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Abstract

1 Exogeneity and Causal Language

In communicating with colleagues in econometrics, I am often asked how

concepts based on classical econometric models fit into modern vocabulary

of causal reasoning. One of the issues that is brought up in such discussions

is the notion of exogeneity, which seems to have played a major role in
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the history of econometric thought and which received a formal, albeit

problematic treatment in the classical paper of Engel, Hendry and Richard

(EHR) (Engle et al., 1983).

Since EHR’s paper is quoted in almost every advanced textbook in

econometrics, it is natural to ask whether the EHR concept of exogeneity,

especially its causal version called “super-exogeneity,” corresponds to an

analogous concept in the modern language of causal inference, particularly

the language of causal diagrams, do-calculus, structural models, potential

outcomes, and counterfactual logic (Pearl, 2009). The answer, of course, is

Yes, because causal models, to earn their title, must give precise definition

and characterization to any concept involving cause-effect relationships,

not to mention notions such as exogeneity, which have captured sustained

interest among econometricians for several decades.

There are problems however in translating the classical works of EHR

into modern vocabulary, stemming from profound conceptual differences as

to the role of models in econometric research, the causal interpretation of

such models, and the probabilistic rather than causal vocabulary that was

used to encode that interpretation.
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As one colleague wrote to me recently:

“I was struck by your observation that knowing the joint probability

distribution is not enough to dis-entangle the causal structure. I do

not think this is known to econometricians. Hendry’s methodology

makes the DGP (Data Generating Process) central to inference and

assumes that it contains all information possible – it is the holy

grail, as some critics have said.”

Indeed, the DGP used in the influential writings of Hendry and EHR

is defined as a parameterized set the joint distribution functions which

contains, presumably, all information needed for economic analysis, including

prediction, explanation and policy evaluation. It is hard to reconcile this

view with modern understanding of causation, according to which joint

distribution functions do not, and cannot, carry causal information, since

probabilistic relations are but descriptive epi-phenomena of the underlying

econometric model which, at its core, conveys counterfactual relationships

(Haavelmo, 1943, 1944; Balke and Pearl, 1994; Heckman, 2005; Pearl, 2000).

Not surprisingly, modern textbooks in econometrics tend to be cryptic

when discussing the implications of the EHR formulation and, while
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stressing the importance of the topic, they systematically evade the two core

questions that readers wish to ask:

1. What would we be able to do, infer, or conclude if told that variable X

is super-exogenous that we would not be able to do, infer, or conclude

if told that X is NOT super-exogenous?

2. Suppose someone gives us a completely specified econometric model with

all parameters given to 10 digits accuracy and nothing left to imagina-

tion; can one decide, given such a model, whether X is super-exogenous

or not? If so, how?

Before writing Causality (Pearl, 2000), I posed these two questions to many

econometricians and the answers received fell into two distinct categories:

1. The EHR paper is ambiguous and super-exogeneity no longer plays any

role in econometrics.

2. The EHR paper is one of the most important papers in econometrics,

but to answer your questions would take volumes to detail; it depends

on many conditions not all are encoded in the model.

In short, those who thought that super-exogeneity is an important
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concept could not bring themselves to tell me why, or how to discern it,

even given a fully specified econometric model (namely, an oracle for all

econometric questions, in which all conditions, including Lucas critics and

rational expectations are already encoded).

Encouraged by Ed Leamer, I wrote a brief section on exogeneity in my

book (Pearl, 2000, pp. 165–8, 246), and I argue that super-exogeneity is none

other but the “back-door” criterion of non-confoundedness which generates

the classical requirement that X be independent of all error terms affecting

Y . (This independence is named “strong ignorability” in the language of

potential outcomes (Rubin, 1974).) Therefore, super-exogeneity can be

determined from the model by inspection, and be given a simple formula

and a simple experimental test:

P (y|do(x)) = P (y|x) (1)

In words, the probability of Y = y under experimental conditions where X

is held constant at X = x is equal to the conditional probability P (y|x) that

one estimates in observational studies by regressing Y on X .

