
Repo: Application Agnostic and Oblivious
In-Network Data Store

Tianyuan Yu
UCLA
USA

tianyuan@cs.ucla.edu

Jacob Zhi
UCLA
USA

jzhi@g.ucla.edu

Xinyu Ma
UCLA
USA

xinyu.ma@cs.ucla.edu

Yekta Kocaogullar
UCLA
USA

ykocaogullar@g.ucla.edu

Varun Patil
UCLA
USA

varunpatil@cs.ucla.edu

Ryuji Wakikawa
SoftBank

Japan
ryuji.wakikawa@g.softbank.co.jp

Lixia Zhang
UCLA
USA

lixia@cs.ucla.edu

Abstract—As a specific application within the broadly-defined
realm of metaverse, NDN Workspace is a serverless collaborative
tool that enables multiple users to jointly edit shared files. Our
experience from NDN Workspace trial deployment suggests that
such decentralized apps can benefit greatly from persistent data
availability. This paper reports the design of Repo, a in-network
replicated data store which can automatically stores application
contents of authorized users. We illustrate how NDN Workspace’s
data-centric design, which is built on Named Data Networking
(NDN), enables Repo to provide persistent data availability in an
application agnostic and oblivious manner.

I. METAVERSE AS A NETWORK PROBLEM

Metaverse is envisioned to build a shared, persistent virtual
world around users. To create this world, various metaverse
apps gather data from multiple sources, such as sensors,
cameras, and other computing or storage resources, either
nearby or far away. Individual virtual objects may belong to
different parties with various control rights, yet they can all
be accessed in a timely and secure way obeying user-defined
object access rules. NDN Workspace [1] is such an application.

In this paper, we describe the design and implementation of
Repo, an application agnostic and oblivious in-network data
store to provide persistent data availability as needed by NDN
Workspace and potentially other metaverse applications. The
design of Repo draws lessons learned from previous efforts in
developing in-network data store [2], [3], and utilizes identified
design patterns of NDN-based applications such as NDN
Workspace. The data-centric approach in these applications
enables Repo to automatically fetch and store application data
for authorized users, with little or no changes required for
existing applications.

This paper is structured as follows. We describe the de-
sign and implementation of Repo in Sections IV and V,
and summarize the insights we gained from this effort in
Section VI. We further articulate the roles Repo may play
in supporting future metaverse applications in Section VII.
In particular, we note that Repo differs from today’s cloud
storage in fundamental ways: Repo is integrated with network
data delivery and oblivious to applications. Application entities

simply fetch any desired data by data names, without knowing
or caring about where the data may come from.

II. BACKGROUND

Designing a secure in-network data storage requires three
basic building blocks: semantic entity and data identifiers for
authentication, defined trust relations among all entities to
secure storage usage, and new means of data exchange by
data names instead of IP addresses.

In this section, we first provide a brief introduction to
Named Data Networking (NDN) and explain how NDN
provides these basic building blocks, and then use NDN
Workspace application as an example to illustrate how NDN
enables secure data fetching among all authenticated entities.

A. Named Data Networking

While IP views a network as a collection of nodes, each
identified by its IP address and with physical connectivity in
between, Named Data Networking (NDN) [4] views a network
as a collection of entities1, each uniquely identified by its
semantically meanful name, with trust relations in between.
To participate in an NDN network, an entity first goes through
a bootstrapping process to obtain its trust anchors, semantic
identifiers, certificates and security policies [5], [6] 2. The
bootstrapping step enables each entity to publish semantically-
named data that is both encrypted3 and signed by the entity’s
key, and verify received data according to its security policies.
It should be noted that a producer simply makes its published
data available locally, ready to be fetched by any interested
data consumers. Additionally, a cryptographic key is also a
piece of semantically named and secured data; a signed key
becomes a certificate.

1An entity can be any communication participant that produces and/or
consumes data: a device, a running app, a user, etc.

2As illustrated in [6], this NDN entity bootstrapping step is remotely
analogous to IP bootstrapping when a node joins an IP network.

