A Robust Data Delivery Protocol for Large
Scale Sensor Networks

Fan Ye, Gary Zhong, Songwu Lu, Lixia Zhang

Computer Science Department, University of California
Los Angeles, CA 90095

{yefan, gzhong, slu, lixia}@cs.ucla.edu

Abstract. Recent technology advances in low-cost, low-power chip de-
signs have made feasible the deployment of large-scale sensor networks.
Although data forwarding has been among the first set of issues explored
in sensor networking, how to reliably deliver sensing data through a vast
field of small, vulnerable sensors remains a research challenge. In this pa-
per we present GRAdient Broadcast (GRAB), a new set of mechanisms
and protocols which is designed specifically for robust data delivery in
spite of unreliable nodes and fallible wireless links. Similar to previous
work [1], GRAB builds and maintains a cost field, providing each sensor
in the network the direction to forward sensing data. Different from all
the existing approaches, however, GRAB forwards data along an inter-
leaved mesh from each source to the receiver. The width of the forwarding
mesh is controlled by the amount of credit carried in each data message,
allowing the degree of delivery robustness to be adjusted by the sender.
GRAB design harnesses the advantage of large scale and relies on the col-
lective efforts of multiple nodes to deliver data, without dependency on
any individual ones. As demonstrated in our extensive simulation exper-
iments, GRAB can successfully deliver above 90% of data with relatively
low energy cost even under adverse conditions of up to 30% node failures
compounded with 15% link packet losses.

1 Introduction

Recent technology advances in low-cost, low-power chip designs have made it
economically feasible to deploy large-scale sensor networks. Thousands or even
millions of small, inexpensive, and low-power sensors, such as Berkeley Motes|[2],
can be quickly deployed to monitor a vast field. The sensors collectively sense the
environment and deliver the sensing data via a wireless channel. In near future
such sensor networks may play an important role in both civil applications such
as agriculture as well as disaster recovery and military surveillance. On the other
hand, the above mentioned potential applications also present great challenges
to reliable sensing data delivery. Wireless communications among the small,
power-limited sensor nodes are prone to errors. Severe operational conditions
(e.g. strong wind or high temperature) and disasters (e.g. fire or earthquake)
may easily destroy individual sensors, resulting in a constantly changing topol-
ogy. Furthermore, the short transmission range of small sensors also means that

sensing data may travel through a large number of hops to reach intended des-
tinations, with potential delivery errors and unexpected node failures at each
hop.

In this paper we propose GRAdient Broadcast (GRAB) to address the prob-
lem of robust data forwarding to a data collecting point (called the sink) using
unreliable sensor nodes with error-prone wireless links. The objects or events to
be monitored are called stimuli. All the sensor nodes that detect the same stimu-
lus collectively select the one with strongest sensing signal to generate a sensing
report. We call such a node a data source. Although several data forwarding
protocols have been designed for sensor networks, such as Directed Diffusion [3]
and TTDD [4], they typically assume a relatively stable sensor network where
nodes do not fail frequently and unexpectedly.

GRAB achieves robust data delivery through building and maintaining a
cost field for the sink. Each node keeps a cost for forwarding a packet along
a certain path to the sink. Nodes “closer” to the sink have smaller costs. A
packet can follow the direction of decreasing cost to reach the sink. In stead of a
sender appoints which receivers to continue forwarding, GRAB lets each receiver
decides whether it should forward by comparing its cost to that of the sender.
Multiple such paths exist between a source and the sink.

To further control the redundancy of the multiple paths, a source assigns a
credit to the packets it sends out. The credit is some extra budget that allows
multiple copies of a packet be forwarded over a mesh of interleaved paths, each
of which has a cost not greater than the total budget. The amount of credit
determines the “width” of the mesh, thus the degree of robustness and overhead.

GRARB design harnesses the advantage of large scale. It achieves system ro-
bustness by relying on collective efforts from multiple sensors without depen-
dency on any individual ones. A packet is forwarded over multiple paths, which
improves reliability. Such paths interleave and recover each other from node fail-
ures or link errors, further increasing robustness. Since it is the receivers, not
the sender that decide which nodes should forward, a sender merely broadcasts
a packet without worrying repairing failed nodes or broken links. The packet
is delivered to the sink by those surviving nodes. This receiver-based design
eliminates the overhead of repairing paths of failed nodes or broken links. The
credit provides a means to trade off between robustness and total cost. A source
can assign a credit that achieves required robustness without causing excessive
redundancy.

The rest of the paper is organized as follows: We present the design of GRAB
in Section 2. Then we evaluate its performance in Section 3. We discuss future
work to GRAB in Section 4. In Section 5, we first describe the differences between
GRAB and existing work in sensor networking area, then report our performance
comparison study of GRAB with an existing protocol [3]. Section 6 concludes
the paper.

