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Abstract—Today’s Internet provides a global data delivery service to millions of end users and routing protocols play a critical role in
this service. It is important to be able to identify and diagnose any problems occurring in Internet routing. However, the Internet’s sheer
size makes this task difficult. One cannot easily extract out the most important or relevant routing information from the large amounts of
data collected from multiple routers. To tackle this problem, we have developed Link-Rank, a tool to visualize Internet routing changes
at the global scale. Link-Rank weighs links in a topological graph by the number of routes carried over each link and visually captures
changes in link weights in the form of a topological graph with adjustable size. Using Link-Rank, network operators can easily observe
important routing changes from massive amounts of routing data, discover otherwise unnoticed routing problems, understand the
impact of topological events, and infer root causes of observed routing changes.

Index Terms—Network visualization, information visualization, Internet routing, interactive graphics, data analysis, visual mining.

1 INTRODUCTION

OoDAY’sInternet provides a global data delivery service to

millions of end users. Network routing protocols play a
critical role in this delivery service by steering data traffic
toward their destinations. Effective diagnosis tools are
imperative to enable network operators to identify routing
problems in this global system. Several diagnosis tools, such
as traceroute and BGPlay [1], are available for analyzing
routing changes regarding a single destination. However, a
fiber cut may change the routes to a large number of
destinations, resulting in significant network traffic move-
ment which may, in turn, trigger routing dynamics in other
areas. Thus, it is essential to be able to observe network
routing changes at the Internet scale to understand the
overall impact of a single topological event.

To this end, we have developed Link-Rank, a tool to
visualize routing changes in the global Internet. Not only can
a picture capture the meaning of “thousands of words,” but it
can also lead to instant comprehension. However, a funda-
mental challenge facing the Link-Rank design is how to
capture routing changes in a comprehensive visual picture,
given the sheer size, the topological complexity, and the
highly dynamic nature of the Internet routing system.
Millions of routing updates are generated daily and there is
no easy way to extract information about most important or
most relevant routing changes. All the existing single
destination diagnosis tools utilize a specific starting point
and a given destination to trace the routing path or the path
changes. To examine routing changes at large, however, one
does not have a clear starting or ending point to focus on.
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Instead, one is facing a topology with over 20,000 networks
(Internet Autonomous Systems) and 180,000 destination
entries. We need a new conceptual model that can capture
the network behavior of aggregate routing changes.

Link-Rank extracts the total number of routes carried
over individual links in the Internet topology, called link
weight, and measures the changes in the number of routes
on each link as a way to capture aggregate routing changes.
To reduce the data size to a comprehensible level, Link-
Rank uses an input-filter to extract the most important or
relevant routing changes from the large amount of routing
data. To enable network operators to quickly spot poten-
tially problematic time periods for further investigation,
Link-Rank provides an activity plot that summarizes routing
changes along the time dimension. Link-Rank also offers
the user an output filter to adjust the display density in
visualizing routing dynamics. Using case studies, we show
how the above features provided by Link-Rank can help
network operators mine and understand interesting routing
changes from gigabytes of routing data.

The remainder of this paper is organized as follows: We
first review the relevant background of Internet routing in
Section 2. We then introduce the design of Link-Rank in
Section 3, where we discuss the design challenges, describe
our solutions, and explain in detail several useful features
of Link-Rank. In Section 4, we show the utility of Link-Rank
to network operators by using Link-Rank to discover and
understand large scale routing changes. In Section 5, we
discuss the impact of Link-Rank on network research and
operations. In Section 6, we review related work in the area
of network visualization and, in particular, compare Link-
Rank to two other tools, BGPlay and ELISHA. Finally, in
Section 7, we present possible directions to proceed for
future work.

2 BACKGROUND OF INTERNET ROUTING AND
BoRDER GATEWAY PROTOCOL

The Internet consists of a large number of networks called
autonomous systems (AS). Each AS is assigned an AS
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Fig. 1. Internet routing and BGP monitoring.

number and contains one or multiple destination networks.
Each destination network is represented by an IP address
prefix. For example, the prefix 131.179.96.0/24 represents a
network at UCLA and is part of AS 52 (UCLA’s AS
number). As of March 2006, the Internet consists of more
than 20,000 autonomous systems and more than 180,000
prefixes.