3Encryption in multi-user applications typically uses application-specific
keys.

1

Workspace U3

Synchronization

Workspace U2 Workspace U1

wspace.app/alice@example.com/DATA/seq=1

Encrypted Content

Signed by wspace.app/alice@example.com/KEY

Secured Named Data

Named Data Network

Fig. 1: NDN Workspace users synchronize on document
updates in a named data network, exchanging semantically
named and secured data.

In an NDN network, entities communicate by letting con-
sumers send interest packets to request desired data by name.
These Interest packets are routed towards data producers; any
node along the way can reply to an interest with data having
a matching name. Since the consumer verifies the authenticity
of all received data as we describe below, the returned data
does not have to come from its original producer. This allows
each NDN node to cache data packets in its local memory,
so it can respond to future requests for the same data from
its cache. If a data packet is lost on its way to the consumer,
the missing data can be retrieved from a router’s cache when
the consumer retransmits its interest. An NDN network also
has built-in multicast data delivery support. We refer interested
readers to [4] for more details.

Given certificates are also named data, one can define
schematized security policies [7] to automate security work-
flow. Since all data are named and signed by their publishers,
upon receiving data, the data consumer automatically fetches
the data signer’s certificate by its name, verifies the signature,
and then checks the signer’s certificate name to see whether the
signer is authorized to publish the named data. As the example
in Figure 1 shows, “wspace.app/alice@example.com/DATA
/seq=1” identifies the first version of a piece of data produced
by Alice in “wspace.app”. The “wspace.app” administrator(s)
could define security schema to authorize Alice to produce
data under her own prefix in “wspace.app”.

Given communication in an NDN network is by request-
ing named data, consumers need a means to learn the
names of data as soon as they are published. NDN provides
this functionality by its transport protocol, Sync (short for
data synchronization), which synchronizes the names of the
shared data among all participants in an application group,
e.g.,“wspace.app” [8]. Sync multicasts Sync Interests to all
participants; each Sync Interest carries a dataset state vec-
tor which encodes the latest sequence number of the data
produced by each group participant. For example, whenever
Alice produces a piece of new data to her app “wspace.app”,
Sync notifies all other participants about Alice’s latest data

production sequence number (which can be converted to an
actual data name); individual entities can then decide whether,
or when, they will fetch the new data. An offline user can
catch up on the data produced by the rest of the group when
it reconnects and learns about the names of new data it missed.

B. NDN Workspace
Current metaverse prototypes rely largely on cloud services,

where end users and devices fetch data from cloud servers via
secured transport connections, the servers not only can be far
away, but also have the full control over all user data. To
showcase a new way of networking that can meet metaverse’s
needs and keep the control of data in users hand, we developed
a web-based, serverless, multi-user collaborative application,
NDN Workspace [1], over the NDN networking model. Users
in NDN Workspace are assigned semantic identifiers and
establish security relations among each other, enabling them
to collaborate directly and securely over any available physical
or virtual connectivity.

Each NDN workspace instance has its own name, whose
uniqueness comes from the existing DNS namespace. Un-
der an assigned DNS name “wspace.app”, a user can be
uniquely identified by her email address, and assigned a name
which is the concatenation of the app’s DNS name and the
user’s email address, as shown in Figure 1, and is issued
a certificate under that name.4 NDN Workspace semanti-
cally names each document or document update that Alice
produces as “wspace.app/alice@example.com/DATA/<seq>”,
where “<seq>” is the sequence number of Alice’s data pro-
ductions within “wspace.app”.

Semantically named “wspace.app” users can mutually au-
thenticate each other and endorse new users to join, bringing
their out-of-band trust relations from human society into a
workspace through cross-signed certificates and guided by
the application-defined security policies. After going through
the NDN bootstrapping process as described in the previous
subsection, “wspace.app” users are able to securely produce
and consume named data among themselves.

