavens. A simple and practical approach to unit testing: The JML and
JUnit way. Technical Report 01-12, Department of Computer Science, Iowa State Univer-
sity, Nov, 2001.

3. G.T.Leavens, A.L.Baker, and C.Ruby. Preliminary design of JML: A behavioral interface
specification language for Java. Technical Report TR 98-06i, Department of Computer Sci-
ence, Iowa State University, June 1998. (last revision: Aug 2001).

4. C. Boyapati, S. Khurshid and D. Marinov. Korat: Automated Testing Based on Java Predi-
cates. In Proc. ACM International Symposium on Software Testing and Analysis (ISSTA
2002), pages 123-133., July 2002.

5. M.Deck and J.A.Whittaker. Lessons learned from fifteen years of Cleanroom Testing.
Software Testing, Analysis, and Review (STAR) 97, May 5-9, 1997.

6. G.T.Leavens, A.L. Baker and C. Ruby. JML: A notation for detailed design. In Haim Kilov,
Bernhard Rumpe, and Ian Simmonds, editors, Behavioral Specifications of Businesses and
Systems, chapter 12, pages 175–188. Kluwer, 1999.

7. K. Bech and E. Gamma. Tested infected: Programmers love writing tests. Java Report,
3(7), July 1998.

8. J. Goodenough and S. Gerhart. Toward a theory of test data selection. IEEE Transactions
on Software Engineering, June 1975.

9. J.Offutt and A. Abdurazik. Generating tests from UML specifications. In Proc. Second In-
ternational Conference on the Unified Modeling Language, Oct. 1999.

JMLAutoTest: A Novel Automated Testing Framework Based on JML and JUnit 85

10. H. M. Horcker. Improving software tests using Z specifications. In Proc. 9th International
Conference of Z users, The Z Formal Specification Notation, 1995.

11. D. Marinov and S. Khurshid. TestEra: A novel framework for automated testing of Java
programs. In Proc, 16th IEEE Engineering (ASE), San Diego, CA, Nov, 2001.

12. D. Peters and D. L. Parnas. Generating a test oracle from program documentation. In Proc,
ISSTA 94, Seattle, Washington, Aug. 1994.

13. D. J. Richardson. TAOS: Testing with analysis and oracle support. In Proc, ISSTA 94, Seat-
tle, Washington, August, 1994.

14. P. Stocks and D. Carrington. Test template framework: A specification-based test case
study. In Proc, the 1993 International Symposium on Software Testing and Analysis
(ISSTA), pages 11–18, Jun. 1993.

15. J. D. Musa. Operational Profiles in Software-Reliability Engineering. IEEE Software, pages
14-32, Mar.1993.

16. NIST/SEMATECH E-Handbook of Statistical Methods.
http://www.itl.nist.gov/div898/handbook/, May, 2003.

17. JUnit. http://www.junit.org.
18. R. Chillarege. Software testing best practice. Technical Report RC 21457, Center for Soft-

ware Engineering, IBM Research, Apr.1999.
19. D. Banks, W. Dashiell, L. Gallagher, C. Hagwood, R. Kacker and L. Rosenthal. Software

testing based on statistical methods. National Institute of Standards and Technology Infor-
mation Technology Laboratory, Gaithersburg, MD, Mar.1998.

20. J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, second edition, 1992.
21. J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Reference Man-

ual. Addison-Wesley Object Technology Series, 1998.
22. D. Jackson, I. Shlyakhter, and Il Shlyakhter. ALCOA: The Alloy constraint analyzer. In

Proc. 22nd International Conference on Software Engineering (ICSE), Limerick, Ireland,
June 2000.

	1 Introduction
	1.1 The Problem
	1.2 How JMLAutoTest Deals with These Problems

	2 Test Case Generation
	2.1 Finitization
	2.2 Validity Checking
	2.3 Nonisomorphism

	3 Double-Phase Testing
	3.1 Making an Operational Profile
	3.2 The First Phase
	3.3 The Second Phase

	4 Test Oracle Generation
	4.1 Setting up Test Fixture
	4.2 Testing a Method

	5 Experimental Results
	5.1 Generating Test Cases and Dividing Test Case Spaces
	5.2 Test Results

	6 Related Work
	7 Conclusions
	References

