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Summary. The paper addresses a formal de®nition of a confounder based on the qualitative
de®nition that is commonly used in standard epidemiology text-books. To derive the criterion for a
factor to be a confounder given by Miettinen and Cook and to clarify inconsistency between various
criteria for a confounder, we introduce the concepts of an irrelevant factor, an occasional confounder
and a uniformly irrelevant factor. We discuss criteria for checking these and show that Miettinen and
Cook's criterion can also be applied to occasional confounders. Moreover, we consider situations
with multiple potential confounders, and we obtain two necessary conditions that are satis®ed by
each confounder set. None of the de®nitions and results presented in this paper require the
ignorability and suf®cient control confounding assumptions which are commonly employed in
observational and epidemiological studies.
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1. Introduction

The concepts of confounders and confounding are of great importance in epidemiology
(Kleinbaum et al., 1982; Rothman, 1986; Greenland, Robins and Pearl, 1999). In the presence
of confounding, the e�ect of exposure on the rate of a disease cannot be assessed correctly.
Criteria for assessing a confounder and confounding still appear to be inconsistent in the
epidemiological literature (Boivin and Wacholder, 1985; Grayson, 1987; Greenland et al.,
1989; Weinberg, 1993; Greenland, Pearl and Robins, 1999; Greenland, Robins and Pearl,
1999). According to Greenland and Robins (1986), there are basically two main approaches
for assessing confounding and a confounder. One approach, called `collapsibility based', con-
siders confounding as arising from di�erences between strati®ed measures of association and
the corresponding crude measure. The collapsibility-based approach has a criterion for a
confounder based on the collapsibility of a particular parameter of association (Breslow and
Day, 1980; Kleinbaum et al., 1982). This approach depends on both the parameter of interest
and the categorization of the factor to be collapsed over. For the use of a collapsibility
criterion in the analysis of contingency tables and statistical modelling, see for example
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Whittemore (1978), Ducharme and LePage (1986), Geng (1992) and Guo and Geng (1995).
The other approach, called `comparability based', considers confounding as arising from the
exposed and unexposed populations which are not comparable. We say that the unexposed
population is comparable with the exposed population if the proportion of diseased
individuals in the unexposed population equals the hypothetical proportion of diseased
individuals in the exposed population without exposure. The comparability-based approach
determines a factor to be a confounder if adjusting for it reduces confounding (Greenland
and Robins, 1986; Greenland, Robins and Pearl, 1999). The comparability-based approach
has the following criterion for a confounder which was obtained inductively by Miettinen and
Cook (1981) (see also Greenland and Robins (1986)):

(a) it must be predictive of risk in the unexposed population and
(b) it must have di�erent distributions between the exposed and unexposed populations.

Greenland and Robins (1986) illustrated that this criterion is not su�cient for a confounder.
Greenland, Pearl and Robins (1999) described a causal diagram approach for detecting

multiple confounders under the assumption that the causal diagram is completely constructed
on the basis of knowledge beyond the empirical data and that it includes a su�cient set of
potential confounders. The causal diagram approach presented by Spirtes et al. (1993) and
Pearl (1995) was originally intended for assessing a causal e�ect of an external intervention
on the whole population, including both exposed and unexposed individuals. As many
researchers have mentioned (Miettinen and Cook, 1981; Greenland and Robins, 1986;
Wickramaratne and Holford, 1987; Holland, 1989), epidemiological studies are more
concerned with causal e�ects of exposure in the exposed population. Thus, in such an
epidemiological study, we construct a control group which would be comparable with the
exposed population if the exposure were absent in that population.

In this paper, we give a formal de®nition of a confounder according to the standard
epidemiological de®nition of a confounder presented by Miettinen and Cook (1981),
Kleinbaum et al. (1982), Greenland and Robins (1986) and Greenland, Robins and Pearl
(1999). This de®nition does not require the assumption that a known set of potential
confounders is su�cient for the control of confounding. We ®rst focus on the situations with
a single potential confounder and show that Miettinen and Cook's criterion for a confounder
does not require any untestable assumptions. Then we illustrate inconsistency between
Miettinen and Cook's criterion and the criterion based on the collapsibility of di�erences in
risk or relative risks. To clear up this inconsistency, we introduce the concepts of an
occasional confounder and uniformly irrelevant factor. Finally we extend these results to
situations with multiple potential confounders.