2 GRAB Data Forwarding Protocol

2.1 Design Overview

In this paper we assume the following sensor network model: Large numbers of
small, stationary sensor nodes are densely deployed over a field. A stimulus is
detected by multiple nearby sensor nodes for reliable sensing. Nodes are equipped
with CSMA MACs. The lack of RTS/CTS/ACK makes packets more easily
lost than those sent with 802.11 DCF. External noises and disturbances may
further exacerbate the condition. Sensor nodes fail unpredictably due to the
harsh environment. Nodes can tune their transmitting powers to control how
far the transmission may reach. Such power adjustments save energy and reduce
collisions whenever possible . We use an example of one sink and one stimulus
to illustrate how GRAB works.

To collect data reports, the sink first builds a cost field by propagating ad-
vertisement (ADV) packets in the network. The cost at a node is the minimum
energy overhead to forward a packet from this node to the sink along a path.
We assume each node can estimate the cost of sending data to nearby neighbors.
The costs of all nodes in the network form the cost field?. If we imagine each
node be elevated to a height proportional to its cost, the whole cost field would
look like a funnel(see Figurel for a illustration): nodes “closer” to the sink have
smaller costs and are “lower”, while those “farther” away have greater costs and
are “higher”.

The cost field gives the global direction towards the sink implicitly. When a
node sends a packet, it does not designate which nodes are the next hop. It just
includes its own cost in the packet and broadcasts the packet. Only neighbors
with smaller costs may continue forwarding the packet. Neighbors with higher or
equal costs silently drop the packet because they are at the “wrong” direction.
Thus packets travel in a cost field like water flows down to the bottom of a
funnel: they follow the direction of decreasing cost to reach the bottom of the
cost field, which is the sink. The paths of decreasing cost interleave and form a
mesh.

The selection of the source follows the same mechanism. We want only one
node to generate the report since it would be a waste of resources if every node
detecting the stimulus sends a report. The stimulus creates a field of sensing
signal strength, the “shape” of which is similar to that of the cost field. Each
node broadcasts a message indicating its signal strength (with some random
delay to avoid collision). A node rebroadcasts its signal strength whenever it
hears a neighbor’s message with a weaker signal, but stops broadcasting when
it hears a stronger one. This way, messages roll towards the center of the signal
strength field. Finally the node with the strongest signal generates a report. We
call this node the Center of Stimulus (COS).

! Some existing hardware [2] already have different levels of transmitting power.

2 The cost may take different forms such as the hop number, the energy overhead or
even physical distance. The current energy form is meant to save the scarce energy
resources of nodes.

&
059505
& XKED
SRS 90200
SRR S
SIS S
Q.
"l

LTINS %
ARETNTRRRS et %Y y
RTINS N
IR ERERESEeEE S s % !)
LT SOOE eSS % :'o:"l;,';;ll Z
e Ox X .0 -0 O

2
U
7

o,

Fig. 1. The “shape” of the cost field is like a Fig. 2. The forwarding mesh starts from a

funnel, with the sink sitting at the bottom. source and ends at a sink. All black nodes

Packets follow the decreasing cost direction within the mesh participate data delivery

to reach the bottom of the cost field, which and forward the packet to the sink collec-

is the sink tively. Notice that some nodes outside of
the mesh also receive the packet but do not
forward it.

COS election and data forwarding utilize the same concept of a funnel-shaped
field. The differences are: The signal strength field already exists in the physical
world, whereas the cost field is an artifact created by the sink; nodes farther
to the stimulus have weaker signals, but nodes farther to the sink have greater
costs; when a stimulus is detected, data come from all directions to the center,
but for forwarding, they come only from the direction of the source.

After the cost field is built, we want to limit the “width” of the forwarding
mesh. Otherwise the packet would follow every possible path of decreasing cost,
creating excessive redundancy and wasting resources. Ideally, the mesh starts
at the source and expands to a certain width quickly, then it keeps the width
while going towards the sink until finally it reaches the sink (see Figure 2 for an
example). The width of the forwarding mesh determines the robustness of data
forwarding.

To control the “width”, a source assigns a credit « to the packets it sends out.
The credit is some extra budget that can be consumed to forward the packet.
The sum of the credit and the source’ cost (i.e., &+ Csouree) is the total budget
that can be used to send a packet to the sink along a path. A packet can take
any path that requires a cost less than or equal to, but not beyond the total
budget.

The amount of credit controls the redundancy of the mesh flexibly. If there is
no credit, the packet can only be forwarded along the single minimum cost path
of the source; when more credit is added to increase the budget, more paths are
available to deliver the packet. Such paths surround the minimum cost path and
form the forwarding mesh dynamically through the combined effect of the cost
field and the credit value carried in each packet.

