

Context Attentive Document Ranking and Query Suggestion

Wasi Uddin Ahmad University of California, Los Angeles Kai-Wei Chang University of California, Los Angeles

Hongning Wang University of Virginia

https://github.com/wasiahmad/context attentive ir

Codes will be released soon!

Search Logs Provide Rich Context to Understand Users' Search Tasks

	5/29/2012					
	5/29/2012 14:06:04	coney island cincinnati				
	5/29/2012 14:11:49	sas				
K	5/29/2012 14:12:01	sas shoes	`			
ROME		5/30/2012				
PARIS PLA	5/30/2012 12:12:04	exit #72 and 275 lodging				
	5/30/2012 12:25:19	6pm.com				
K	5/30/2012 12:49:21	coupon for 6pm				
		5/31/2012				
	5/31/2012 19:40:38	motel 6 locations				
•	5/31/2012 19:45:04	hotels near coney island				

Clicks Further Enrich Context to Understand Users' Search Tasks

Our Proposal

- Attend on previous queries/clicks to perform retrieval tasks
- Learning to utilize context in multiple retrieval activities

Context Attentive
Ranking and Suggestion

A Context Attentive Solution

- A two-level hierarchical structure
- Task context embedding
 - Session-query and session-click encoders
 - Context attentive representations
- Multi-task Learning
 - Document Ranking
 - Query Suggestion

lower-level

Context Attentive Ranking and Suggestion

A Context Attentive Solution

- A two-level hierarchical structure
- Task context embedding
 - Session-query and session-click encoders
 - Context attentive representations
- Multi-task Learning
 - Document Ranking
 - Query Suggestion

A Context Attentive Solution

- A two-level hierarchical structure
- Task context embedding
 - Session-query and session-click encoders
 - Context attentive representations
- Multi-task Learning
 - Document Ranking
 - Query Suggestion

Context Attentive
Ranking and Suggestion

A Context Attentive Solution

- A two-level hierarchical structure
- Task context embedding
 - Session-query and session-click encoders
 - Context attentive representations
- Multi-task Learning
 - Document Ranking
 - Query Suggestion

Multi-task Learning Objective

Optimized via Regularized Multi-task Learning

Experiments

Data Source

- AOL search log − 13 weeks search log of ~650k users
 - Background set 5 weeks
 - Training set 6 weeks
 - Validation and Test set 2 weeks
- Aggregation of candidate documents for ranking
 - Candidates are sampled from the top 1000 documents retrieved by BM25 from a pool of 1M documents
- Task Segmentation
 - Averaging the query term vectors → Query embedding
 - Consecutive queries* with cosine similarity > 0.5

^{*} within 30 mins interval

Data Statistics

• Only the document titles are utilized in the experiments

Dataset Split	Train	Validation	Test
# Task	219,748	34,090	29,369
# Query	566,967	88,021	76,159
Average Task Length	2.58	2.58	2.59
Average Query Length	2.86	2.85	2.90
Average Document Length	7.27	7.29	7.08
Average # Click per Query	1.08	1.08	1.11

Evaluation Metrics and Baselines

- Document Ranking
 - Metrics MAP, MRR, NDCG@k (where k=1,3,10)
 - Baselines BM25, QL, FixInt, DSSM, DUET, MNSRF etc.
- Query Suggestion
 - Metrics MRR, F1, BLEU-k (where k=1,2,3,4)
 - Baselines HRED-qs, Seq2seq+Attn, MNSRF etc.

MRR – assesses discrimination ability, rank a list of candidate queries that might follow a given query

Evaluation Metrics and Baselines

- Document Ranking
 - Metrics MAP, MRR, NDCG@k (where k=1,3,10)
 - Baselines BM25, QL, FixInt, DSSM, DUET, MNSRF etc.
- Query Suggestion
 - Metrics MRR, F1, BLEU-k (where k=1,2,3,4)
 - Baselines HRED-qs, Seq2seq+Attn, MNSRF etc.

F1, BLEU-k – assesses generation ability, measures overlapping between the generated query term sequence and ground-truth sequence.