In Section 2, we formalize the de®nitions of a confounder and an irrelevant factor on the
basis of the counterfactual model presented by Rubin (1974) and Holland (1986). Section 3
gives the necessary and su�cient condition for a uniformly irrelevant factor and shows that
Miettinen and Cook's criterion is a necessary condition for an occasional confounder. In
Section 4 we discuss how Miettinen and Cook's criterion can be applied to situations with
multiple potential confounders. A few concluding remarks are given in Section 5.

2. Confounder and irrelevant factor

We follow the notation of Holland (1989). Let E be an exposure with values e and �e
representing its presence or absence respectively, and let De and D�e be the corresponding
responses, which take values 1 or 0 denoting the presence or absence of a disease.
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Epidemiological studies focus on the e�ects of exposure on the rate of a disease in the
exposed population. Let P(De � 1|E � e) and P(D�e � 1|E � �e) be the proportions of diseased
individuals in the exposed population and the unexposed or control population, and let
P(D�e � 1|E � e) be the hypothetical proportion of individuals in the exposed population who
would have developed the disease even if they had not been exposed. Since P(D�e � 1|E � e) is
a hypothetical proportion, the model is a counterfactual model (Rubin, 1974; Holland, 1986).

As mentioned in Greenland and Robins (1986), confounding arises from inherent
di�erences in risk between the exposed and unexposed populations. The term `inherent
di�erences' here means di�erences that would exist even if exposure were entirely absent from
both populations. Confounding bias B is de®ned as the di�erence between the hypothetical
proportion of diseased individuals in the exposed population without exposure and the
proportion of diseased individuals in the unexposed population (Wickramaratne and
Holford, 1987; Holland, 1989), i.e.

B � P (D�e � 1jE � e)ÿ P (D�e � 1jE � �e):

If B � 0, then the exposed and unexposed populations are comparable and there is no
confounding (Wickramaratne and Holford, 1987). However, we cannot guarantee B � 0 for
an observational study. In this case, we try to adjust for some factors to estimate the
hypothetical proportion.

Let C be a factor with possible values 1, . . . ,K; assume that C is not an intervening variable
in a causal pathway from exposure to disease, i.e. C is a covariate. Let D � {1, . . . ,K}, and
let the subpopulations be de®ned by k 2 D. Assume that P(E, C) > 0 for all possible values
of E and C. De®ne P(D�e � 1|E � �e, C � k) to be the proportion of diseased individuals
in the unexposed subpopulation of C � k, and P(D�e � 1|E � e, C � k) the hypothetical
proportion of diseased individuals in the exposed subpopulation C � k if exposure were
entirely absent. Confounding bias in the subpopulation C � k is de®ned as

Bk � P (D�e � 1jE � e, C � k)ÿ P (D�e � 1jE � �e, C � k):

When there is no confounding in any subpopulation, then Bk � 0 for all k, and it means
that each unexposed subpopulation is comparable with the corresponding exposed subpop-
ulation. This situation is called subpopulation comparable, also called su�cient control
confounding in Greenland, Robins and Pearl (1999). Subpopulation comparability is
equivalent to the case when D�e is independent of E given C, denoted by D�e??EjC in the
notation of Dawid (1979). It is related to the weak and strong ignorability assumptions
de®ned by Rosenbaum and Rubin (1983). Weak ignorability is de®ned as D�e??EjC and
De??EjC, and strong ignorability is de®ned as (D�e,De)??EjC. Thus strong ignorability
implies weak ignorability, which in turn implies subpopulation comparability. None of these
can be veri®ed from empirical data (Rubin, 1974; Greenland, 1989; Holland, 1986, 1989).