A routing protocol propagates the information about
how to reach all the destinations throughout the network. A
path vector protocol called Border Gateway Protocol (BGP)
[2] is the de-facto routing protocol used between autono-
mous systems in the Internet today. Routing information in
BGP is propagated by the exchange of BGP update
messages. A BGP update message contains information
about the destination prefix and the AS path used to reach
that prefix. We represent a BGP update in the form
{{prefix) : (AS-path)}. Fig. 1 shows how BGP updates
propagate routing information in the Internet. In this figure,
AS 22 owns a prefix P1 and sends a BGP update message
{P1 : 22} to its neighbor AS 33. AS 22 is said to be the origin
AS for prefix P1. On receiving this update, AS 33 now
prepends its own AS number to the received path and
sends the BGP update {P1 : 33,22} to its neighbors, AS 44
and AS 55.! AS 55, in turn, sends the BGP update {P1:
55,33,22} to its neighbor AS 44. Note, AS 44 receives two
paths to reach P1. When an AS receives more than one path
to reach a prefix, it chooses one of them as the primary path.
In Fig. 1, we assume AS 44 picks the path {P1: 33,22}
because it is shorter. Generally speaking, this decision on
which path to pick is based on the routing policy of each
individual AS. An AS’s routing policy also determines
whether to send a particular path to a neighbor. Besides
initial route propagation, physical events like link failures
can also trigger BGP updates. For example, assume the link
(44,33) goes down. As as result, AS 44 switches to a backup
path {55, 33,22} that it had learned earlier and sends the
BGP update {P1 : 55,33,22} to its neighbors.

To control the number of BGP updates and thus reduce
processing on routers, it is recommended that BGP routers
set a BGP timer, called the MinRouteAdver timer, to a value

1. An AS may contain more than one BGP router, as shown in Fig. 1 (e.g.,
AS 33 contains three BGP routers), and routing information inside an AS is
propagated using an intradomain routing protocol. In this paper, we focus
on interdomain routing dynamics and, hence, do not go into details of
intradomain routing.
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of 30 seconds. This timer sets the minimum time a router
needs to wait before sending BGP updates to its neighbor
for the same destination. In other words, in the case above,
when AS 33 sends the BGP update {P1:33,22} to its
neighbors, it would have to wait at least 30 seconds before
sending another update for the same prefix P1.

Since BGP updates propagate routing information in the
Internet, capturing the BGP updates at various parts of the
Internet can give us useful insight into the state of the
Internet and the amount of routing changes going on in the
Internet. In Fig. 1, AS 44 is connected to a routing update
collection box that receives BGP updates from AS 44. This
collection box represents the data collectors of BGP
monitoring projects such as RouteViews [3] and RIPE [4].
We call an AS connecting to such a collection box an
observation point. These monitoring projects collect BGP
updates from various observation points (operational
routers in autonomous systems) around the globe and
make the data available to the public. This data can then be
used by network operators and researchers for various
tasks such as routing problem identification and diagnos-
tics. However, due to the large size of the Internet topology,
millions of BGP updates are generated everyday, contribut-
ing to the large volume of updates collected by RouteViews
and RIPE. In the remainder of this paper, we show how we
can visualize the routing changes conveyed by these
millions of BGP updates.

3 VISUALIZATION DESIGN

The fundamental objective of Link-Rank is to visualize
routing changes. A major challenge we faced in this regard
is scale, i.e., more than 180,000 destinations and 20,000 AS
nodes. In addition, one has to deal with the large number of
BGP updates. For example, on 1 April 2006, we observed
more than 250,000 updates from a single observation point,
AS 7018. To deal with this issue of scale, in Link-Rank we
take the approach of weighing links by routes carried,
regardless of where the destinations of these routes are. By
assigning these weights, we are able to visually represent
heavily used links in the form of Link-Rank graphs as well
as capture changes in these weights in the form of Rank-
change graphs described in Section 3.1.

Link-Rank uses an input filter to control generation of
Rank-change graphs. Input filters described in Section 3.2
can be threshold-based like “construct Rank-change when
weight of a link changes by more than 50” or “show
changes of routes only to specific set of prefixes.” To
provide a summary of the amount of routing changes, in
Section 3.3, we introduce activity plots that summarize
routing activity over time. Activity plots are very useful
starting points to identify the time periods of high routing
dynamics. Finally, one may want to control the level of time
granularity to observe route changes that last longer than a
certain amount of time. Such granularity control can be
achieved by using time windows and drill down features
explained in Section 3.4.

3.1 Rank-Change Graph

The Link-Rank graph from an observation point weighs a
link by the number of routes using that link. This notion of
ranking a link with number of routes translates to the name
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Fig. 2. The notion of link weight. (a) Link weight seen by 44. (b) Link
weight seen by 44 after 55 withdraws route to P3.

Link-Rank.? In the Internet, a single AS cannot see the
complete Internet topology nor can it know the routes taken
by all the other ASes. Thus, the weight associated with the
edge in a Link-Rank graph is relative to the observation
point and does not tell us how many total routes in the
entire Internet use this link. To explain this concept, we use
a simple example shown in Fig. 2. This figure depicts the
routing table seen by a router in AS 44 in Fig. 1a in the form
of a graph. Here, we assume the existence of two more
prefixes, P2 and P3, announced by AS 33 and AS 55,
respectively. In Fig. 2a, link (44, 33) has a weight of 2, since
that link appears twice in the routing table at AS 44. We
denote the link weight by wt({link), (observation-point), e.g.,
wt((44,33),44) = 2. We define Link-Rank graph from a
node as a graph showing all the links along with weights
used by that node, like Fig. 2a. Note that the direction of the
link is important in a Link-Rank graph. If BGP updates
received at AS 44 change the routing table at AS 44, the
Link-Rank graph will also change. In Fig. 2b, AS 55
withdraws its route to P3 and, as a result of this withdraw
message, AS 44 shifts to an alternate path to reach P3. The
weight of link (44,33) has now increased from 2 to 3. In
reality, a Link-Rank graph from a BGP router can have close
to 20,000 links and, hence, entire Link-Rank graphs are
difficult to visualize.

