
Blockchain’s Role in Metaverse Trust and Transactions

R. Can Aygun
UCLA

Los Angeles, USA
Email: rcaygun@cs.ucla.edu

Turan Vural
UCLA

Los Angeles, USA
Email: turan@cs.ucla.edu

Lixia Zhang
UCLA

Los Angeles, USA
Email: lixia@cs.ucla.edu

Abstract—The metaverse is a new technology which promises
to enhance human-to-computer interaction and achieve an
immersive experience in computing and communication. In
parallel, blockchain is viewed by many as a pillar of trust
in creating a secure and decentralized metaverse. In this
paper, we first articulate the functionalities required by a
simple metaverse use case, and then examine the challenges
an strengths of a blockchain-based implementation in pro-
viding those functions. Our analysis shows that blockchain-
based solutions may require centralized functions in name
lookup, lacks assurance for name uniqueness and accessible
data authentication as of now, and faces scalability challenges
due to the high demand on computing and storage resources.

1. Introduction

The metaverse has gained attention from industry [1] and
academic communities [2] in recent years as a promising
technology to achieve immersive computing and commu-
nication capabilities. It has come to reference an inter-
section of different technologies: AI, AR/VR, blockchain,
3D rendering, IoT, and edge computing [3]. Among them,
blockchains, especially in its capacity as a distributed ledger,
have been deemed by some prominent studies and industry
as the pillar of trust and transactions to create a secure meta-
verse [1], [4]. For example, Lamina1 is a blockchain that
is aimed to be an underlying infrastructure for data storage,
identity, messaging and payments in the metaverse [4].

In this paper, we use a simple metaverse application sce-
nario to perform a preliminary investigation into anonymous
blockchain’s role in supporting trust policies and transac-
tion recording in an open metaverse1. We use Ethereum,
one realization of blockchain technology, to investigate
blockchain’s capability in supporting metaverse applications
and identify potential challenges and limitations in doing so.
While blockchains aim to enable decentralized systems and
applications, our analysis shows that its realization faces
challenges in effective decentralization, scalability, naming,
and data authentication. These challenges hinder the adop-
tion of blockchain as a foundational solution in metaverse

1. There are two types of blockchains: permissioned and permissionless
blockchains, referred to in this paper as identity-based and anonymous
blockchains. This paper focuses on understanding the capability and limi-
tations of anonymous blockchains.

applications. In addition, we perform a comparative study
of the Ethereum Naming System (ENS) and DNS.

This paper is organized as follows, with the assump-
tion that readers have a basic knowledge of the meta-
verse and public-key cryptography but not necessarily with
blockchain. Section 2 describes a simple metaverse appli-
cation of a tea party between two users. Section 3 provides
an overview of the blockchain and blockchain-based name
mapping systems and identifies potential challenges in the
operations of such naming systems at scale. Section 4
discusses the root cause of the identified scalability and
cost challenges through a comparison of ENS and DNS,
namespace uniqueness, and the role of the blockchain in
trust management. Finally, Section 5 concludes the paper.

2. A Simple Metaverse Application: Tea Party

In this section, we use an example application to explain
the functional requirements needed to enable secure transac-
tions of objects between different entities in the metaverse.

Alice and Bob meet at a rendezvous point in the meta-
verse to have a tea party. Alice accepts only green tea
from Bob, while Bob accepts either green or black tea from
anyone. This simple use case raises two requirements:

1) The tea serving transaction requires the tea object to
be transferred from one entity’s pot to another’s cup.

2) Each entity has the ability to allow or deny the tea from
another entity.

The following elements need to be defined to create such a
transaction in a secure way [5]:

1) Interacting entities should have identities in the meta-
verse and the ability to authenticate each other.

2) Each party should be able to define its own authoriza-
tion policies in securing transactions.

3) All transactions should be recorded to enable auditing.

2.1. Naming

We use the following namespace for our application:

/prefix/object/content/ 2

2. We use ’/’ notation for readability purposes only. /prefix/object/content
is equivalent to content.object.prefix.



(e.g. /alice/tea pot/black tea, or /bob/cup/green tea)

/alice/tea pot/green tea is a tea object owned by Al-
ice, which is contained in ’tea pot’ and has an associated
amount.