A final point we would like to make before presenting the design is the number
of sources and sinks the GRAB design can support. To simplify the presentation
we use a simple model of one stationary source (COS) and one stationary sink.
However we point out that the GRAB supports data forwarding from multiple,
mobile stimuli as well. When a stimulus, such as a tank, moves through the
field, a different COS sensor is elected to generate the report; the old COS node
stops reporting automatically because it finds itself no longer at the center of the
stimulus. For multiple stimuli multiple COS’s are elected. The exact details of
COS election are not presented in this paper, which focuses on data forwarding.

In the rest of this section, we give a brief summary in Section 2.2 about an
algorithm proposed in a previous work [5] to build the cost field efficiently. Then
we present the GRAB forwarding algorithm in Section 2.3.

2.2 Building and Maintaining the Cost Field

The cost field can be built in the following straightforward way. A sink broadcasts
an advertisement packet (ADV) announcing a cost of 0. Each node initially has a
cost of oc. When hearing an ADV packet containing the cost of the sender, a node
obtains a cost by adding the link cost to the cost of the sender. It compares this
cost to its old one and sets the new cost as the smaller of the two. Whenever
it obtains a cost smaller than the old one, it also broadcasts an ADV packet
containing the new cost. The “rippling” of ADV packets from the sink outwards
builds the cost field for the sink?.

The problem with the above method is excessive ADV messages, which pre-
vent it from scaling to large numbers of nodes. Before a node settles with the
minimum cost, it may hear many ADV packets, each of which results in a smaller
cost than the previous one. Thus the node broadcasts many ADV packets. To
build the cost field in a scalable manner, we proposed a waiting algorithm in [5]
and proved that the waiting algorithm ensures each node broadcasts only once,
and with its minimum cost.

The value of a node’s cost depends on the topology. The topology changes
as nodes fail, exhaust energy, or new nodes are deployed. The initially built cost
field thus becomes inaccurate. Although the GRAB forwarding protocol is highly
robust against inaccuracies in cost field (we will see that in Section 3), the cost
field should be refreshed on time to keep the forwarding efficient.

To avoid the overhead of periodic refreshing, we choose an event-driven de-
sign. The sink keeps a profile about the recent history of data reports from the
source. It includes the success ratio (packets are numbered so a sink can calcu-
late success ratio), the average consumed budget, the average number of copies
received per packet and the average number of hops traveled for recent reports.
Once a new packet is received, the sink compares the parameters of the packet
to those in the past. If a parameter differs from its past by a certain threshold,

® This is originally how GRAB gets its name. “Cradient” stands for the cost, the
broadcast of gradients builds the cost field. Notice that although the same word is
used, the “gradient” here is completely different from that in [3]

the sink broadcasts a new ADV packet to rebuild the cost field. Due to space
limit, more details are in a technical report][6].

The rationale behind the event-driven refreshing is that topology changes
bring variations in data delivery. By monitoring certain parameters which reflect
the quality of data delivery, we can tell how much change has happened. Only
major changes that make the data delivery deteriorate beyond acceptable levels
trigger refreshings. The forwarding algorithm itself is robust enough to withstand
significant amount of minor changes, which will be shown in Section 3.

Before we proceed to the forwarding algorithm, we want to point out that [5]
solves only the problem of building the cost field. It does not address robust data
delivery with unreliable sensor nodes, which is the centerpiece of this paper.

2.3 Realizing a Robust Forwarding Mesh by the Credit

This section describes how to build a forwarding mesh by the credit. To realize
the mesh we need to address three issues.

Issues in Realizing the Mesh First, how to expand the mesh quickly starting
from the source. To be robust, the mesh should be wide enough to contain
sufficient parallel nodes (paths). When there are node failures or packet losses,
a sufficient width ensures some nodes can still deliver packets successfully to the
next hop. Since there is only one node (the source) at the first hop, we need to
expand the mesh to a sufficient width quickly. Otherwise, the delivery can fail
before the mesh is wide enough.

Second, after the mesh has expanded sufficiently, how to maintain the width.
Due to node failures and packet losses, the number of parallel nodes that forward
a packet tend to decrease from one hop to the next. A failed node or a node that
does not receive the packet can reduce the number of parallel forwarding nodes.
If no measure is taken to counteract this tendency, the mesh can narrow down
later.

Finally, how to prevent packets from traveling along some devious paths or
diverting too much from the direction of the sink. For any sender, roughly half
of its neighbors have smaller costs. If all such directions of decreasing costs are
followed, the forwarding could diffuse into a sector-shape, in which many packets
divert significantly from the direction of the sink. We want to stop packets from
following such diverting paths.

Solutions to the Issues To address the first two issues, we divide the total
amount of credit among different hops in the right way. Specifically, we want
beginning hops to consume larger shares of the credit, while later hops consume
some, but smaller shares of the credit. This is because the share of credit a
node receives decides whether it can expand the mesh. If a node does not have
any “bonus” to use but has only a budget equal to its cost, it should reach
only its next hop neighbor on the minimum cost path, without expanding the
mesh. When a node has some “bonus” (credit) to use, it can consume more

budget, reaching more receivers and expanding the mesh. Beginning hops use
more credit to expand the mesh quickly while later hops do not need as much
credit because they do not need to expand the mesh. However, they should also
receive certain credit to maintain the width. Otherwise node failures and packet
losses can “narrow down” the mesh.