To understand BGP dynamics, we need to understand
how many links change weights as a result of the BGP
updates. As a first step, we looked at BGP updates over a
period of one week and marked the links changing rank
after each BGP update. We found that the changes usually
came in bursts. As a result, instead of looking at the Link-
Rank graph after each BGP update, we could analyze just
two Link-Rank snapshots, the one before the burst of
updates and the one after the burst of updates. We also
found the burst of updates to affect the weights of a much
smaller set of links in most cases. Rank-change graphs
capture these links whose weights have changed.

A Rank-change graph takes the difference between two
Link-Rank graphs and uses red (or dashed) edges to mark the
links that have lost routes and green (or solid) edges to mark
links that have gained routes. Simply stated, given two Link-
Rank graphs from G, and G, at different times ¢; and ¢,
respectively, a Rank-change graph plots all links (a, b) where
the weight on these links wt((a,b), G1) — wit((a,b),Gs) # 0.
Fig. 3a shows the Rank-change graph for the routing change

2. Since not all prefixes are equal, e.g., 16 is much bigger than 24, ongoing
work also breaks up this rank by prefix length and one can control what to
visualize based on rules on these individual prefix lengths.

(@) (b)

Fig. 3. Rank-change graph for change in Fig. 2. (a) Rank changes only.
(b) Link rank and rank change.

in Fig. 2. From this figure, one can clearly see that link (44, 55)
lost one route, while the link (44,33) and (33, 55) gained a
route. Note, the Rank-change graph does not show links that
have not gained or lost routes, e.g., link (33,22). A Rank-
change graph can either show only link weights, only weight
changes or both. For example, Fig. 3a shows just the weight
changes, while Fig. 3b shows the current link weight followed
by the weight change in parenthesis.

3.1.1 Nodes, Edges, and Color Coding

We now discuss some details of visualization in Rank-
change graphs. Fig. 4 shows an actual Rank-change graph
from BGP data. Note, the Internet has more than 20,000
autonomous systems and, currently, only a few hundred
observation points are connected to public data collectors.
Observation points from where one can observe routing
changes are shown as circular nodes to differentiate them
from rectangular nodes that are not observation points.
Visually separating the observation points from the other
nodes clearly highlights other possible viewpoints that can
be used to better understand the same time interval. The
observation point of the Rank-change graph (AS 6453) is
colored blue to differentiate from other observation points
that are colored orange.

Edges in Link-Rank are primarily red or green in color.
An edge is colored red when it loses routes and green when
it gains routes. To help users avoid difficulty in distinguish-
ing between certain colors, Rank-change graphs can also be
displayed using dashed and solid lines to indicate loss and
gain, instead of red and green. In addition, this representa-
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Fig. 4. Sample rank-change graph.
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Fig. 5. Components of link-rank.

tion is very useful in the process of assembling multiple
views explained in Section 3.6. The thickness of the edges in
the Rank-change graph represents the magnitude of weight
change. With links of varying thickness, one can easily spot
links with high losses or gains. In addition to varying the
edge thickness, the size of the nodes varies based on the
amount of weight change of edges and the number of such
edges adjacent to it. This scaling of nodes helps to identify
ASs with high routing activity.

We use the JUNG visualization library [5] to construct
the Rank-change graph. Link-Rank uses the spring layout
implementation from the JUNG library, which gives
satisfactory results in general. Furthermore, the layout
implementation also allows one to manually reposition
any node as needed for clearer view. In most cases, when
the Rank-change graphs were sparse, the users of Link-
Rank were satisfied with the default layout. With denser
graphs, the users tended to reposition some nodes. Some
user reactions to the input and ideas for improving the
layout are discussed in Section 7.

3.2 Components of Link-Rank

The three components of the Link-Rank tool are shown in
Fig. 5. An important component is the input filter block that
controls when the Rank-change graphs are constructed. In
Fig. 3, we saw the Rank-change graph for a single route
change. In reality, input filters are needed to enable Link-
Rank to scale in regard to topology size and number of BGP
updates. One input filter involves picking a specific set of
prefixes and examining the routing changes for these
prefixes. Another input filter is a threshold-based scheme
and is the filter used in all our case studies explained later
in this paper. In this threshold-based scheme, we maintain
the instantaneous link weight for each link in the topology
seen by an observation point. In addition, we maintain the
change in weight since the last Rank-change graph was
generated. The link weight, as well as the change in weight,
is updated for all links affected by each BGP update
message. A Rank-change graph is generated when the
weight of any link changes by more than a preset threshold
(default is 50). A detailed treatment of this scheme and
numerical results of the effect of the threshold is beyond the
scope of this paper and the interested reader may find more
details in [6].