- Vocabulary gap limits the performance
- Do not utilize any search context information

Model	MAP	MRR	NDCG			
Model	IVIAI	WIKK	@1	@3	@10	
Traditional IR-mo	dels					
BM25	0.230	0.206	0.206	0.269	0.319	
QL	0.195	0.166	0.166	0.213	0.276	
Single-task Learni	ng					
CDSSM	0.313	0.341	0.205	0.252	0.373	
DUET	0.479	0.490	0.332	0.462	0.546	
Match Tensor	0.481	0.501	0.345	0.472	0.555	
Multi-task Learnin	ng					
M-NSRF	0.491	0.502	0.348	0.474	0.557	
M-Match Tensor	0.505	0.518	0.368	0.491	0.567	
CARS	0.531	0.542	0.391	0.517	0.596	

- Do not utilize any search context information

Model	MAP	MRR	NDCG					
	1017 11	WIKK	@1	@3	@10			
Traditional IR-mo	dels							
BM25	0.230	0.206	0.206	0.269	0.319			
QL	0.195	0.166	0.166	0.213	0.276			
Single-task Learni	Single-task Learning							
CDSSM	0.313	0.341	0.205	0.252	0.373			
DUET	0.479	0.490	0.332	0.462	0.546			
Match Tensor	0.481	0.501	0.345	0.472	0.555			
Multi-task Learnin	ng							
M-NSRF	0.491	0.502	0.348	0.474	0.557			
M-Match Tensor	0.505	0.518	0.368	0.491	0.567			
CARS	0.531	0.542	0.391	0.517	0.596			

- + Jointly learns ranking and suggestion
- Utilizes query history but no click history

Model	MAP	MRR	NDCG				
Model	IVIAI	MIKK	@1	@3	@10		
Traditional IR-mo	dels						
BM25	0.230	0.206	0.206	0.269	0.319		
QL	0.195	0.166	0.166	0.213	0.276		
Single-task Learning							
CDSSM	0.313	0.341	0.205	0.252	0.373		
DUET	0.479	0.490	0.332	0.462	0.546		
Match Tensor	0.481	0.501	0.345	0.472	0.555		
Multi-task Learnin	ng						
M-NSRF	0.491	0.502	0.348	0.474	0.557		
M-Match Tensor	0.505	0.518	0.368	0.491	0.567		
CARS	0.531	0.542	0.391	0.517	0.596		

- + Jointly learns ranking and suggestion
- + *Utilizes both query and click history*

Model	MAP	MRR	NDCG						
	IVIAI	VIKK	@1	@3	@10				
Traditional IR-mo	dels								
BM25	0.230	0.206	0.206	0.269	0.319				
QL	0.195	0.166	0.166	0.213	0.276				
Single-task Learni	ng								
CDSSM	0.313	0.341	0.205	0.252	0.373				
DUET	0.479	0.490	0.332	0.462	0.546				
Match Tensor	0.481	0.501	0.345	0.472	0.555				
Multi-task Learnin	Multi-task Learning								
M-NSRF	0.491	0.502	0.348	0.474	0.557				
M-Match Tensor	0.505	0.518	0.368	0.491	0.567				
CARS	0.531	0.542	0.391	0.517	0.596				

Evaluation on Query Suggestion

Model	MRR	F1	BLEU			
Model	WIKK	1 1	1	2	3	4
Single-task Learni	ng					
Seq2seq	0.422	0.077	8.5	0.0	0.0	0.0
Seq2seq + Attn.	0.596	0.555	52.5	30.7	18.8	11.4
HRED-qs	0.576	0.522	48.8	26.3	15.3	9.2
Multi-task Learnii	ng					
M-Match Tensor	0.551	0.458	41.5	20.6	11.5	7.0
M-NSRF	0.582	0.522	49.7	26.7	16.0	9.9
CARS	0.614	0.589	55.6	36.2	25.6	19.1

Do not utilize any context

Evaluation on Query Suggestion

Model	MRR	F1	F1		BLEU		
	WIKK	11	1	2	3	4	
Single-task Learni	ng						
Seq2seq	0.422	0.077	8.5	0.0	0.0	0.0	
Seq2seq + Attn.	0.596	0.555	52.5	30.7	18.8	11.4	
HRED-qs	0.576	0.522	48.8	26.3	15.3	9.2	
Multi-task Learnii	ıg						
M-Match Tensor	0.551	0.458	41.5	20.6	11.5	7.0	
M-NSRF	0.582	0.522	49.7	26.7	16.0	9.9	
CARS	0.614	0.589	55.6	36.2	25.6	19.1	