Now, how to solve the last issue? If a packet has been traveling on a quite
devious path, or divert from the direction of the sink too much, it would con-
sume much credit, without traveling proportionately close towards the sink. An
analogy to this is spending most of a month’s budget in a few days. Thus by com-
paring the remaining credit to how far it still ahead we can detect and terminate
such packets.

To calculate the remaining credit, we let each packet carry certain informa-
tion, so a node can first calculate how much credit has been consumed. To tell
how “far” a node is to the sink, it uses a threshold function, whose value tells the
relative “position” of this node between the source and the sink. By comparing
the remaining credit to the threshold value, we can tell if the packet has already
consumed too much credit, or there is still enough to use. We choose the format
of the threshold function such that it achieves desired division of credit among
different hops, solving the first two issues (an analysis will be shown later). We
first explain what are carried in a packet, then present the detailed forwarding
algorithm.

The Forwarding Algorithm A packet carries the following fields:

— a: the amount of credit assigned to the packet at the source. A node needs
it to calculate how much credit remains. This field does not change as the
packet travels towards the sink.

— Csource: the cost of the source to send a packet to the sink. It is used to
calculate the threshold. This field does not change at different hops, either.

— Peonsumed: the amount of budget that has been consumed from the source
to the current hop. It is set to the cost used by the source to broadcast the
packet initially and increased by the amount used to forward the packet at
each hop.

After a COS assigns an « to a data report, it fills the above three fields and
broadcasts the packet. To prevent loops, only receivers with smaller costs may
forward the packet. Thus a packet is forwarded by successive nodes of decreasing
costs, leading to the sink finally.

If a receiver finds it has a smaller cost, it calculates and compare two ratios
R, and Ripresn as follows.

REP.cc — tysed
Ra = REP.« (1)
Crecei
Rthresh — (TECELVET)2 (2)

REP-Csource

where

Qysed = REP~Pconsumed + Creceiver - REP~Csource (3)

In the above equations, ¢ stands for the amount of credit that has been
consumed. REP is the report packet received, Creceiver 18 the cost of this node.
REP.Peonsumed + Creceiver 18 the least amount of total budget required should
this node forward the packet via any path to the sink. This minimum amount
is achieved when the packet took the minimum cost path from this node to the
sink. The “extra” amount of this to Cypuree, would be the credit consumed. So
Eqn.3 is at least how much credit has been used. Thus R, represents the fraction
of credit that is still available for this node and later hops. Rypyesp indicates how
“far” the node is to the sink. Both R, and Ryjyesy, range between 0 and 1.

The node then compares R, to Ripresn- If Ry is greater than Riprespn, we
consider the node has sufficient credit to use. It broadcasts at a power to reach
multiple neighbors towards the sink (We define neighbors with smaller costs as
this node’s nearer neighbors). How much power depends on the degree of ro-
bustness desired. A higher robustness requires more nearer neighbors. In current
design, we let the node broadcast the packet at a power to reach three closest
nearer neighbors. The node knows this power from the ADV messages it re-
ceived during cost field building[5]. It increases Peonsumed by how much budget
it is going to consume in broadcasting. Then it broadcasts the packet to reach
those nearer neighbors. Different forwarding nodes on the same hop may reach
the same nearer neighbor(s) on the next hop. This is how the paths interleave.

If R, is smaller, however, the node does not have sufficient credit and should
forward the packet along its minimum cost path to minimize the total cost. Thus
the node sends the packet to the next hop neighbor on its minimum cost path.
It increases P.onsumeq in the sent packet similarly.

To reduce collisions, a forwarding node always waits for some random time
before sending the packet, so that senders on the same hops do not broadcast
simultaneously and result in collisions.

It is possible that a node receives multiple copies of the same packet from
different upstream nodes, and each copy has enough credit to use. To suppress
such duplicates, each node maintains a cache which stores the signatures of re-
cently forwarded packets. The signature of a packet can be the header of the
packet, or a hash of the packet calculated on demand. It serves as an identi-
fier to distinguish packets. If the signature of a received packet is found in the
cache, the packet is dropped. Notice that this is an optimization technique, not
a fundamental requirement of the design.