Using the threshold filter with BGP updates, a single
routing event may be broken into multiple Rank-change
graphs. For example, assume a link (A4,B) fails and
5,000 routes using that link are affected. This will result in
a burst of 5,000 BGP updates closely spaced in time, each of
which reduces the rank of the link (A, B) by 1. Thus the
entire update burst would reduce the rank of (A, B) by
5,000. If the threshold filter generates a Rank-change graph
each time the link weight changes by 50, there would be as
many as 100 Rank-change graphs, each with a change of
50 routes on link (A4, B). We employed a timing mechanism
to reduce the number of Rank-change graphs due to the
same event. We observed that, by delaying the construction
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of the Rank-change graph by a short time, we could
drastically reduce the number of Rank-change graphs for
the same routing event. We call this time to delay
construction of Rank-change graph event timer and set its
value to 30 seconds. During the event timer, if routing
changes add weight « to a link and immediately change
back to reduce the weight on that link by «, the net weight
change would be 0 (termed compensating change) and,
hence, no Rank-change graph will be generated (since the
weight change is below threshold of 50). Our choice of
30 seconds for the event timer was motivated by the BGP
timer called the MinRouteAdver timer, explained in
Section 2. With the MinRouteAdver timer set to the
recommended time of 30 seconds, compensating changes
cannot happen at a frequency less than 30 seconds. Though
not all routers in the Internet are known to use the MRAI
timer, we found the event timer value of 30 seconds to be
adequate.

The graph generator component outputs the Rank-
change graph based on the updates fed to it by the input
filter. The output filter can control the links and nodes in the
Rank-change graph for brevity. Filter rules for the output
could be simple weight-based rules, such as “remove all
links below a change of 10,” or more complex, such as
“show graphs with at least one of the nodes 338, 55 AND
links 44 — 33.” The output filter is part of the visualization
tool, and, based on graph complexity, one can dynamically
use filter rules to simplify the graphs. Summarizing, the
input filter prepares the data for Rank-change graphs and
the output filter can be used to prune the Rank-change
graph further.

3.3 Activity Plots: Summarizing Weight Changes

Activity plots summarize routing changes represented by
Rank-change graphs along the time dimension. An activity
plot is a series of red and green bars on alternate sides of a
horizontal axis of time. With an activity plot, a user can
identify time periods of high routing activity and then
investigate those specific periods in more detail. We first
explain how a single activity bar is plotted. Fig. 6 shows a
Rank-change graph similar to Fig. 2. Given a Rank-change
graph, we first find the total gain and total loss by adding
the weight changes of the green and red links, respectively.
In this case, the total rank gain is 200 (100 each on links
(44,33) and (33,55)) and the total rank loss is 100. We plot
red and green bars proportional to the total loss and gain,
respectively, as shown in Fig. 6. In this case, the green bar is
longer than the red bar. A higher gain (green) than loss
(red) could be due to a combination of longer new paths as
in Fig. 6 and new routes being announced.

Activity bars can provide summary information about
the routing change. For example, if we only see a red bar, it
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Fig. 7. Use of time window to control time of change. (a) Rank-change
graphs. (b) Rank-change graphs with different time-windows.

signifies that routes have been lost entirely and this means
some set of prefixes are not reachable.’ In an activity plot,
one activity bar is constructed for each Rank-change graph
over the duration of the activity plot. The total magnitude of
the activity bar could vary a lot depending on the type of
event and we adjust the scale for the Y-axis, where the
highest magnitude in any interval coincides with the tallest
bar on the activity plot and the remaining bars scaled
linearly relative to this. In Section 4, using case studies, we
illustrate how activity plots can help in the identification of
routing problems.

3.4 Time Windows and Drilling Down

The time window control in Link-Rank allows users to
aggregate Rank-change graphs in a time interval. Due to the
presence of slow convergence [7], some short-lived invalid
paths could appear as genuine route changes. With the
time-window control, one can increase or decrease the
longevity of weight changes that one wants to visualize.

3. There are cases where a red bar and the absence of a green bar may not
reflect prefix loss. For example, if the paths for a set of prefixes change from
A — B — C to A — B because the prefixes are now originated by B, link
(B, C) loses ranks, but prefixes may still be reachable.
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Fig. 8. Drilling down to increase the level of detail in activity.