The names defined above are semantically meaningful:
a name both uniquely identifies an entity or object and
describes its relationship with other entities in proper con-
text. The semantics in the names are critical in defining
the authentication and authorization policies supporting ap-
plication logic. Today, semantically meaningful names are
ubiquitously used across internet applications, such as web
and email, to securely and meaningfully identify entities.

2.2. Authentication

In order to support authentication, identity must first
be established. Every entity needs to obtain a name, then
establish its ownership of the name in the form of a certifi-
cate from a certificate issuer. The certificate issuer binds the
entity’s semantically meaningful name to its public key.

Once Alice and Bob obtain their identity and before they
can transact in the metaverse, they need to authenticate each
other according to their own trust policies. Alice can define
her authentication trust policy as shown below, which indi-
cates that any object created by Bob should be authenticated
with a specific trust anchor3.

/alice → /bob

The above certificate chain starts from the trust anchor (left)
and ends at the certificate owner (right); ‘→’ indicates that
Alice issues a certificate to Bob.

Alternatively, a commercial certificate authority (CA)
may be used as a trust anchor (e.g. Web PKI)4. In this case,
Bob defines the following authentication policy:

/root CA A → /intermediate CA B → /alice

There exists one important difference between this trust
policy and today’s Web PKI: while the latter accepts certifi-
cates issued to any name owners by any of the certificate
authorities, Bob’s security policy determines which trust
anchor(s) is valid for which specific namespace (e.g. Alice’s
certificate will be accepted as valid only if the trust anchor
is the one Bob designates, in this case /root CA A).

In our example, owners sign the exchanged tea objects,
enabling recipients to authenticate all received objects ac-
cording to their own policies. Alice and Bob also define
their authorization policies for the tea party interactions after
object authentication, as we describe next.

2.3. Authorization

Continuing our example, Alice creates an authorization
policy to define who can pour what type of content to her
cup:

3. A trust anchor refers to a self-signed certificate that has been verified
out-of-band, thus can be used to verify other certificates.

4. Other possibilities include a single global trust anchor model (e.g.
DNSSEC), or PGP [6].

/bob/tea pot/green tea can pour() to /alice/cup/*

The pouring event is defined via the pour(content name,
target obj, amount) function, which will transfer a specified
amount of content to the target object.

Bob has a more relaxed authorization policy of accepting
both types of tea from anyone, so he defines authentication
policy as follows:

/*/tea pot/green tea OR black tea can pour() to
/bob/cup/*

Based on the his authentication and authorization policies,
if Bob receives a tea object from an entity claiming to be
Alice with a certificate chain terminating at trust anchor
/root CA A, he will accept it; but if the trust anchor is
something else, e.g. /root CA C, then the received tea ob-
ject cannot be authenticated, thus not accepted.

The transaction specified in the authorization policies
will be performed with the explicit permission of the user,
as specified in their trust policies, in real-time. However, if
a pour request does not comply with the policies, it will be
automatically rejected.

We emphasize that all authentication and authorization
policies are defined by Alice and Bob individually, because
the question of “who trusts whom for what?” must be
answered by each party in order to have secure transactions
in a decentralized metaverse environment.

2.4. Transaction Recording

When Alice pours tea into Bob’s cup, the transferred
tea becomes part of Bob’s belongings. This transaction
should be recorded, which Bob can use as proof of the
transaction any time as needed. Furthermore, transaction
logging is critical to prove data provenance [2]. In case a
malicious input from Alice could exploit a vulnerability to
compromise Bob’s system, which could even further spread
to other entities that interact with Bob [7], recording all
transactions can help identify the entry point of attacks,
allowing malicious actors to be identified and quarantined
in a timely manner.

3. Blockchain’s Role in Metaverse Trust and
Transactions

In this section, we first provide a brief background on
blockchains, and then introduce Ethereum blockchain and
the Ethereum Name Service (ENS); we use Ethereum and
ENS an example to articulate the blockchain’s capabilities
in supporting secure transactions of our metaverse tea party
application case. Specifically, we analyze Ethereum from
the aspects of data authentication, system scalability, and
the truthfulness of its decentralization capability, to reveal
open issues in using blockchain-based solutions to support
metaverse.