As Figure 1 shows, every document change made by a
user increments the user’s sequence number, and NDN Sync
provides notifications to “wspace.app” workspace users of all
new data being produced. Thus all users in the same workspace
can be informed of the latest sequence numbers of all the other
users. They can then fetch individually secured data pieces by
sending NDN Interest packets to the network, with the data
name inferred from the aforementioned naming convention.
Receiving secured named data, each user independently exe-
cutes security policies to validate the data and incorporate the
updates to one’s local view of the document.

Assigning users application defined semantic names and
data-centric security design enable direct user-to-user commu-
nications. Since it is the users’ browsers that store and manage

4A user can be uniquely identified by other existing identifiers, such as a
DNS name, and the application assigned user name can be the concatenation
of the app’s name with any unique ID under that name. Since email addresses
are unique, the current use of email address simply saves the app from keeping
track its assigned names.

2

the application’s data locally, NDN Workspace naturally sup-
ports asynchronous collaboration. Any user can make changes
to their local document any time (even when offline); one’s
secured data will be synchronized once one can meet others
in the same application group over any available connectivity
(e.g., LAN, Bluetooth, NDN Testbed [9]).

Our experiences from running NDN Workspace identified
a critical need in supporting user-to-user communications:
persistent data availability in the absence of servers. Because
not all users may be online all the time, and in particular
there can be no one online when a user gets connected and
wants to fetch the latest changes made by others. Therefore,
we developed the in-network data store, Repo, to meet this
need.

III. PREVIOUS IN-NETWORK STORAGE

PythonRepo [10] was developed by an earlier effort as in-
network storage support to be used by NDN-based applica-
tions. As Figure 2 depicts, a network provider P offers in-
network storage as part of P ’s network service and deploys
multiple running instances of PythonRepo under its storage
service prefix “/Np/store”. A customer of network P , CP ,
can make use of the provided storage service by issuing data
insertion and deletion requests (which are also encoded as
named, secured data) to “/Np/store”. Leveraging anycast
delivery, network-P will forward the request to a storage
unit with the lowest routing cost (the cost could account for
storage availability as well). Upon receiving a data insertion
or deletion request, the storage unit validates the request
according to P ’s security policies, and processes the request
(either fetching the data to be inserted and storing it, or
deleting the corresponding data from its local storage). The
request carries the following parameters from CP : the name of
data to be inserted (“/alice/photo/v1”), and the name prefix
“/alice/photo”, which CP wants PythonRepo to register to
network-P .

P Network
/Np/store

P Customer CP

Bootstraps with P
Security Policy

Request to insert
/alice/photo/v1

/alice/photo

I: /alice/photo/v1?

Fetch /alice/photo/v1

/Np/store

/Np/store

D: /alice/photo/v1

Data name: /alice/photo/v1
Register prefix: /alice/photo

Request signed by CP certificate

Fig. 2: Network provider P deploys multiple PythonRepo
instances in its network, and each has security bootstrapped
with P ’s security policy.

Note that PythonRepo, or NDN networking in general,
makes data accessible by data names, e.g. “/alice/photo”,

anyone knowing the name can fetch it. Data-centric encription
prevents unauthorized users from seeing the content. One may
also note that PythonRepo does not provide automated data
replication.

NDN’s data-centric security design allows users to secure
data directly, which in turn makes PythonRepo independent
from specific applications. The data object “/alice/photo/v1”
is secured by user’s encryption and signing. Since users do
not expose her security policies to PythonRepo, it has no
knowledge about the data’s contents. 5

IV. DEVELOPING IN-NETWORK STORAGE SUPPORT

In this section, we discuss the design goals of Repo and how
they are achieved by leveraging NDN’s data-centric design.

A. Design Goals

As a web-based application, NDN Workspace runs inside
each user’s browser, and communicates directly with other
users (browsers). In order to enable a user U1 to fetch and
consume data published by another user Uf who has gone
offline, the data produced by Uf must be made available online
before Uf goes offline. This could be achieved if there are
some users online all the time, but one cannot count on it.

To make all produced data available all the time without
dependency on dedicated servers, one needs in-network data
repository, Repo in short. We identify the following three
design requirements.