Fig. 7a shows three activity bars corresponding to three
Rank-change graphs shown below. In Fig. 7b, we show the
time window by rectangular boxes on the activity plot. This
time window can slide along the activity graph using DVD
playback-like controls. In Fig. 7b, we show how the Rank-
change graph looks in three cases, two involving the same
time window size but different positions, and one involving
an even wider time window size. At each position of the
time window, the Rank-change graphs falling in that
window are combined into one by taking the union of all
the Rank-change graphs. Equivalently, the Rank-change
graph for a specific position of the time window can also be
constructed as a difference graph between the Link-Rank
graphs at the start and end of the time window. Note that,
within the first time window t1, the Rank-change graphs
have some cancellation effect of route changes, i.e., the net
weight change of (44,55) is —100 + 50 = —50. In contrast,
within the second time window t2, the Rank-change graphs
have an additive effect, i.e., the weight change of (44, 55) is
50 + 50 = 100. If the time window is increased to include all
three activity bars as in t3, then all the changes will be
canceled and the net Rank-change graph will be empty.

Another time control, called the drill-down feature,
allows one to control the time granularity of the entire
activity plot. By drilling down, one can expand the activity
inside the current time-window to a larger time-span in a
new window. The first part of Fig. 8 shows an activity plot
spanning over eight days and time window of 16 hours. To
better understand the activity inside the time window, we
drill down to expand the 16 hour time window to the
activity time span in the middle activity plot in Fig. 8. The
time window in this case is about two hours. Drilling down
further on this time window will expand these two hours
further, as shown in the last activity plot. One can now see
the individual activity bars in detail compared to the first
activity plot. Note, given an activity plot, one can drill down
to the granularity of the time equal to the event timer
explained in Section 3.2.

3.5 Pruning Rank-Change Graphs

Link-Rank processes BGP updates and visualizes the links
that have changed. In all the examples in this paper, the



Fig. 9. Assembling views from AS 11608 and AS 3561.

underlying network consists of the Internet with about
20,000 nodes. However, the size of the Rank-change graph
depends on the number of links whose weights have
changed and the magnitude of changes. Hence, in some
cases where a small number of links have weight changes,
the Rank-change graphs may contain only a small number
of nodes and links. In other cases with a lot of changes, the
Rank-change graph may contain hundreds of nodes,
making it difficult to extract information visually. Link-
Rank allows a user to prune Rank-change graphs using
different filtering techniques to reduce the complexity of the
graph. One technique to prune the graph by using an
output filter in the form of a threshold filter to remove
edges with weight change value less than a threshold value
set by the user. Other types of filters include viewing the
top N links with highest weight change values and view
links adjacent on a set of user specified AS. One can also use
a combination of all these filters and specify the order in
which filters are applied.

3.6 Assembled View: Merging Rank-Change Graphs

from Multiple Observation Points
Link-Rank views from multiple observation points can be
assembled in a single Rank-change graph. Fig. 9 shows the
assembled view from two observation points AS 11608 and
AS 3561. Note, here we have to use the dashed and solid lines
to indicate lost and gained routes. Edges in this example are
either blue or pink, blue indicating the changes from
AS 11608, while pink indicates the changes from AS 3561. In
general, in assembled views, each observation point and its
changes are represented by a unique color. With assembled
views, one can identify common segments of change in Rank-
change graphs across different observation points and
narrow down on the possible cause of the routing changes.
In Section 4, we show the utility of assembling views in
problem diagnostics.

4 DiscoVERY AND ANALYSIS USING LINK-RANK

In this section, we use examples to show how Link-Rank
can be used to discover and analyze routing events.
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Fig. 10. Activity plots from 8 March 2005 to 14 March 2005.

4.1 Methodology

Our objective is to evaluate how Link-Rank can help network
operators discover and diagnose routing problems. In terms
of routing data, network operators have access to BGP routing
tables and update messages received at their routers. We have
access to similar data from the public archives of the
RouteViews Oregon collector that contains routing tables
and updates from about 40 routers belonging to different
autonomous systems. In order to understand how network
operators diagnose problems, we interacted with network
administrators through email and personal interviews at
various North American Network Operator Group meetings
[8]. Our pool of interviewees consisted of about 40 operators
from both small and big ISPs, with most of them having more
than five years of experience in network operations. In the rest
of this section, we use the knowledge gained from this
interaction to analyze three case studies from the perspective
of an operator using Link-Rank.

We used three ways to select observation points and time
periods for case studies. First, we looked at activity plots
from all observation points on a weekly basis and identified
the periods with dense activity or spikes. Case I is an
example of this, where we saw heavy activity from a
particular observation point. Second, we looked at activity
plots to find activity spikes across multiple observation
points during the same time period. Case II is an example
where activity plots from multiple observation points show
spikes at around the same time. Cases I and II show that
activity plots can serve as summaries for network operators
using Link-Rank. Finally, we picked case studies in
response to reports of routing or traffic problems from
external sources such as North American Network Opera-
tors Group (NANOG) mailing lists. Case III is representa-
tive of this category, where there were reports of traffic
problems from a few ISPs. In each of these cases, we used
the Rank-change graphs during the selected time periods
and, in one case, assembled multiple views together, to
understand the routing activity.