2.1. De®nitions
The common de®nition of a confounder is that it is a risk factor for the disease, control
of which can reduce bias for estimating causal e�ects (see Miettinen and Cook (1981),
Kleinbaum et al. (1982), page 244, and Greenland and Robins (1986)). Here `control' means
adjustment at the analysis stage or strati®cation at the design stage of a study.

We now formalize the common de®nition of confounders. According to the common
standardization in epidemiology (Miettinen, 1972; Kleinbaum et al., 1982; Rothman, 1986),
the standardized proportion PD(D�e � 1jE � �e) obtained by adjusting the distribution of C in
the unexposed population to that in the exposed population is
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PD(D�e � 1jE � �e) � PK
k�1

P (D�e � 1jE � �e, C � k) P (C � kjE � e):

De®nition 1. A covariate C is a confounder if

jP (D�e � 1jE � e)ÿ PD(D�e � 1jE � �e)j < jBj:
This de®nition states that the standardized proportion PD(D�e � 1|E � �e) obtained by

adjusting for the confounder C is closer to the hypothetical proportion P(D�e � 1|E � e) than
is the crude proportion P(D�e � 1|E � �e). It does not need the subpopulation comparable
assumption. Like Miettinen and Cook's (1981) criterion, this de®nition considers a single
potential confounder or a composite confounder consisting of several potential confounders.
Situations with multiple potential confounders are discussed in Section 4. As a referee has
noted, under this de®nition it is possible that C1 is a confounder, C2 is a confounder but {C1,
C2} is not a confounder. To avoid this counter-intuitive property, we present the concept of an
occasional confounder in the next section. Note that confounding bias may not be completely
eliminated by controlling a confounder, whereas there may be an unbiased estimator without
controlling for the confounder. It requires an untestable assumption (such as a causal diagram
or a su�cient set of potential confounders) to determinate an unbiased estimator.

To study the concept of a confounder analytically, the idea of an irrelevant factor is also
required.

De®nition 2. A covariate C is an irrelevant factor if

PD(D�e � 1jE � �e) � P (D�e � 1jE � �e):

Since the estimate of the hypothetical proportion remains unchanged after adjusting for an
irrelevant factor, we do not need to adjust for it to reduce confounding. A factor may be
neither a confounder nor an irrelevant factor, and such factors should not be controlled for
since confounding will be increased by controlling for it; an example was given in Greenland
and Robins (1986). Robins and Morgenstern (1987), page 873, considered an alternative
approach which de®nes a factor to be a confounder if it is not an irrelevant factor.

2.2. Criteria
Let C??E denote independence of C and E, and D�e??CjE � �e denote conditional
independence of D�e and C given E � �e.

Proposition 1. If C is a confounder, then

(a) C 6??E and
(b) D�e 6??CjE � �e.

Proof. Suppose that C??E or D�e??CjE � �e holds. We can obtain immediately that C is
an irrelevant factor and thus not a confounder. (

Proposition 1 veri®es the criterion for a confounder obtained inductively by Miettinen and
Cook (1981), with the following qualitative meanings.

(a) D�e 6??CjE � �e: C is predictive of risk in the unexposed population.
(b) C 6??E: C has di�erent distributions in the exposed and unexposed populations.

Wickramaratne and Holford (1987) stated that the conditions C??E or D�e??CjE � �e,
which are the converse of Miettinen and Cook's criterion for a confounder, are su�cient for
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non-confounding under the subpopulation comparable assumption. Robins (1989) showed,
without this assumption, that the conditions C??E or D�e??CjE � �e are su�cient for the
equality of the standardized risk di�erence and the crude risk di�erence.