Analysis of Credit Allotment Now we give an analysis of the amount of
credit that can be used at any hop. For a node A, its cost is C'4. The maximum

* We call the number of nearer neighbors to reach the branching factor . It repre-
sents a tradeoff between robustness and energy. Experiments show that three is an
appropriate number.

share of credit is consumed when the remaining credit ratio R, is equal to
threshold Ripresh. i.€.

a — (Pconsumed + CA - Csource) — CA E (4)
64 CSO'LL’I"C&
Taking derivatives of C4 for P.onsumed, We have
6Pconsumed CA
= —[14+2 .
6CA (+ “ CSQOU.TCE)
Then, the allowed energy consumption at a hop is:
ACy
Apconsumed =—-AC4s —2a > Ca (5)

source

In Eqn.5, AP, nsumeq 18 the amount of cost that can be consumed at A. ACy4
denotes the minimum required cost to go to the next hop, which is the link cost

to the next hop. 2« Cﬁo‘“ C4 is roughly the maximum amount of credit that

can be used at this hosr;mftcgis proportional to C4, the cost from this node to the
sink. Thus the higher a node’s cost, the more credit it can use. Therefore, as
a packet travels from source to sink, it is allowed to consume more credit near
the source, and less at later hops. This way, the forwarding mesh can expand
aggressively initially, while still having some credit later to maintain the width.

We will evaluate other forms of threshold function in Section 3.

Al Bl cl Al cl
o]) o) o 9 o
. -
A&ﬁ B2 T Oc A&ﬁﬁ\o &)
’\6 >é p O "6 >é p O

A

Fig. 3. A: any single node failure or packet loss ruins a single path; B: interleaving
paths can recover each other from failures or packet losses

Implicit and Interleaving Paths Add to Robustness GRAB achieves ro-
bustness through the redundancy in the mesh. We carefully make the design
choices so that the paths in the mesh are implicit and interleaving. Implicit
means a sender does not appoint which node should continue forwarding. It is
up to each receiver to decide whether or not it should forward. When there are
node failures or packet losses, each node still perform the same operations. As
long as there are some surviving nodes that can continue forwarding the packet,

data delivery will not fail. The lack of explicit paths eliminates the need to repair
them when they are broken.

Interleaving means these paths are not disjoint, they intersect with each
other. This is more robust than multiple disjoint paths. The failure of any single
node or loss of packet along a single path destroy the forwarding on the path.
When there are many hops between the source and the sink, a single path has a
high probability to fail. In contrast, interleaving paths in a forwarding mesh can
recover the node failures and packet losses of each other. For example (Figure
3A), there exist three disjoint paths A1-A2-A3, B1-B2-B3 and C1-C2-C3. If A2
fails and both B3 and C2 do not receive the packet, all three paths fail to deliver
the packet. In contrast(Figure 3B), given the same failure of A2 and loss of
packet at B3 and C2, A3 and C3 can still receive from the broadcast of B2.
Thus path A and C can be recovered by B2. Similarly, path B can be recovered
by broadcasts from A3 or C3 later.

3 Performance Evaluation

In this section we evaluate the performance of GRAB through simulations. We
implemented GRAB forwarding protocol in Parsec [7] due to its ability to scale
to large numbers of nodes. We select sensor hardware parameters similar to
Berkeley motes [2]. The maximum transmission range of a node is 10 meters,
each node can adjusts its transmitting power to reach a given range. We sim-
ulated both the two ray ground and the free space signal propagation models.
Due to space limit we present the results from the former only®. The power
consumptions of full power transmitting, receiving and idling are 60mW, 12mW
and 12mW. The transmission (receiving) time for a packet is 10 ms.

In most scenarios, we use a field size of 150x150m? where 1200 nodes are
uniformly distributed. One sink and one source sit in opposite corners of the
field. The source generates a report packet every 10 seconds. In each run 100
reports are generated. The average number of hops of the source’ minimum cost
path is about 70 hops. To simulate fallible wireless links, packets are dropped
at the receiver with a probability, which is called packet loss rate. Node failures
are uniformly distributed over time. The fraction of failed nodes is defined as
the node failure rate.

To test if GRAB achieves its goal in robust data delivery, we measure the
success ratio, which is the ratio of the number of report packets successfully
received at the sink to the total number generated at the source. It indicates
the degree of robustness of GRAB to forward data in the presence of node
failures and packet losses. To see if GRAB satisfies robustness at the cost of
excessive overhead, we also measure total energy consumption and control packet
overhead. Total energy consumption is the total amount of energy consumed in
the simulation. It shows how much energy GRAB incurs for robust data delivery.
Control packet overhead is the number of control packets in the simulation. The
results are averaged over 10 different runs.

5 Results from the free space model are similar

We first evaluate the impact of control parameters, including the amount
of credit and the threshold function; then the impact of various environmental
gettings, including node failure rate, packet loss rate, node density and the size
of the field.

3.1 Impact of Control Parameters

Different amounts of credit ¢ The amount of credit directly affects the
degree of robustness. To find how much credit a is enough for robust delivery,
we vary the amount of credit from 1 to 10 times that of the source’ cost to reach
the sink. A fixed 15% node failure and a fixed 15% packet loss rate are present
in all runs.