This raises the question whether the EHR paper of 1983 (which is one

of the most cited articles in econometrics, with 1,189 citations according to
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Google Scholar) could not have been reduced to a couple of pages, given

modern vocabulary and modern interpretation of structural equations. I

further argued in that section that the definition given by EHR is flawed, in

that it does not distinguish between structural and statistical parameters

(Pearl, 2009, p. 167). Although no economist has thus far objected to my

critics, it is hard to know whether this indicates agreement or confusion; the

latter seems more likely, given the schism in which the field currently finds

itself (e.g., (Pearl, 2009, pp. 171, 379–80; Pearl, 2010; Hoover, 2004).

In this paper I will first provide a brief account of the ambiguities in the

definition and interpretation of EHR’s conceptualization of exogeneity and

then attempt to remove those ambiguities and position exogeneity in the

framework of modern theories of causation.

2 Ambiguities in the understandings of super-

exogeneity

Hendry and Santos (2006) summarize the essence of exogeneity thus:

“super-exogeneity of the parameters of conditional models under changes

in the distributions of conditioning variables is of paramount importance.”
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This summary casts exogeneity as a relationship between two mathematical

objects, a “conditional model” and a “distribution of conditioning variables.”

Super-exogeneity is said to exist when the parameters of the former remain

invariant to changes in the latter. This conception, variants of which appear

in all discussions of exogeneity, highlights four basic ambiguities.

1. What is a “conditional model”? Is it the conditional distribution P (y|x)?

Is it the post-intervention distribution P (y|do(x)) or the structural equa-

tion y = f(x, ε)? As is well known to modern students of causality, the

three entities carry different types of information, of increasing level of

details.

2. What are the “parameters” of the a “conditional model”? For example,

is P (Y = 1|X = 0) a parameter of the conditional model? Would

the conditional expectation E(Y |x) or the conditional variance E(Y 2|x)

qualify as parameters of the conditional model?

3. What kind of “changes in the distributions of conditioning variables”

should we consider when testing exogeneity? Should we consider “changes

due to new observations”? or merely changes due to external inter-

vention? or perhaps all kind of changes, including a complete model
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restructuring?

4. Regardless of the answers to 1-3, how are we to test for invariance be-

tween the conditional and marginal model? Specifically, can we achieve

invariance by a clever re-parameterization of the model? If so, which

parametric representation is the correct one?

Many of these ambiguities could have been avoided had the DGP been

defined in structural, rather than probabilistic vocabulary. Interestingly,

four years after the publication of EHR’s paper, Hendry (1987) made one

overture in this direction and equated the DGP with the structural equation

y = zβ + ε, which he describes as “a Monte Carlo experiment conducted for

correct specifications.” Unfortunately, he quickly abandoned this approach

(ibid p. 32) in favor of a conditional density description, saying: “Denote

the DGP of all relevant economics variables {xi} by D(XT |X0; θT ).”

The structural description has since disappeared from all subsequent

writings on exogeneity. For example, in Hendry (2004) we find: “the

joint density Dw(w|Ft − 1, λ) is the data generation process (DGP).” And

in Hendry and Santos (2006) we find again DGP defined as a sequential

decomposition of joint density.
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The inevitable confusion that probabilistic vocabulary induces has been

particularly pronounced in econometric textbooks. For example, in the

highly popular textbook by Greene (2003) (to which Google Scholar ascribes

over 30,000 citations) we find the following quotes:

1. “exogeneity is an assumption in regression.”

2. “what constitutes an ‘exogenous’ variable becomes ambiguous.” p. 591.

3. “exogeneity is not an absolute concept at all; it is defined in the context

of the model.”

4. “we define a variable as exogenous in the context of our model if the joint

density may be written f(y, x) = f(y|β, x)f(θ, x) where the parameters

in the conditional distribution do not appear in and are functionally

unrelated to those in the marginal distribution of x.”