4.2 Case I: Capturing Link Instabilities

Around March 2005, AS 7018 showed a lot of heavy activity,
as shown in the second activity plot (router IP 12.0.1.63) in
Fig. 10 showing activity for a period of one week. One task
of the network operator is to find out whether this activity is
because of a problem within AS 7018 or a problem beyond
AS 7018. Another question to be answered is whether the
entire activity is due to the same event or different events.
We drilled down the activity from one week to a one hour
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Fig. 11. One hour of activity plot from 12.0.1.63 on 9 March 2005.

period on 9 March 2005 shown in Fig. 11. Note, from Fig. 11
showing activity over one hour, that a Rank-change graph
was generated almost every minute.

We then looked at the Rank-change graphs in this period
and found a common sequence of changes. Fig. 12 shows a
typical sequence of Rank-change graphs we found, with the
time window set to 1 minute. This figure shows that
134 routes switched between the paths 7018 — 80 and
7018 — 1239 — 80. This behavior was observed for almost
three weeks in March 2005. The next step was to find out
the preferred path among the two oscillating paths. From
examination of routing tables before the event, we saw that
the preferred path to reach AS 80 was the direct link
(7018,80). Since the weight of the link (7018,80) on the
preferred path repeatedly touched 0, it seemed likely that
the link between AS 7018 and AS 80 went up and down

repeatedly and was the cause of the instability seen.
Events such as the constant route change above may

result in longer delays as well as possible packet losses. Yet,
they often go unnoticed. In this case, the behavior continued
for almost three weeks in March 2005, contributing
hundreds of thousands of BGP updates seen at the
observation point. A network operator using Link-Rank at
AS 7018 would benefit from the quick identification of such
oscillations and bring stability to routes as well as reduce
the number of BGP updates in the Internet drastically. In
our examination over other time periods, we found quite a
few instances of link instabilities similar to this case above.

Summary: Densely clustered bars in activity plots, espe-
cially where they have near constant height, are almost
always a strong indication of link instabilities. Activity plots
are useful in spotting such cases. One can then examine these
time periods in detail to figure out the actual causes of the
rapid route changes.

N
| J018 22980 (+134)

4.3 Case lI: Root-Cause Identification

Root cause identification involves inferring the cause of an
observed set of routing updates. For Case II, we picked a
case where activity plots of many observation points
showed spikes around the same time. Fig. 13 shows the
activity plot of a few observation points from 18 October
2005 to 24 October 2005. One can easily spot spikes and
dense activity in these plots from multiple observation
points (around 21 October 2005). To understand the causes,
we looked at the routing activity from AS 6453 (router IP
195.219.96.239) which generated the first activity plot in
Fig. 13. Starting from an entire day’s activity, we drilled
down to a four hour period between 4:00 and 9:00 GMT on
21 October 2005 that contains the dense activity. Fig. 14
shows this Rank-change graph around 06:20 GMT on
21 October 2005 from AS 6453 with a time window set to
15 minutes. During this time, link (6453, 3356) lost close to
3,000 routes (out of a total of around 140,000). At the same
time, some other links like (6453,701) and (6453,1239)
gained routes. Note, for ease of presentation, we do not
show the link weights and prune the graph by applying the
filter to remove links with changes less than 200. Based on
observation, the possible cause is either AS 6453, AS 3356,
or the link (6453, 3356).

In this case, since similar activity is also seen from other
observation points, one can benefit by combining multiple
observation points into a single assembled view. Fig. 15
shows the assembled view from three observation points,
AS 6453, AS 1239, and AS 3257 that showed similarity in
activity plots. In the assembled view, we use dashed lines to
represent route loss and solid lines to represent route gain
and assign each observation point and its corresponding
changes, a unique color, e.g., AS 3257 and its corresponding
changes are colored blue. The orange colored nodes indicate
other potential observation points, so more views can be
added. Here, we select only three observation points to
make the Rank-change graph easy to understand. After we
reduce the time window to 5 minutes, one can see from
Fig. 15 that multiple links to and out of AS 3356 were
affected, strongly suggesting some problems inside the AS
3356 and not just the link between AS 6453 and AS 3356.
Our observation was validated by reports from the
NANOG discussion forum that AS 3356 indeed had some
internal problems and was further corroborated by discus-
sions with network operators.

-
7018

22843 (-137) 22980 (+137)

_—
1239

137 (+134)
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Fig. 12. Case I: Continuous switching of routes between two links. (a) From Tuesday 15 March 00:21:15 GMT 2005 to Tuesday 15 March 00:21:45
GMT 2005. (b) From Tuesday 15 March 00:22:15 GMT 2005 to Tuesday 15 March 00:22:45 GMT 2005. (c) From Tuesday 15 March 00:23:15 GMT

2005 to Tuesday 15 March 00:23:45 GMT 2005.
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Fig. 13. Activity plots from 18 October 2005 to 24 October 2005.

Summary: To use Link-Rank for identifying root cause,
one can look for high loss or gain links or nodes which have
a high number of outgoing edges with weight changes. One
can also assemble multiple views along the lost or gained
path to isolate sections of the path which might be
problematic.