Success Ratio us. Normaized Credit Tota energy consumption vs. credit Number of control pasket vs. credit
09| ‘“‘“/\x'
o

&]

amount et ormaizod rodic) amot ol normaizod e (4,1, amatof normaizod o (0,

number of control packet

Fig. 4. success ratio for dif- Fig. 5. energy consumption Fig. 6. control packet num-
ferent « for different o ber for different «

Figure 4 shows the success ratio as a function of «, which is normalized
to the source’ cost. When the credit is small, the chance of successful delivery
is also very small. When a < 2, almost all reports are lost. This is because
there are many hops (around 70) from the source to the sink, along which node
failures and packet losses happen frequently. When « increases, the success ratio
improves steadily. & = 5 gives an 80% success ratio. When the amount of credit
is sufficient, the forwarding is very robust. For a > 6, over 95% report packets
are successfully delivered to the sinkS. This shows that credit decides the degree
of robustness. A sufficient credit ensure good robustness.

To find whether GRAB consumes excessive energy to ensure robustness,
Figure 5 gives the total energy consumption as a function of a. When « is
small(c = 1), about 16050 Joules are consumed. As « increases, the total energy
also increases. At @ = 4, total energy reaches 16058 Joules, which is & Joules
more. This is because more energy is used in data delivery and building the cost
field. When a > 6, the total energy decreases to 16054 Joules. The fluctuation

& A sufficient & > 6 because we use transmitting energy as the cost. It does not mean
6 times more total energy is consumed. In two-ray ground model, the transmitting
power increases linearly to the 4th power of distance. Six times in power means 1.56
times in distance on average. In free space model, a > 1.2 is sufficient under the
same topologies.

is very small compared to the total amount. Thus GRAB is efficient and does
not achieve robustness at the cost of excessive energy consumption.

The decrease of total energy when « is high is a little counter-intuitive be-
cause more data packets are successfully delivered and more energy should be
used. Actually the decrease comes from the reduced control packets. Figure 6
shows the control packet overhead. When « is small(< 2) or big(> 6), the deliv-
ery quality is constantly low or high. The measured parameters about delivery
quality at the sink seldom differ from their recent history beyond the thresholds.
Thus less refreshings happen, and less total energy consumption. The number of
control packet is below 3100, and on average less than 3 cost field (re)buildings
happen. When « is medium(from 3 to 5), the delivery quality is not stable, and
the measured parameters differ from their recent averages beyond the thresholds
more often, triggering more refreshings and thus more energy consumption. The
number of control packets reaches 11500, and about 10 cost field (re)buildings
happen.

The different control packet overhead also shows that the event-driven cost
field refreshing can adapt to the delivery quality. When the delivery quality is
stable(either constantly low or constantly high), more refreshings cannot improve
the success ratio much(the improvement is less than 1%). So GRAB has less
refreshings. When the delivery quality is not stable, the sink refreshes the cost
field more often, thus more packets which otherwise could not reach the sink are
successfully delivered(the improvement is about 10%).

Success Ratio vs. normalized credit control packet vs. normalized credit

Ratio

5 8 &8 §E B

consumed energy (Joule)
total number of control packet

¥

E— E N
) nomalized credt(0(C,,,.)

G
nommalized credit (« /g,

Fig. 7. success ratio for dif- Fig. 8. energy consumption Fig. 9. control packet num-
ferent threshold functions for different threshold func- ber for different threshold
tions functions

Different threshold functions The form of the threshold function decides
how credit is alloted among different hops. We evaluate four different thresh-
old functions: (CA/Csource): (CA/Csource)Q: (CA/Csource)g and (CA/Csource)4:
where C4 is the cost of the receiving node A and Clspyree 18 the cost of the source
to reach the sink. We repeat the same simulations in Section 3.1. The success ra-
tio, energy consumption and control packet overhead are shown in Figure 7. 8 and
9, respectively. The success ratios for the threshold (C4/Csource) is smaller than
the those of the other three. Its energy consumption and control packet overhead
are obviously higher, while the other three have similar energy consumption and

control packet overhead. The metrics do not change much for the latter three
threshold functions((Ca/Csource)?s (Ca/Csource)® and (Ca/Csource)t). This is
because they all give more credit to beginning hops and still allot some amount
to later hops”. Thus the forwarding mesh can expand quickly and maintain a
certain width later.