• Repo should be agnostic to applications. Repo should
provide storage for applications in general, with neither
application-specific knowledge nor individual applica-
tion’s security credential that today’s CDN services need.

• Applications should be oblivious to Repo. NDN ap-
plications exchange named, secured data without the
awareness of where the data come from, a network model
that must be preserved by the introduction of Repo.

• Repo should be resilient to failures. Repo should be
able to provide resilient data availability that can sustain
individual storage unit failures, so that applications can
count their data availability as long as the network as a
whole does not fail.

B. Repo Design Overview

As described in Section III, PythonRepo provides in-
network, application-agnostic storage. However, applications
need to send insertion requests to PythonRepo explicitly with
specific data names. There is also a remaining question of how
to automatically replicate stored data for resiliency against
a single point of failure. The design of Repo extends the
functionality of PythonRepo by automating both data insertion
and data replication.

5The above simplified description of injecting user data prefixes into net-
work routing may raise a scalability concern. NDN addresses this scalability
challenge through the use of a Forwarding Hint which acts as a locator,
pointing to the place where the named data can be found. Please see [11]
for details, and [12] for an example usage of Forwarding Hints by another
NDN-based application, Hydra.

3

Oblivious Sync Participation: As described in Section II,
NDN applications utilizes NDN Sync to exchange the lat-
est data production information among end-users. Therefore,
Repo can learn the latest synchronization states of a workspace
instance by joining the application’s Syn group G to learn
about all data productions. Whenever Repo learns there is
a new publication in group G, it expresses Interest to fetch
and store the latest published data D. Whenever an NDN
Workspace user wants to fetch D, Repo can directly reply
with D from its storage.

/Np/store

Workspace U3

/Np/store

/Np/store

Sync on G

Oblivious Participant

Request to join G

Workspace U2 Workspace U1

Workspace Data

Sync Group: G
Register Prefix: R
Public Keys: K, …

Request signed by
CP certificate

Fig. 3: In network P , three Workspaces are running NDN
Sync over group G. Repo is an oblivious participant in G, as
requested by U1.

In this process, Repo is a passive participant in a Syng
group – it neither generates Sync Interest nor produces new
data packets, making the application unaware of the existence
of Repo.

Requesting Repo Service: Any customer of a network P ,
referred as Cp, can make use of Repo provided by network
P by sending a Repo service request to ask Repo to (i) join
a synchronization group G; (ii) fetch all Data published in G;
and (iii) serve them under a data name prefix R. The request
contains the name of G, the data name prefix R, and all nec-
essary certificates that can be used to verify application Data
and Sync Interests (to be discussed shortly). Repo validates
each received service request by the user’s certificate issue by
Cp, and starts joining synchronization group G. Requesting
Repo to leave G follows a similar procedure.

Automated Replication: Repo units in network P runs a
synchronization group on all the validated requests that have
been received. After receiving a validated join or leave request
for G, each unit executes the request independently, resulting
in all the Repo instances storing all published application data
automatically. One can also design an algorithm to make Repo
automatically select n out of the total number of Repo units
for replicating data of each application.

/Np/store

Workspace U3

/Np/store

/Np/store

Sync on G
Request to join G

Workspace U2 Workspace U1

Workspace Data

Requests

Fig. 4: Repo instances synchronize on received requests and
process them independently.

As a result, Repo is resilient to single failures. Synchro-
nizing Repo requests, rather than application data simplifies
the design of Repo’s resiliency by letting individual Repo
units execute the request and fetch data, and data fetching
also benefit from NDN’s built-in multicast data delivery.
Routing and Data Security: Repo verifies the name owner-
ship for data prefix registration, and only registers data prefixes
with the routing system when customers of network P can
prove the ownership of the name prefix. Therefore, all data
prefix registrations Repo makes come from prefixes’ original
owners.