4.4 Case lll: Detecting and Visualizing Prefix
Hijacking

Our final case study was picked in response to reports of

routing problems on mailing lists and network operator

forums. On 24 December 2004, customers of AS 6939
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Fig. 14. Case II: Instability observed at AS 6453.

reported that they were unable to reach many Internet sites.
However, the routing table from AS 6939 did not show any
noticeable reduction in the number of entries, implying that
routes were still reachable. If routes to all sites still existed,
what else would have caused inability to reach the sites? By
looking at activity plots, we saw a spike around the time of
complaints, as shown in Fig. 16, an indication routing
activity going on.

We plotted the activity for 24 December 2005 and drilled
down to the time between 8:30 and 10:30 UTC. Fig. 17
shows the Rank-change graph from AS 6939 around 9:15
UTC with a time window of 15 minutes. Notice the
difference in the characteristic of this graph. In typical
cases of route changes, there is one source node where the
edges with weight changes start and one or more sink
nodes where the weight changes converge. For example, in
Fig. 12, the source node is AS 7018, while the sink is AS 80,

Fig. 15. Case Il: Combined view from AS 1239, AS 6453, and AS 3257.
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Fig. 16. Case IllI: Activity Plots from 21 December 2004 to 28 December
2005.

while, in Fig. 14, the source node is AS 6453, while some
sinks are AS 22773, AS 18566, and AS 6389. Note that, in
both case I and case II, most of the sink nodes have a red as
well as a green incoming edge. This convergence of a red
and green edge on a common node is because the origin AS
for a prefix does not change in general. If the source and
origin remain the same, the red (old) and green (new) paths
converge on some common node between the old and new
path. In this case, however, AS 6939 saw routes added on a
single path 6939 — 6762 — 9121, but the sinks did not show
a convergence of both a red and green edge. This implied
that the old and new paths did not share a common origin
AS as is usually the case. On examining the routing table,
we saw thousands of prefixes having routes with AS 9121 as
the origin AS. Before this event, these prefixes had various
different origin ASs. So, clearly, while the routes still existed
to reach the destination prefixes, the routes were invalid
and, hence, the traffic got black-holed at AS 9121. An event
of this type, where an AS wrongly advertises prefixes it
does not own, is referred to as a prefix hijack and is
considered a serious security threat to the Internet.

Following messages from the NANOG discussion forums,
and after consulting with various network operators, we
confirmed that AS 9121 originated almost all the prefixes in
the Internet, thus making a route through AS 9121 more
lucrative than some of the longer but genuine routes. We saw
similar impacts on other observation points, with the effect of
this hijack varying based on routing policies of observation
points and how far they were from AS 9121. While it may
seem that such events can be automatically detected, the key
purpose served by visualization here is to highlight the
source and extent of this hijack attack to the operator. In
Section 7, we discuss some directions for providing hints for
known event characteristics like the prefix hijack case
mentioned here.

Summary: A visual characteristic of large scale prefix hijack
events is the lack of red (lost ranks) and green (gained ranks)
edges converging on the sink nodes. Any Link-Rank graph
showing such characteristics should be a cause for alarm.

+45573

_
9121

Fig. 17. Case llla: Impact of prefix hijacks on AS 6939.

In this section, we presented three case studies. In each of
these cases, we show how Link-Rank can be used to discover
the problem as well as to identify the cause of the problem.

5 DISCUSSION

The Internet routing infrastructure is a big and complex
system. The large volume of BGP log data makes it difficult
for network operators to observe and understand BGP
dynamics. As network researchers, we faced the same
challenge and we have developed Link-Rank as a visualiza-
tion tool to aid our work in network routing research. Link-
Rank developed the concepts of link weight and Rank-
change graphs as a simple yet effective way to capture
routing changes. The input filtering mechanism prepares
data for visualization and the output filtering mechanism
controls what to display. The time window controls the
longevity of weight changes in a Rank-change graph.
Finally, the activity graphs provide a summary of routing
changes for quick scan.

We have used Link-Rank to identify various problems.
For example, when a BGP session is established and broken
down (termed a BGP session reset) repeatedly, routes
oscillate as shown in case I in Section 4. Using Link-Rank,
we identified potential BGP session resets by looking for
links whose rank drops to 0. We further identified several
cases of BGP sessions that were unstable for long periods of
time, resulting in hundreds of thousands of updates. This
ability of Link-Rank to present visuals summarizing routing
changes spread across thousands of routing updates and
allowing the operators to use their expertise to interpret the
visuals makes it a very useful operational tool.

We feel Link-Rank will definitely have an impact on
research in BGP. For example, identifying the underlying
event triggering the routing updates, called root cause
analysis, has been an active area of research in the Internet
routing community for the past few years. Link-Rank
captures changes in routes carried by links and we feel the
use of Link-Rank for root cause identification has great
promise. The values of link weights and weight changes as
well as characteristics of the Rank-change graph like the
number of red and green edges flowing into and out of anode
can help identify potential root causes. We believe Rank-
change graphs will help in developing new methodologies to
address the problem of root cause identification.
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6 RELATED WORK

In this section, we discuss related work in the area of
visualization applied to the networking domain.