The dangers of relying on syntactical criteria such as parameters

“appearing” or “not appearing” in distributions are exemplified in Pearl

(2000, p. 168). But the dangers of expecting causal notions such exogeneity

to emerge from probabilistic definitions are more subtle.
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3 new section 3

To witness, consider a joint distribution P (x, y) defined for binary variables

X and Y . The natural parameterization of P (x, y) would be in terms of the

four parameter vector

p = (p00, p10, p01, p11) (2)

where

pij =P (X = i, Y = j) i, j = 0, 1 (3)

using the parameterization, we have the decomposition:

P (x, y) = P (x)P (y|x)

P (x) =























p00 + p01 x = 0

p10 + p11 x = 1

(4)

P (y|x) =































































p00

p00 + p01
x = 0 y = 0

p01

p00 + p01
x = 0 y = 1

p10

p10 + p11
x = 1 y = 0

p11

p10 + p11
x = 1 y = 0

(5)
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We see that every parameter that appears in p(y|x) also appears in

P (x). Therefore, taking literally the criterion that “the parameters in the

conditional distribution do not appear in and are functionally unrelated

to those in the marginal distribution of x ′′ would behoove us to conclude

that no variable could possibly be deemed exogenous relative to another.

Obviously, some restrictions be imposed on the choice of parameters as well

as on what we mean by “parameters of a distribution appearing in another

distribution,” or “functionally related” to other parameters.

Indeed if we choose to describe p(x, y) using the following parameteriza-

tion:

q = (q1, q01, q11) (6)
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where

P (x; q) =























1 − q1 x = 0

q1 x = 1

(7)

P (y|x; q) =































































1 − q01 x = 0, y = 0

q01 x = 0, y = 1

1 − q11 x = 1, y = 0

q11 x = 1, y = 1

(8)

We see that non of the parameters in the conditional distribution appears in

the marginal distribution of X , and we might be tempted to conclude that

every variable X is exogenous relative to any other.

Perhaps this is what Green meant by stating: “exogeneity is not a

absolute concept at all, it is defined in the context of the model.” On the

other hand, it is inconceivable that exogeneity, a concept deemed important

for estimation and decision, would be so utterly sensitive to notation.

After all, whether we can conduct inference ignoring P (x) without loss of

information is an objective empirical question and cannot be dependent, as

Green states, on “the context of the model.”
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To witness, there are features of P (x, y) that are invariant to choice

of parameters. For example, regardless of whether we choose to describe

P (x, y) using p (Eq. 5) or q (Eq. 6) the fact remains that knowledge of P (x)

is unneeded for estimating the ratio η =
p00p11

p01p10
, and is needed for estimating

the ratio η′ =
p00p01

p11p10
.1

The fact also remains that this basic distinction between η and η′

cannot be revealed by simple syntactic means such as testing whether “the

parameters in the conditional distribution do not appear in the marginal

distribution.” We will now define this notion of invariant formally.

Let p = (p1, p2, . . . , pn) be a vector of parameters that specifies the joint

density P (u) and let q = (q1, q2, . . . , qk) be the vector of parameter that

specifies the conditional probability P (y|x). Clearly q = f(p). Assume we

are interested in a parameter η of the P (v). Define X to be exogenous

relative to η, if ∃ a function g such that y = g(q), or, in other words, for any

p and p ′,

f(p) = f(p ′) ⇒ η(p) = η(p ′)

1This can be verified by noting that η =
(1 − q01)q11

(1 − q11q01)
while η′ =

(1 − q01)(q01)(1 − p1)

(1 − q11)q11P
2

1

; the latter depends

on p1 = P (X = 1), the former does not.
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Conversely, X is not exogenous for η if ∃ two vectors, p and p ′, such that

f(p) = f(p ′) yet η(p) 6= η(p ′).