3. Occasional confounder and uniformly irrelevant factor

The above de®nitions of a confounder and an irrelevant factor depend on the choice of
categorization (i.e. level or scale) for the factor under consideration. For example, age may be
a confounder or an irrelevant factor when it is categorized by every 10 years of age, but it
may not be a confounder when categorized by every 20 years. Such a phenomenon is
illustrated in the example given in Section 3.1. When there is confounding in subpopulations
induced by a potential confounder, we can see from this example that non-collapsibility of
risk di�erences is neither equivalent to Miettinen and Cook's (1981) criterion nor a necessary
condition of a confounder, whereas Miettinen and Cook's criterion is still necessary not only
for a confounder as shown in Section 2.2 but also for an occasional confounder, to be shown
in this section.

3.1. An example
Let a factor C indicate groups categorized by every 10 years of age, and its values 1, 2, 3 and 4
denote the original age groups 20±29, 30±39, 40±49 and 50±59 years respectively. Using the
individual e�ect model presented by Greenland and Robins (1986), we can classify all
individuals into the following four types:

(a) type 1, no e�ect (individual `doomed'), De � D�e � 1;
(b) type 2, exposure causative (individual susceptible), De � 1 and D�e � 0;
(c) type 3, exposure preventive (individual susceptible), De � 0 and D�e � 1;
(d) type 4, no e�ect (individual immune to disease), De � D�e � 0.

Suppose that there is no exposure e�ect, i.e. there are only individuals of types 1 and 4, and
that the joint distribution of disease, exposure and a factor C is given in Table 1. Since
B � 156/300 ) 174/300 � )0.06, there is confounding. Since P(D�e � 1|E � �e) � 0:58 �
PD(D�e � 1|E � �e), C is an irrelevant factor and bias cannot be reduced by adjusting the
distribution of C.

When the individuals are regrouped by every 20 years, we obtain a coarse subpopulation
as given in Table 2. For the regrouping denoted by p � {{1, 2}, {3, 4}}, the standardized
Pp(D�e � 1|E � �e) is

Pp(D�e � 1jE � �e) � 34

100

150

300
� 140

200

150

300
� 0:52:

In this case of no exposure e�ect, we also ®nd that P(D�e � 1|E � e) � P(De � 1|E � e) �
0.52. Since |P(D�e � 1|E � e) ) Pp(D�e � 1|E � �e)| � 0 is less than |B| � 0.06, we ®nd that C
is a confounder with respect to the categorization of every 20 years. Confounding can be
corrected since P(D�e � 1|E � e) � Pp(D�e � 1|E � �e).

It can be seen from this example that there are some situations in which confounding can
be reduced by recategorizing a potential confounder, although we cannot recognize these
situations from observed data. However, this example by no means suggests that we should
try to merge the levels of a factor to correct confounding. It should be noted that the risk
di�erences in Table 1 are collapsible over groups of 10 years but Miettinen and Cook's
(1981) criterion is satis®ed. Thus these collapsibility- and comparability-based approaches
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are inconsistent for detecting whether C is a confounder. We can eliminate this inconsistency
by introducing the concepts of an occasional confounder and uniformly irrelevant factor.

This example is mainly used to illustrate the fact that a factor may be detected as a
confounder in one study but not in another owing to using measurements on di�erent scales.
Even in the same study, di�erent people may reach di�erent conclusions for detecting a
confounder when they use di�erent categorizations. Such a factor should be looked at more
carefully. We should further consider confounders from the general principle as in Miettinen
and Cook (1981): the criterion for detecting a confounder should depend on neither the
measure of association chosen nor the categorization taken.

3.2. De®nitions
Let x be a non-empty subset of values of C, i.e. x � D and x 6� [, where D is the ®nest
original categorization of C. A coarse subpopulation of x consists of all subpopulations of
C � k for all k 2 x. Confounding bias in a coarse subpopulation of x is de®ned as

Bx � P (D�e � 1jE � e, C 2 x)ÿ P (D�e � 1jE � �e, C 2 x):

Let p � {x1, . . . ,xs} for s P 2 be a partition of D � {1, . . . ,K}, a class of non-empty subsets
of D such that

Table 2. Distribution with C being a confounder with respect to partition p =
{{1, 2}, {3, 4}}

Type Distribution for the following values of C:

C 2 {1, 2} C 2 {3, 4}

E � e E � �e E � e E � �e

1 (`doomed') 51 34 105 140
4 (`immune') 99 66 45 60

Total 150 100 150 200

Table 1. Distribution with age group C being a non-confounder

Type Distribution for the following values of C: Total (C 2 D )

C � 1 C � 2 C � 3 C � 4 E � e E � �e

E � e E � �e E � e E � �e E � e E � �e E � e E � �e

1 (`doomed') 5 8 46 26 82 88 23 52 156 174
4 (`immune') 45 42 54 24 18 12 27 48 144 126

Total 50 50 100 50 100 100 50 100 300 300

 D � f1, . . . , 4g.
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(a) xi 6� [ for all i,
(b) xi \ xj � [ for all i 6� j and
(c) [i xi � D.

The standardized Pp(D�e � 1|E � �e) based on p is

Pp(D�e � 1jE � �e) � P
x2p

P (D�e � 1jE � �e, C 2 x) P (C 2 xjE � e):

De®nition 3.AcovariateC is called anoccasional confounder if there is a partition p such that

jP (D�e � 1jE � e)ÿ Pp(D�e � 1jE � �e)j < jBj:
If C is an occasional confounder, there is a partition such that confounding can be reduced

or eliminated by controlling for C with respect to the partition p, but such a partition cannot
be recognized from the observed data. If C is not an occasional confounder, then con-
founding cannot be reduced by controlling for C, no matter what categorization is chosen
for C, or no matter how the subpopulations are grouped. Thus it is unnecessary to consider
how to control for a factor which is not an occasional confounder. If C is an occasional
confounder, then any set containing C is also an occasional confounder. Any confounder is
also an occasional confounder, but the reverse is not true.

De®nition 4. A factor C is a uniformly irrelevant factor if, for any possible partition p,

Pp(D�e � 1jE � �e) � P (D�e � 1jE � �e):

Hence adjusting for a uniformly irrelevant factor C does not reduce or enhance confounding
under any categorization. A uniformly irrelevant factor is not an occasional confounder and
thus is not a confounder.

3.3. Criterion
Researchers clearly take the concept of a uniformly irrelevant factor as the criterion for
screening out a confounder, but in practice they detect a confounder only under a special
categorization of a factor. The original idea of Miettinen and Cook's (1981) criterion does
not restrict a confounder to a particular categorization, and the criterion essentially aims at
the occasional confounder.

Theorem 1. C is a uniformly irrelevant factor if and only if

(a) C??E or
(b) D�e??CjE � �e:

Proof. For the proof of theorem 1, see Appendix A.

If a factor C satis®es (a) or (b) in theorem 1, controlling for it does not reduce confounding
no matter how C is categorized, and thus we have the following result.

Corollary 1. If C is an occasional confounder, then

(a) C 6??E and
(b) D�e 6??CjE � �e:

This analytically proves the criterion of Miettinen and Cook (1981) obtained inductively.
Consider again the example given in Section 3.1. The risk di�erences in Table 1 are
collapsible over groups of 10 years, while C satis®es Miettinen and Cook's criterion. It can be
seen from the example that C is an occasional confounder.
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4. Multiple potential confounders

In this section, we consider the extension of Miettinen and Cook's (1981) criterion to
situations with multiple potential confounders. Fisher and Patil (1974) and Greenland and
Robins (1986) realized that, if more than one factor is under consideration, Miettinen and
Cook's criterion should be applied conditionally on all the other factors.

Robins (1997) generalized Miettinen and Cook's criterion under the assumption that a
known set of potential confounders is su�cient for the control of confounding. Let C be a set
of potential confounders, S be a subset of C and R be the remainder subset, i.e. R � C\S.
Under the assumption that C is su�cient for the control of confounding (i.e. D�e??EjC),
Robins (1997) showed that, if R can be decomposed into disjoint subsets R1 and R2 such that
both

R1??EjS and R2??DEj(E, R1, S)

hold, then R can be deleted from the set of potential confounders, i.e. R is not a confounder
set. Greenland, Pearl and Robins (1999) pointed out that Robins's criterion requires both
of the above independences simultaneously, but that Miettinen and Cook's criterion only
requires one of two analogous independences.