6.1 Visualization of Route Dynamics

In the area of visual analysis of Internet routing, BGPlay [1]
shows changes in routes from different monitors to a
particular prefix. BGPlay visualizes an update stream and
uses animation to highlight the change in routes. A tool
closely related to BGPlay is ELISHA [9], [10]. This work has
a similar flavor to BGPlay and analyzes events on a per
prefix basis. In this scheme, updates on a prefix are
sequentially arranged next to a time line and a line is
drawn from the time line to the updates. This helps in easily
identifying the effect of the updates clustered close together.
One can then delve into the details of a particular event by
visualizing the path changes in the form of an arc-based
representation of links in the routing paths with each AS
being assigned a unique X coordinate. This visualization
can help in understanding the updates as well as detecting
routing anomalies. Both BGPlay and ELISHA complement
Link-Rank. Note that BGPlay and ELISHA capture events to
a particular destination, while Link-Rank visualizes aggre-
gate routing changes affecting multiple prefixes. Thus, on
detecting routing problems to a specific prefix using BGPlay
or ELISHA, one can use Link-Rank to see if the problem is
related to some link level issues and vice versa.

Other closely related work to Link-Rank is detecting
prefix hijacks using visualization [11]. The main difference
lies in the fact that [11] provides a visual technique for
detecting abnormality in prefix announcements, but does
not tell which ASes get affected as shown in detail by Link-
Rank. Interesting events exposed by visualization in [11]
could be investigated using Link-Rank to understand the
event impact.

6.2 Visualizing Connectivity and Anomalous
Behavior

Another area of application of visualization to networking
is visualizing network connectivity. Cheswick et al. [12]
visualize the router level connectivity, while [13] provides a
tool for interactive visualization of AS level connectivity.

Networking research and operations has also benefited
from visualization of traffic flows to detect intrusions and
anomalies. Erbacher et al. [14] enable one to visually identify
anomalous and potentially harmful events like portscans and
failed login attempts. Visualizing port level activity alone can
lead to good anomaly detection and is the focus of PortVis
[15]. NVisionIP [16] is another tool used to visualize port
scans and host scans. NIVA [17] is a haptic-based system that
can be fed data from a commercial intrusion detector in order
to make it more usable for network operators. VisFlowCon-
nect [18] is a tool designed to identify anomalous traffic
patterns and can visually capture events like virus outbreaks
and denial of service. Other security-based visualization
work includes [19] and [20].

6.3 Knowledge Discovery in Internet Routing

Finally, a lot of research has also been done on examining
BGP logs to discover problems and patterns. Most of the
work here has been on inferring the root cause of observed
BGP updates. Various heuristics have been presented and
applied to public data from RouteViews [21], [22], [23].
These works present interesting approaches to root cause

inference, but lack the ability to involve an expert directly in
the inference. An interesting line of work would be to
incorporate these heuristics into visualization tools like
BGPlay, ELISHA, and Link-Rank.

Other related work has been in the area of understanding
instabilities in BGP [24] and the behavior of BGP under
stress events such as worms [25]. These works attempt to
understand and classify BGP updates received from
observation points. For example, updates are classified into
ones where a path is withdrawn and a new path is
announced. Visual plots like number of updates in hourly
or daily bins and counts for each of the update classes help
in understanding which class of updates saw a rise under a
known event. This work provides a good understanding of
the BGP updates, but does not describe the effect or cause of
these BGP updates. Link-Rank, on the other hand, provides
visual information, allowing one to summarize events in
terms of which routes changed.

7 FUuTUuRE WORK

On the visualization front, we are exploring ways of
improving the node layout in the Rank-change graph.
Some users expressed the desire to assign position
constraints to selected nodes in the Rank-change graphs.
We also observed that users often repositioned nodes to
separate the green paths from the red paths. Incorporating
position constraints and color of edges as input to the layout
algorithm are interesting directions for future work.
Another direction to deal with denser graphs is to be able
to bring a subgraph to the forefront. In particular, we are
exploring the idea of selecting an AS and bringing its
connected components to the forefront. Yet another line of
work involves better distinction of contributions from each
observation point. Currently, Link-Rank relies on colors,
especially when assembling views from multiple observa-
tion points into a single graph. Users with difficulty in
differentiating colors would benefit from other ways to
represent different views in the same graph. In activity
plots, due to the Y-scale adjusted based on changes within
the time of the activity plot, it is difficult to easily compare
activity plots from different observation points with each
other. We are exploring ways to enable easier comparison
between activity plots from multiple observation points.

Besides visualization, we feel Link-Rank can also benefit
from built-in event recognizer and classifiers. We showed
how Rank-change graphs can be used to identify different
kinds of events like link problems, AS events, and prefix
hijack. We are working on using simple rules to generate
signatures of events and match Rank-change graphs to
these known signatures.
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