Repo operates according to the security policies installed by
the network operators. Whenever receiving G Sync Interest
and application Data published in it, Repo always match
the signing key with authenticated keys obtained from the
service request and verify the signature. Repo performs data
authenticity verification when fetching published data to pre-
vent storage pollution. The default authentication policy is
to compare Data name with the signing key name to check
whether the signer is the data prefix owner. Additionally,
Repo can also take Cp defined specific application policies
carried in the Repo service request to further refine the Data
authentication verification. Note that, although Repo may
execute application-specific policies, the policy execution is
application-agnostic, since Repo only performs schematized
naming-key pattern matching [13], [14] which is generic to
all applications.
Supporting Asynchronous Applications: In addition to store
all application produced data, to help newly arrived users
quickly learn about the latest data production, Repo also keeps
the latest Sync Interest it has received for each application
group, which represents the latest data production state of
an application. When Repo receives Sync Interests carrying
outdated state vectors, which are likely produced by users
who are just back online, it re-sends the latest Sync Interest to
inform users of the latest data production that they may have
missed when offline. Such Sync Interest retransmissions do
not lead to replay attack, as receiving duplicate Sync Interest
has no effect on user applications.

4

U3 : 1

U3

U1 : 4
U2 : 5

U1 : 4
U2 : 5

U2 U1

U1 : 4
U2 : 5
U3 : 1

U1 : 4
U2 : 6
U3 : 1

U1 : 4
U2 : 6
U3 : 1

State Vector

Merging U3 Updating U2 Merging U3 , Updating U2

U3 offline
U2 online

I3

U2 offline
U1 online

I2 I3 I2* I1I2** I2** I1
*

Interest Cache I1 I2 I1 I2 I3 I1 I2 I3 I1 I2 I2
**

 I1 I2 I2**

Merging U3 Updating U2

Network

Repo Repo

Fig. 5: An example where three Workspace users fully asyn-
chronously collaborate by Repo updating Interest cache and
replaying them upon updated Sync Interests.

The example in Figure 5 illustrates how Repo enables NDN
Workspace to be fully asynchronous. Assuming there are three
users collaboratively editing a document, and U3 is a new user
in G who is not aware of the other two, who are already
synchronized with each other.

U3 first connects to the network, makes a change to the doc-
ument, and then disconnects. Its Workspace instance multicasts
a Sync Interest I3 to the network, indicating the existence of
U3 with sequence number 1. Repo adds I3 into its cache since
this Interest packet updates G’s state, and expresses an Interest
to fetch U3’s data “/G/U3/DATA/seq=1”. Later, U2 comes
online, it also multicasts its last Sync Interest I2 to synchronize
with the network, and receives I3 obliviously replayed by
Repo. Since this Interest carries a new entry of state vectors,
U2 merges the state vectors and sends a new Sync Interest
I∗2 to the network. Afterwards, it fetches “/G/U3/DATA/seq=1”
as indicated by the latest vector, makes its change to the
document, and sends I∗∗2 that contains updated state vectors to
the network. Finally, when U1 goes online, it will discover I∗∗2
with the latest state vectors, and fetches “/G/U3/DATA/seq=1”
and “/G/U2/DATA/seq=6”.

In this process, each user makes document changes indepen-
dently and asynchronously. As there were no other instances
or third-party servers users could synchronize with when
publishing, each user instead obliviously synchronizes with
Repo. When the application is connected to network P , NDN
Sync states always inform everyone of the latest publications,
as memorized by the network.

V. IMPLEMENTATION AND TRIAL INTEGRATION

The initial implementation of Repo is in Python and utilizes
the python-ndn library [15] for NDN communication and
utilities. To achieve data persistence, Repo is reliant on a
local or external data store, such as MongoDB, LevelDB, or
SQLite. In addition to application data, the data store also
keeps persistent state information for any Sync group the local
browser has joined.

A. Trial Integration with NDN Testbed
Users running NDN Workspace can be NDN-connected

over the NDN Testbed, which goes across four continents to

interconnect all NDN-speaking nodes. We have deployed Repo
integration on the NDN Testbed.

Fig. 6: The topology map of global NDN Testbed. Repo is
deployed on every Testbed router.