We ®rst give several de®nitions of confounders and irrelevant factors for situations with
multiple potential confounders. Then, without Robins's (1997) assumption of a su�cient
covariate set for the control of confounding, we obtain two conditions for deleting R from
the set of potential confounders and potential occasional confounders, one of which is just
Robins's criterion.

Let DA be the set of all possible values of the covariate set A, and de®ne the stan-
dardization conditional on S � s by adjusting the distribution of A in the unexposed
population to that in the exposed population as

PA(D�e � 1jE � �e, S � s� � P
a2DA

P (D�e � 1jE � �e, A � a, S � s) P (A � ajE � e, S � s):

Similarly to the discussion in Sections 2 and 3, we give de®nitions of an irrelevant factor
and a confounder for situations with multiple potential confounders. We say that R is a
confounder set conditional on S � s if

jP (D�e � 1jE � e, S � s)ÿ PR(D�e � 1jE � �e, S � s)j < jBsj,

where Bs is the confounding bias in the subpopulation S � s.

De®nition 5. R is an irrelevant set conditional on S � s if

PR(D�e � 1jE � �e, S � s) � P (D�e � 1jE � �e, S � s):

An irrelevant set R is not a confounder set. An adjustment for R, PR(D�e � 1|E � �e, S � s),
cannot reduce confounding bias in the subpopulation S � s.

We say that R contains at least one occasional confounder conditional on S � s if there
are both a subset F � {F1, . . . , Fm} of R (i.e. F � R) and a partition pk � fxk1, . . . ,xkIkg,
k � 1, . . . ,m, of DFk

for each covariate Fk in F such that

jP (D�e � 1jE � e, S � s)ÿ PFp(D�e � 1jE � �e, S � s)j < jBsj,
where
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PFp (D�e � 1jE � �e, S � s) � P
x12p1

. . .
P

xm2pm

P (D�e � 1jE � �e, F1 2 x1, . . . , Fm 2 xm, S � s)

� P (F1 2 x1, . . . , Fm 2 xmjE � e, S � s):

De®nition 6. R is a uniformly irrelevant set conditional on S � s if

PFp(D�e � 1jE � �e, S � s) � P (D�e � 1jE � �e, S � s)

for any F � R and any partition pk of each Fk in F.

De®nitions 5 and 6 imply that a uniformly irrelevant set must be an irrelevant set and that
a uniformly irrelevant set does not contain any occasional confounders.

Theorem 2. If R can be decomposed into two disjoint subsets R1 and R2 such that either

(a) R1??EjS � s and R2??D�ej(E � �e,R1, S � s)

or

(b) R2??Ej(R1, S � s) and R1??D�ej(E � �e, S � s),

then R is an irrelevant set conditional on S � s and R1 is a uniformly irrelevant set
conditional on S � s.

Proof. For a proof of theorem 2 see Appendix B.

Both conditions (a) and (b) of theorem 2 are testable from data. If the set R satis®es either
of them, then we can delete R from the set of potential confounders and delete R1 from the set
of occasional confounders. Condition (a) is the same as Robins's (1997) criterion given
above. We further show that neither adjustment for a subset of R1 nor recategorization of
some covariates in R1 can reduce confounding bias.

The following result gives the necessary conditions for R to contain an occasional con-
founder.

Corollary 2. If R contains at least one occasional confounder conditional on S � s, then

R 6??EjS � s and R 6??D�ej(E � �e, S � s):

Proof. Suppose that R??EjS � s or R??D�ej(E � �e, S � s). From theorem 2 with R2 � [,
we know that R � R1 is a uniformly irrelevant set and thus does not contain any occasional
confounders conditional on S � s. (

From theorem 2, we can also obtain the following necessary conditions for a confounder set.