To illustrate this latter criterion, we show that, in the binary example of

Eq. (2), X is not exogenous for η′ =
p00p01

p10p11

Consider two models

p = (p00, p01, p10, p11)

p ′ = (p ′
00, p

′
01, p

′
10, p

′
11)

f(p) = (q1(p), q01(p), q11(p))

= ((p10 + p11),
p01

p01 + p00
,

p11

p11 + p10

such that q1(p) 6= q1(p
′), q01(p) = q01(p

′), q11(p) = q11(p
′)

p10 + p11 6= p ′
10 + p ′

11,
p01

p01 + p00
=

p ′
01

p ′
01 + p ′

00

p11

p11 + p10
=

p ′
11

p ′
11

p ′
10

take p11 + p10 =
1

2
(p ′

11 + p10) ⇒ p01 + p00 = 1 − p11 − p10 = 1 −
1

2
(p ′

11 + p ′
10)

= 1 −
1

2
(1 − p ′

00 − p ′
01) =

1

2
+

1

2
(p ′

00 + p ′
01)

but
p01

p01 + p00
=

p ′
01

p ′
01 + p ′

00

and
p11

p11 + p10
=

p ′
11

p ′
11 + p ′

10

This will mark q = (q01, q11) = (q′01, q
′
11) while y(p) 6= y(p ′)
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4 Disambiguating EHR exogeneity

EHR attempt to define exogeneity in term of invariance of the conditional

probability P (y|x) to changes in the process generating X is rest on healthy

intuition, it is encapsulated indeed in Eq. (1), using the extreme case

where the process generating X reduces to holding X constant at X = x.

However, this definition invokes a specific intervention do(X = x), which

requires a causal model for its definition. EHR program prefers to define

things in terms of marginal and conditional probabilities, seemingly with no

underlying causal model, and thus requires a thorough disambiguation of

terms such as ”the parameters of the marginal and conditional distribution,”

“invariant to change in the marginal distribution.”

The following constitutes an explication of these terms.

Let Mλ be a model indexed by a vector λ of parameters λ = (λ1, λ2, ..., λn).

We leave the precise representation of Mλ open at this point and require

only that Mλ be sufficiently powerful to specify, for each λ, a complete

probability function PMλ
(v) on the variables of interest. Now consider any

property η of PMλ
(v) (say, the mean EMλ

(X), variance EMλ
(X − E(X))2,
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or the conditional probability PMλ
(y|x)) which we write as η[PMλ

(v)]. To

capture the notion of “parameters of the marginal distribution P (x), we

define the indexical projection of η, J(η), to be the (unique) subset of indices

J(η) ∈ {1, 2, 3, . . . , n}

such that, for any two vectors λ′ and λ′′ we have

η[PMλ′
(v)] = η[PMλ′′

(v)]

whenever λi = λ′′
i ∀ i ∈ J(η). In words, we say that a subset {λi|i ∈ J(η)}

of parameters “determines” η if any two models that agree on this set

also generate the same η. The rational is clear; the other parameters are

redundant, they are not needed for the determination of η.

We are now ready to define the notion of “invariance” between two

quantities, η′ and η′′, which we will later apply to explicate the invariance of

the conditional density P (y|x) to changes in the marginal P (x).

To this end, we need to define the preliminary notion of “image.”

Definition 1 (Image)

We say that model Mλ′ is an image of model Mλ′′ relative to η, just in case

λ′
i = λ′′

i ∀ i ∈ J(η).
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In words, Mλ′ and Mλ′′ may differ only in parameters that determine η.

Intuitively, if some of the parameters that determine η change, any image of

Mλ′ can be considered “closest” model to Mλ′ in the sense or retaining the

original values of all parameters that do not determine η.

We now define invariance

Definition 2 (Invariance)

We say that η′(P ) is invariant to changes in η′′(P ) iff

η′[PMλ′
] = η′[PMλ′′

]

whenever Mλ′ is an image of Mλ′′

Note: Invariance is not a symmetric relation, i,e,. the marginal P (x) is

usually invariant to the conditional P (y|x), but not vice versa.

Example 1
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