3.2 Impact of Node Failures and Packet Losses

We evaluate the robustness of GRAB by studying how node failures and packet
losses affect the success ratio in this section. We first vary the node failure rate
from 5% to 50%, while using a fixed 15% packet loss rate. Then we vary the
packet loss rate from 5% to 50%, while using a fixed 15% node failure rate. The
amount of credit « is set to 6. This is the value that achieves higher than 95%
success ratio in the previous section.

ail

Success Ratio vs. node failure and Success Ratio vs. packet loss total consumed energy vs. node failure
and total cx cket loss

rgy vs. node f
total consumed energy vs. pax

total consumed energy
s & &

—— success vs. node failure, 15% fixed packet loss
—— sucoess vs. packet loss, 15% fixed node failure "~ Total energy v node failure, 15%iixed packet loss
— total energy vs. packet loss, 15% node failure

nnnnn 0s 03 o
node failure rate / packete loss rate

03 o
e rate / packet loss rate

Fig. 10. success ratio for node Fig. 11. energy consumption
failures and success ratio for for node failures and energy
packet losses consumption for packet losses

Figure 10 shows the success ratio as functions of node failure rate and packet
loss rate. We first look at the impact of node failures. The success ratio is above
95% for node failure rates of up to 20%. As the node failure rate continues to
increase, although the success ratio tends to decrease, GRAB still maintains
very high degrees of robustness. The success ratio remains above 85% when 35%
nodes fail, and is around 70% in the extreme case when half of the nodes fail.
This shows that GRAB is robust even with severe node failures. For packet loss
rates of up to 25%, the success ratio is above 90%. After 25%, the success ratio
drops quickly. With a packet loss rate of 65%, the success ratio is about 67%.
Compared to node failure cases, GRAB is less robust when the packet loss rate
is high. This is because no acknowledgement or retransmission is used to recover
a lost packet in CSMA MAC. For node failures, however, as long as there are
still enough surviving nodes, a cost field refreshing can resume data delivery.
Nevertheless, GRAB delivers over 80% reports successfully for node failure rates

" Similar analysis on credit allotment can be made by following the analysis in Section
2.3.

or packet loss rates of up to 30%. The high success ratio also demonstrates
that GRAB is highly tolerate to inaccurate cost fields because node failures and
packet losses both cause inaccuracies during cost field building.

The energy consumptions are shown in Figure 11. When node failure in-
creases, the energy decreases linearly. This is because the idle energy dominates
the total energy consumption. A higher node failure rates means more node
failures, thus proportionally less energy consumption. For different packet loss
rates, the energy remains almost constant around 16054, increasing less than 6
Joules as the packet loss rate grows from 5% to 50%. Again, although less energy
is consumed for data delivery, more is spent in rebuilding the cost field. Thus
the total energy increases a little.

4 Future Work

We plan to further improve GRAB to make the credit assignment adaptive. The
sink may include some information that reflects recent data delivery quality when
sending ADV packets. A source can use this feedback to choose an appropriate
credit to adapt to network conditions. In addition, the allotment of credit among
different hops can also adapt to local failure and noise characteristics. Nodes in
a neighborhood with more severe conditions can use greater shares of the credit
if they can measure local failures or packet losses.

So far we have been focusing on one stationary sink. When there are multiple
sinks, each needs to build its own cost field. Every node keeps one cost per
sink. This per-sink state may not allow GRAB to scale to large numbers of
sinks directly. Sink mobility is not well addressed in the current design, either.
Although a sink can simply rebuilds its cost field every time it moves to a new
location, such rebuildings may consume much energy and bandwidth when the
sink is highly mobile. We plan to apply landmark routing [8] to address the
multiple, mobile sink problem in the future.

5 Related Work

There have been a plethora of research efforts in sensor networking area in the
last few years. Directed diffusion [3] is a data forwarding protocol designed for
sensor networks where a sink floods its interests to build reverse paths from all
potential sources to the sink. GRAB also builds a field, but it is a scalar field
of cost values, not one of reverse path vectors. Diffusion uses reinforcement and
negative reinforcement mechanisms to select a high quality path for the data
flow from each source and deactivate low quality ones. Braided diffusion [9] is a
variant of directed diffusion. It maintains multiple “braided” paths as backup.
When a node on the primary path fails, data can go on an alternate path.
Both Directed diffusion and Braided diffusion establish ezplicit paths to forward
data; each node forwards data to a specific next hop neighbor. In contract, a
sender in GRAB simply transmits data to the radio channel without appointing
any neighbor as the next hop; each receiving node decides whether it should

further forward the data. There is no explict path in GRAB; data simply follows
whichever surviving nodes to reach the destination.

Diffusion combats against errors and failures by periodically re-flooding the
interests messages to repair the paths. GRAB achieves robustness by exploiting
the redundancy from interleaving paths in the forwarding mesh. Diffusion detects
forwarding loops by caching previous packets. In GRAB, because packets can
only go along the decreasing cost direction (toward the sink), no loop can form.

TTDD [4] solves the problem to delivering data to mobile sinks that are in
constant motion. It builds a grid structure for each source. The impact of a
mobile sink is confined within a local cell. Data delivery and query forwarding
traverse the grid tier and the local cell tier in reverse order. TTDD does not
address the robustness issue. Only a single path is used to forward data.