Our research group has been using NDN Workspace to
track progress and report issues anyone encountered. Every
user can edit a shared Progress-Tracking file, Ftrack, at any
time, independent from whether one is online or offline.
Since people in general have intermittent (NDN)-connectivity
with each other, before the Repo integration was deployed, it
often happened that a few users made changes to the shared
Ftrack and then went offline together before the changes were
fetched by others. Thus when later user UB comes online, they
could not get those change right away. The application will
eventually work out when any of the users comes online later,
but the delay in updating Ftrack can be long.

The Repo solved this problem. Repo fetches all the latest
changes to Ftrack as soon as they are produced. In the above
scenario, when B comes online, its sends Sync Interest IB
to the group; upon receiving IB which indicating missing
data, Repo follows the standard SVS operation by resending
the latest Sync Interest, which informs B of its missing
data. As results, Repo enables NDN Workspace to support
collaboration in a fully asynchronous manner.

VI. DISCUSSION

In today’s practice, application developers typically set up
storage servers and explicitly synchronize end-users with these
servers. Storage replication is also handled explicitly.

A seemingly better approach is to develop applications
that run natively in a cloud service, which provides both
data synchronization and data storage. This approach frees
applications from worrying about data storage separately, with
the undesirable consequence of yielding all the data control
and exposing application semantics and security policies to
the cloud. Rapid technology advances have brought us inex-
pensive, high-volume data storage, yet users today do not seem
to have an easy way to take great advantage of it to remove
reliance on the cloud for data availability. We believe the
root cause of this dilemma is lack of networking and storage
integration: network only delivers packets to destination by
addresses, and storage is handled at application layer.

This paper points to a new direction in data storage so-
lution development: developing apps based on a data-centric
networking model, where network and storage are unified

5

in performing the function of supplying requested data. As
technology advances drop storage cost, this model allows us
to take the most advantage of an opportunity to leverage
such in-network storage. Particularly, NDN Repo enables
asynchronous applications by providing an in-network storage
service that is completely transparent to app development.
Security is ensured through an application-agnostic model that
does not rely on knowledge of application keys or security
policy. We observe that deploying Repo to support the NDN
Workspace app allows for complete continuity and collabora-
tion between users regardless of overlap in who is online.

Both CDNs and Repo are transparent to the end-users.
However, CDNs are impossible to be application-agnostic,
since today’s data security is realized through securing the
TLS channel. As the actual communication endpoint that faces
end-users, CDNs must possess keys that can represent them-
selves as if the original applications owners. This limitation
inevitably leads to key sharing between application owners and
CDN providers. Repo design follows the opposite approach
by storing data that are secured directly by applications, and
executes security policies for its own sake of preventing data
poisoning but meanwhile staying agnostic to applications.

VII. LOOKING INTO THE FUTURE

Distributed applications, including metaverse applications,
desire persistent data availability to support multiparty collab-
oration and asynchronous communications. Today, such appli-
cations rely on cloud storage for always-on data availability
with its associated costs: reliance on infrastructure connectiv-
ity, increased communication delay, and, more importantly, the
loss of control over application data.

Our design of Repo makes a unique contribution to provid-
ing app-agnostic and oblivious in-network data store, which
provides always-on data availability and can be seamlessly
integrated with network connectivity services. The designs of
NDN Workspace and Repo share a fundamental goal, which
is to put the power of data control back in users’ hands. This
goal is achieved by leveraging the results from decade-long
NDN research efforts, which developed foundational support
for user-named and secured data.

We note that Repo is not meant as a substitute for cloud
storage services. We believe that cloud storage service will
continue to play an important role in supporting future appli-
cations, for example, to be used for high-volume data sharing
and/or long term data backup, and for use cases that are yet to
come. However, we expect that future data-centric applications
could make a fundamental difference between today’s cloud
storage service and its future usage: the cloud will store user-
named and secured data, forcing a change of hands in data
control from today’s cloud operators to future users.