3.1. Background

A blockchain5 is an immutable ledger that is replicated
at every participating node in a network. Its immutability
is achieved via hash-chained blocks in which each block
contains a cryptographic hash of its data and the hash of the
preceding block. This hash-chaining prevents the tampering
of on-chain data, because changing any block will lead to
either changing all subsequent blocks, or otherwise being
detected. Each block contains a list of transaction records
stored in a Merkle tree to enable efficient verification of the
records’ integrity [8].

There are typically two types of participants in a
blockchain network: full nodes and simple nodes. Full nodes
are responsible for collecting transactions, verifying the
transactions, adding new blocks to the chain, and keeping
the entire chain history. In contrast, simple nodes perform
two functions: sharing with full-nodes the transactions to be
added to the blockchain, and querying full nodes to obtain
on-chain data, such as fetching a particular block or getting
a Merkle tree for transaction verification [9].

Blockchains can be categorized into two types: identity-
based blockchains and anonymous blockchains. In identity-
based blockchains, nodes on the network need to have
semantically meaningful name as identities (as described
in 2.2), so that they can be authenticated and authorized
to participate in the blockchain network by its governance
entity. In anonymous blockchains, nodes are identified by
the hash of their public key6. An entity E uses its private
key to sign its data, which can be authenticated using E’s
public key specified in its identity. This form of identity
is referred to as a self-certifying name. Since these names
cannot be directly used as-is to authenticate a real-world
identity, anonymous blockchain cannot perform authoriza-
tion of participants. This lack of authentication leads to the
potential Sybil problem: any single real-world entity can
masquerade as multiple entities in a blockchain system. In
order to defend against Sybil attacks, instead of using a
majority vote, anonymous blockchains use a probabilistic
election mechanism as the gating function to approve the
addition of each new block. To append a new block to the
chain, this mechanism requires candidates to either perform
an expensive operation, or to show the possession of large
quantities of resources. The two most prominent examples
of gating functions are proof-of-work and proof-of-stake.

Proof-of-Work (PoW) requires a computationally opera-
tion [10]. Participants compete with each other in running
hashing functions in a brute-force manner to find a nonce
that results in an appropriate hash. PoW’s high energy
consumption and slow transaction rate eventually led to
other types of gating functions such as Proof-of-Stake.

Proof-of-stake (PoS) relies on staked assets. In each
round, every node first stakes some tokens. A node’s prob-

5. This paper uses the term blockchain to refer to blockchain’s imple-
mentation as a distributed ledger.

6. This is not to be confused with wallets that identify users of the
blockchain. Although they are also identified by their public key hashes,
they do not participate in the network infrastructure or block proposal.

ability to become the block proposer in a round is propor-
tional to its total amount of staked tokens. Malicious actions,
once detected, are penalized by having an amount of the
staked tokens removed7 [12].

Gating functions coordinate the network so that only
one node is authorized to add the next block to the chain
at a time. However, since they are probabilistic in nature,
it is possible for more than one node propose next block
in one block proposal period, resulting in the chain forking
into multiple branches. This forking problem is mitigated
by probabilistic block finality, in which the probability of
the separate branches of the same chain growing in parallel
decreases exponentially with each consecutive round [10].
Hence a block, and the transactions therein, is only ac-
cepted as finalized after a certain number of blocks have
accumulated on top of it. In addition, since an anonymous
blockchain provides a flat, immutable, and replicated ledger
for the entire system, the block proposal period must be long
enough to allow the newly proposed block to be dissemi-
nated to the entire network before next cycle. Compounded
with the expensive gating function, anonymous blockchains
typically have much lower transaction throughput compared
to identity-based blockchains [11]. Furthermore, we also
note that the anonymity nature makes the chain unable
to verify the contents of blocks being added. Therefore,
misbehavers can only be identified by external means.

3.2. Case Study: Ethereum

Ethereum is an anonymous blockchain with compute
capability, in which the ledger is used to maintain a state
machine among nodes. Ethereum’s compute environment,
the Ethereum Virtual Machine (EVM) is a stack-based vir-
tual machine that executes programs stored on-chain called
smart contracts. These smart contracts change the state
of the virtual machine and support complex transactions
between on-chain entities and blockchain-based applications
(decentralized applications, or DApps). Nodes agree on the
order of execution of smart contracts in order to main-
tain the same EVM state globally [13], [14]. Since many
chains extend Ethereum’s runtime to be EVM-equivalent or
EVM-compatible, Ethereum provides a relevant blockchain
implementation to discuss the challenges of a blockchain-
supported metaverse.