Corollary 3. If R is a confounder set conditional on S � s, then both

(a) R1 6??EjS � s or R2 6??D�ej(E � �e,R1, S � s)

and

(b) R2 6??Ej(R1, S � s) or R1 6??D�ej(E � �e, S � s),

for any possible decomposition R1 and R2 of R.

5. Concluding remarks

The criteria discussed in this paper are mainly concerned with the comparability-based
criterion of Miettinen and Cook (1981), but the de®nitions are general and can be used
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for both comparability-based and collapsibility-based approaches. Without the untestable
assumptions that are necessary for causal inference, confounders cannot be de®nitely
determined, but we can eliminate factors which are not confounders from the set of potential
confounders. Miettinen and Cook's criterion can be used to identify uniformly irrelevant
factors, whereas the collapsibility-based approach only identi®es irrelevant factors, which
may also be occasional confounders. The collapsibility-based approach is also commonly
employed in epidemiological studies. Miettinen and Cook (1981) and Greenland (1996)
showed by counter-example that non-confounding is neither necessary nor su�cient for
collapsibility of odds ratios or rate ratios. We are working towards a comparison of the
comparability- and the collapsibility-based criteria based on risk ratios and risk di�erences.
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Appendix A: Proof of theorem 1

To prove theorem 1, we ®rst show two lemmas.

Lemma 1. For any partition p � {x1 , . . . ,xs} of D

B �Ps
i�1

Bxi P (C 2 xijE � e)� ap,

where

ap �
Ps
i�1

P (D�e � 1jE � �e, C 2 xi){P (C 2 xijE � e)ÿ P (C 2 xijE � �e)}:

The proof of this lemma follows from simple manipulation.

Lemma 2. ap � 0 for any partition p of D if and only if C??E or D�e??CjE � �e.

Proof. For the su�ciency, it is immediately obtained that ap � 0 if C??E or D�e??CjE � �e.
For the necessity, let pk � {{k}, D\{k}} for any k 2 D. Rewrite apk as

P (D�e � 1jE � �e, C � k){P (C � kjE � e)ÿ P (C � kjE � �e)}

� P (D�e � 1jE � �e, C 2 Dn{k}){P (C 2 Dn{k}jE � e)ÿ P (C 2 Dn{k}jE � �e)}

� {P (D�e � 1jE � �e, C � k)ÿ P (D�e � 1jE � �e, C 2 Dn{k})}{P (C � kjE � e)ÿ P (C � kjE � �e)}:

For apk � 0, we obtain

(a) P(D�e � 1jE � �e,C 2 Dn{k}) � P(D�e � 1jE � �e,C � k) or
(b) P(C � kjE � �e) � P(C � kjE � e).

We rewrite result (a) as

P (D�e � 1, C 2 Dn{k}jE � �e)
P (C 2 Dn{k}jE � �e)

� P (D�e � 1, C � kjE � �e)
P (C � kjE � �e)

:

By denoting it as a/b � c/d, this equation is equivalent to (a+c)/(b+d) � c/d, i.e.
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P �D�e � 1jE � �e� � P (D�e � 1, C � kjE � �e)
P (C � kjE � �e)

:

Thus we obtain that result (a) is equivalent to

P (D�e � 1jE � �e) � P (D�e � 1jE � �e, C � k):

Let

x � P (D�e � 1jE � �e),

xk � P (D�e � 1jE � �e, C � k),

yk � P (C � kjE � e)ÿ P (C � kjE � �e):

Then the equivalent result to (a) or (b) can be rewritten as

(i) x � xk or
(ii) yk � 0

for all k 2 D.
If C 6?? E, then there exists k0 2 D, such that P(C � k0jE � �e) 6� P(C � k0jE � e) (i.e. yk0 6� 0).

Without loss of generality, assume that y1 6� 0; then x1 � x by results (i) and (ii). We prove below that
xk � x for all k.