Integrating storage with network connectivity offers new
opportunities for metaverse apps which are typically multi-
party in nature and require timely and secure data exchanges.
We also envision network-storage integration to open new
opportunities for network service providers, which can now
provide joint data delivery (networking) and data storage

services, moving away from the existing “dumbpipe” service
model. User-controlled metaverse apps do not imply that users
necessarily provide all needed resources; rather, they could
benefit greatly from network-provided resources, as shown by
the example of Repo.

REFERENCES

[1] T. Yu, X. Ma, V. Patil, Y. Kocaogullar, and L. Zhang, “Exploring the
Design of Collaborative Applications via the Lens of NDN Workspace,”
in Proceedings of the 2nd Annual IEEE International Conference on
Metaverse Computing, Networking, and Applications, 2024.

[2] L. Zhang, “The role of data repositories in named data networking,”
in 2019 IEEE International Conference on Communications Workshops
(ICC Workshops), 2019.

[3] N. Team, https://github.com/UCLA-IRL/ndn-python-repo, 2024, ac-
cessed: 2024-2-3.

[4] A. Afanasyev, J. Burke, T. Refaei, L. Wang, B. Zhang, and L. Zhang,
“A brief introduction to named data networking,” in IEEE Military
Communications Conference (MILCOM). IEEE, 2018.

[5] T. Yu, P. Moll, Z. Zhang, A. Afanasyev, and L. Zhang, “Enabling
plug-n-play in named data networking,” in 2021 IEEE Military
Communications Conference (MILCOM), 2021. [Online]. Available:
https://doi.org/10.1109/MILCOM52596.2021.9653033

[6] T. Yu, X. Ma, H. Xie, D. Kutscher, and L. Zhang, “Cornerstone:
Automating remote ndn entity bootstrapping,” in Proceedings of the
18th Asian Internet Engineering Conference, 2023. [Online]. Available:
https://doi.org/10.1145/3630590.3630598

[7] Y. Yu, A. Afanasyev, D. Clark, k. claffy, V. Jacobson, and L. Zhang,
“Schematizing trust in named data networking,” in Proceedings of
the 2nd ACM Conference on Information-Centric Networking, 2015.
[Online]. Available: https://doi.org/10.1145/2810156.2810170

[8] P. Moll, V. Patil, L. Wang, and L. Zhang, “Sok: The evolution of
distributed dataset synchronization solutions in ndn,” in Proceedings
of the 9th ACM Conference on Information-Centric Networking, 2022.
[Online]. Available: https://doi.org/10.1145/3517212.3558092

[9] The NDN Team, “NDN Testbed,” Online at https://named-data.net/ndn-
testbed/, 2024.

[10] T. Yu, Z. Kong, X. Ma, L. Wang, and L. Zhang, “Pythonrepo: Persistent
in-network storage for named data networking.”

[11] A. Afanasyev, C. Yi, L. Wang, B. Zhang, and L. Zhang, “SNAMP:
Secure namespace mapping to scale NDN forwarding,” in Proc. of IEEE
Global Internet Symposium, 2015.

[12] J. Presley, X. Wang, X. Ai, T. Yu, T. Brandel, P. Podder, V. Patil,
A. Afanasyev, F. Feltus, L. Zhang et al., “Hydra: A scalable decen-
tralized p2p storage federation for large scientific datasets,” in 2024 In-
ternational Conference on Computing, Networking and Communications
(ICNC), 2024, pp. 1–7.

[13] K. Nichols, “Trust schemas and icn: key to secure home iot,”
in Proceedings of the 8th ACM Conference on Information-Centric
Networking, 2021. [Online]. Available: https://doi.org/10.1145/3460417.
3482972

[14] T. Yu, X. Ma, H. Xie, Y. Kocaoğullar, and L. Zhang, “A new api
in support of ndn trust schema,” in Proceedings of the 10th ACM
Conference on Information-Centric Networking, 2023, pp. 46–54.

[15] X. Ma, Z. Kong, and E. Newberry, “python-ndn.” [Online]. Available:
https://github.com/zjkmxy/python-ndn

6