Both Diffusion and TTDD work with 802.11 DCF MAC which has RTS/CTS/
ACK. They have yet to demonstrate their robustness using nodes with less reli-
able CSMA MACs.

Gradient Routing [1] shares similarity in design with GRAB in that it also
builds and uses a cost field. However it has no mechanism to control the de-
gree of redundancy in data forwarding. When a sender broadcasts a packet,
all neighboring nodes with lower costs forward the packet, leading to much re-
dundancy and higher energy consumption. In GRAB, the credit carried in each
packet effectively controls the width of the forwarding mesh, thus the degree of
redundancy and energy consumption.

Energy Aware Routing [10] also builds per-sink cost fields to direct data
delivery but it uses single path only. A sender probabilistically pick a receiver to
forward the packet. GRAB has multiple interleaving paths forming a mesh and
senders do not decide who are receivers.

Redundant mesh forwarding is also proposed in [11,12] for robust multicast
delivery in wireless ad hoc networks. However these designs exchange control
messages to establish explicit path states at each node; the forwarding mesh is
made of a set of explicit paths. In contrast, the forwarding mesh in GRAB is
dynamically formed by the combined effect of the cost field and the credit value
carried in each packet, which allows data to flow along any path within the mesh.

Routing has been a very active research area in the context of ad hoc net-
works, many proposals have appeared in the literature [13, 14]. However, they
are not designed for sensor networks and do not address the unique issues in
sensor networks.

6 Conclusions

As the deployment of large scale sensor networks showing up on the horizon
today, we are facing new research challenges of providing reliable sensing and ro-
bust data delivery via vast numbers of potentially unreliable sensors. Compared
to data networks in general, individual sensors have much lower utilization but
potentially much higher failure rate. These special requirements demand new
solutions to reliable data delivery.

In this paper, we presented the GRAB design which ensures robust data deliv-
ery over large numbers of hops of small, unreliable sensor nodes and error-prone
wireless channels. GRAB exploits the large scale property of sensor networks and
achieves robust data delivery through controlled mesh forwarding. GRAB builds
and maintains a cost field for each destination. It controls the “width” of the
forwarding mesh, thus the degree of redundancy, by the amount of credit carried
in each data packet. Extensive simulations confirmed GRAB’s effectiveness in
providing reliable delivery under severe operational conditions, demonstrating
the principle that a reliable system can be built out of unreliable components.

References

1. Poor, R.: Gradient Routing in Ad Hoc Networks.
(http://www.media.mit.edu/pia/Research /ESP /texts/poorieeepaper.pdf)

2. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System Architec-
ture Directions for Networked Sensors. International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-IX) (2000)

3. Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed Diffusion: A Scalable
and Robust Communication Paradigm for Sensor Networks. ACM International
Conference on Mobile Computing and Networking (MOBICOM’00) (2000)

4. Ye, F., Luo, H., Cheng, J., Lu, S., Zhang, L..: A two-tier data dissemination model
for large-scale wireless sensor networks. In: Mobicom. (2002)

5. Ye, F., Chen, A., Lu, S., Zhang, L..: A Scalable Solution to Minimum Cost For-
warding in Large Scale Sensor Networks. The Tenth International Conference on
Computer Communications and Networks (2001)

6. Ye, F., Lu, S., Zhang, L..: GRAdient Broadcast: A Robust, Long-lived Large Sensor
Network. http://irl.cs.ucla.edu/papers/grab-tech-report.ps (2001)

7. Parallel Computing Laboratory, Computer Science Department, U.: Parsec.
(http://pcl.cs.ucla.edu/projects/parsec/)

8. Tsuchiya, P.F.: The landmark hierarchy: A new hierarchy for routing in very large
networks. Computer Communication Review 18 (August 1988)

9. Ganesan, D.; Govindan, R., Shenker, S., Estrin, D.: Highly-Resilient, Energy-
Efficient Multipath Routing in Wireless Sensor Networks. ACM Mobile Computing
and Communications Review, Vol. 5, No. 4 (October 2001.)

10. Shah, R.C., Rabaey, J.: Energy Aware Routing for Low Energy Ad Hoc Sensor
Networks. WCNC (2002)

11. Chiang, C.C., Gerla, M., Zhang, L.: Forwarding group multicast protocol (FGMP)
for multihop, mobile wireless networks. Cluster Computing 1 (1998) 187-196

12. Garcia-Luna-Aceves, J.J., Madruga, E.L.: A multicast routing protocol for ad-hoc
networks. In: INFOCOM (2). (1999) 784-792

13. Johnson, D.B., Maltz, D.A.: Dynamic Source Routing in Ad-hoc Wireless Net-
works. Mobile Computing, Kluwer Academic Publishers (1996)

14. Perkins, C.: Ad-Hoc On Demand Distance Vector Routing (AODV). Internet-Draft
(November 1997)