When K � 2, y1 6� 0 implies that y2 6� 0 for y1 � )y2, and thus we obtain from results (i) and (ii) that
x1 � x2 � x. When K > 2, assume that xk 6� x for some k. Then yk � 0 by results (i) and (ii). Let
p¢k � {{1, k}, D\{1, k}}. Similarly to apk, we can rewrite ap0

k
as

{P (D�e � 1jE � �e, C 2 {1, k})ÿ P (D�e � 1jE � �e, C 2 Dn{1, k})}

� {P (C 2 {1, k}jE � e)ÿ P (C 2 {1, k}jE � �e)}:

Since ap0
k
� 0 and P(C 2 {1, k}jE � e)ÿ P(C 2 {1, k}jE � �e ) � y1 � yk � y1 6� 0, we obtain that

P(D�e � 1jE � �e,C 2 Dn{1, k}) � P(D�e � 1jE � �e,C 2 {1, k}). We have

P (D�e � 1jE � �e, C 2 Dn{1, k}) �

P
i2Dn{1, k}

P (D�e � 1jE � �e, C � i) P (C � ijE � �e)P
i2Dn{1, k}

P (C � ijE � �e)

�
xÿ P

i2{1, k}
P (D�e � 1jE � �e, C � i) P (C � ijE � �e)

1ÿ P
i2{1, k}

P (C � ijE � �e)

� xÿ x1z1 ÿ xkzk

1ÿ z1 ÿ zk
:

where zk � P(C � kjE � �e). Also

P (D�e � 1jE � �e, C 2 {1,k}) �

P
i2{1, k}

P (D�e � 1jE � �e, C � i) P (C � ijE � �e)P
i2{1, k}

P (C � ijE � �e)

� x1z1 � xkzk

z1 � zk
:

Thus we obtain

xÿ x1z1 ÿ xkzk

1ÿ z1 ÿ zk
� x1z1 � xkzk

z1 � zk
:
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For x1 � x, we can show from this equation that xk � x, which contradicts the assumption of xk 6� x.
Thus we have proved that xk � x for all k, i.e. D�e??CjE � �e.

A.1. Proof of theorem 1
De®ne Bp � P(D�e � 1|E � e) ) Pp(D�e � 1|E � �e). Then we have

Bp �
Ps
i�1

Bxi P (C 2 xijE � e):

By lemma 1, we obtain B ) Bp � ap. From the de®nition of a uniformly irrelevant factor, we have that
C is a uniformly irrelevant factor if and only if ap � 0 for any p. From lemma 2, it is equivalent to

(a) C??E or
(b) D�e??CjE � �e.

Appendix B: Proof of theorem 2

We ®rst show that R is an irrelevant set conditional on S � s. By the de®nition of standardization, we
have

PR(D�e � 1jE � �e, S � s) � P
r12DR1

P
r22DR2

P (D�e � 1jE � �e, R1 � r1, R2 � r2, S � s)

� P (R2 � r2jE � e, R1 � r1, S � s) P (R1 � r1jE � e, S � s):

For condition (a), ®rst applying the second conditional independence and then the ®rst, we obtain

PR(D�e � 1jE � �e, S � s) � P
r12DR1

P (D�e � 1jE � �e, R1 � r1, S � s)

� P (R1 � r1jE � e, S � s) � P (D�e � 1jE � �e, S � s):

Similarly, the su�ciency of condition (b) can be shown by ®rst applying the ®rst conditional inde-
pendence and then applying the second.

Next we show that R1 is a uniformly irrelevant set conditional on S � s. For condition (a), we have
that R1??EjS � s implies F??EjS � s for any F � R1. Thus we obtain

PFp (D�e � 1jE � �e, S � s) � P
x12p1

. . .
P

xm2pm

P (D�e � 1jE � �e, F1 2 x1, . . . , Fm 2 xm, S � s)

� P (F1 2 x1, . . . , Fm 2 xmjE � �e, S � s) � P (D�e � 1jE � �e, S � s):

Similarly, the su�ciency of condition (b) can be obtained since R1??D�ej(E � �e, S � s) implies
F??D�ej(E � �e, S � s) for any F � R1. (
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