Do not utilize click history

Evaluation on Query Suggestion

Model	MRR F1		BLEU			
	WIKI	1.1	1	2	3	4
Single-task Learni	ng					
Seq2seq	0.422	0.077	8.5	0.0	0.0	0.0
Seq2seq + Attn.	0.596	0.555	52.5	30.7	18.8	11.4
HRED-qs	0.576	0.522	48.8	26.3	15.3	9.2
Multi-task Learnin	ng					
M-Match Tensor	0.551	0.458	41.5	20.6	11.5	7.0
M-NSRF	0.582	0.522	49.7	26.7	16.0	9.9
CARS	0.614	0.589	55.6	36.2	25.6	19.1

+ Utilizes both in-task query and click history

Ablation Study

- Modeling search context is beneficial
- Joint learning of related retrieval tasks results in improvements

CARS Variant		NDCG	BLEU		
	@1	@1 @3 @10 1 .391 0.517 0.596 55.6 387* 0.515* 0.594* 48.6* ontext .379 0.505 0.586 33.7* .356 0.485 0.568 48.2* cning	2		
CARS	0.391	0.517	0.596	55.6	36.2
CARS w/o Attn.	0.387^{*}	0.515*	0.594*	48.6*	26.1*
Ablation on search	n context				
w/o Session Query	0.379	0.505	0.586	33.7*	14.2*
w/o Session Click	0.356	0.485	0.568	48.2*	25.6*
Ablation on joint l	earning				
w/o Recommender	0.379	0.505	0.585	_	_
w/o Ranker	-	_	_	55.9	36.9

^{*} indicates that the attention in the query recommender

Ablation Study

- Modeling search context is beneficial
- Joint learning of related retrieval tasks results in improvements

NIDOO

DIET

CARS Variant	NDCG			BLEU				
CARS variant	@1	@3	@10	1	2			
CARS	0.391	0.517	0.596	55.6	36.2			
CARS w/o Attn.	0.387^{*}	0.515*	0.594*	48.6*	26.1*			
Ablation on search context								
w/o Session Query	0.379	0.505	0.586	33.7*	14.2*			
w/o Session Click	0.356	0.485	0.568	48.2*	25.6*			
Ablation on joint l	learning							
w/o Recommender	0.379	0.505	0.585	-	-			
w/o Ranker	-	_	_	55.9	36.9			

Performance drops

^{*} indicates that the attention in the query recommender

Ablation Study

- Modeling search context is beneficial
- Joint learning of related retrieval tasks results in improvements

CARS Variant		NDCG		BLEU	
CARS Variant	@1	@3	@10	1	2
CARS	0.391	0.517	0.596	55.6	36.2
CARS w/o Attn.	0.387*	0.515*	0.594*	48.6*	26.1*
Ablation on search	n context				
w/o Session Query	0.379	0.505	0.586	33.7*	14.2*
w/o Session Click	0.356	0.485	0.568	48.2*	25.6*
Ablation on joint l	learning				
w/o Recommender	0.379	0.505	0.585	-	-
w/o Ranker	-	_	_	55.9	36.9

^{*} indicates that the attention in the query recommender

Effect of Context Modeling

Hypothesis – longer tasks are intrinsically more difficult.

Effect of Context Modeling

- Context information helps more on short/medium tasks
- Longer tasks are intrinsically more difficult.

Sample Complexity

In terms of #parameters, CARS > MNSRF > M-Match Tensor

Case Analysis

How in-task previous queries and clicks impact

predicting the next query and click for it?

0.6 0.5 0.4

0.6

Conclusion & Future Works

- A task-based approach of learning search context
 - Exploiting users' on-task search query and click sequence
 - Jointly optimized on two companion retrieval tasks

Future works

- Modeling across-task relatedness, e.g., users' long-term search interest
- Apply to any scenario where a user sequentially interacts with a system

Codes will be released soon!

Thank You! Q&A

In-task Context: a richer way to understand users' search intent