Supporting the trust policies described in Section 2
requires semantically meaningful names, thus anonymous
blockchains need a mapping system to map semantic names
to flat, semantic-free blockchain identifiers. In recent years,
multiple blockchain-based systems have developed name
services to meet this need, such as Ethereum Name Ser-
vice (ENS) [15], Unstoppable Domains [16], and Hand-
shake [17]. We use ENS to demonstrate a currently im-
plemented mapping service, and examine operational chal-
lenges in a widely deployed metaverse.

7. For example, in voting based PoS algorithms(e.g Casper FFG), nodes
stake an amount of token to become a validator for voting for a particular
block. In the case of double voting, violator’s staked coins are slashed [11]



Figure 1. Replication of ENS across nodes in the Ethereum network.

Ethereum Name Service. The Ethereum Name Service is
a widely-adopted naming service, with over approximately
2.8 million active names [18]. ENS follows the DNS naming
hierarchy, with a root domain at the top, .eth as a top-level
domain (TLD)8, and allocate names under the .eth domain.
An allocated ENS domain name looks like:

mysubdomain.mydomain.eth.

In addition to .eth, ENS also has another TLD in use: .test
(only for use on an Ethereum test network). The appearance
of all other TLDs are imported from DNS namespace [15].

ENS closely follows DNS’s name ownership and del-
egation model. Names in ENS have a registrant and a
controller. A registrant owns the registration of an ENS
domain. It can delegate and reclaim its subdomains. The
controller of an ENS domain D has the power to edit the
records associated with D, and can transfer the control of
the name to other entities, but cannot change the registrant
or create further subdomains. All ENS names (domains and
subdomains) are registered in the ENS registry [19] smart
contracts (Figure-2).

ENS maps hierarchically structured semantic names to
blockchain identifiers and other metadata. ENS names are
resolved to its metadata through smart contracts. The two
smart contracts that carry out the mapping are a registry
and a resolver. The registry maps names to their respective
resolvers. There is only one registry for the ENS namespace:
the ENS Registry. Resolvers resolve domains and their sub-
domains to the appropriate metadata. Names are resolved
by an ENS public resolver by default, although domain
owners can also configure and deploy their own resolvers.
Resolvers, like all smart contracts, are identified by their
on-chain address (the hash of it’s public key). Resolution is
not necessarily hierarchical, as names can be resolved by
going directly to its resolver from the registry.

Different from DNS, ENS’s authentication does not
follow the name hierarchy, but is based on the relations
recorded in the blocks stored in the chain, and on the
immutability of the chain in recording the history of all name
registrations. The EVM also must be a trusted execution
environment for the smart contracts that register and resolve
names. ENS’s smart contracts are owned by ENS DAO9,

8. .eth is not registered with ICANN as a top-level domain.
9. ”DAO” refers to a Decentralized Autonomous Organization, a gover-

nance body which is not considered a central authority [13].

with the ownership of the ENS root domain held by a multi-
signature smart-contract controlled by 7 administrators.

3.3. Challenges

Although blockchain provides strong guarantees as an
immutable distributed ledger, its architecture and limitations
provide challenges to becoming a globally ubiquitous infras-
tructure. In this section, we discuss the following challenges:

1) Data Authentication
2) Scalability
3) Centralization

Data Authentication Querying Ethereum nodes (and by
extension, ENS) is not free. In order to make a read-only
call that does not alter the state of the EVM (such as
the resolution of a name), developers can either run their
own node, which can be expensive, use a node-as-a-service
platform to provide a node to service calls to the network,
or use a paid 3rd-party query service. To authenticate the
query results obtained from third-party services providers,
callers must operate their own simple-node (as defined in
section 3.1) or higher in order to verify the block-headers
and cross-reference state of the chain with the result given.
Therefore, authenticating on-chain data is not a trivial task.

Scalability Every full node on the Ethereum network is
responsible for running a complete instance of the Ethereum
distributed state machine. These nodes must replicate all
activity on the network in order to maintain a synchronized
state machine. With a current network size of 11,000 nodes,
all on-chain code and transactions are replicated 11,000
times (Figure-1) [20]. The adoption of Ethereum and the
use of DApps add pressure to every individual node and
further raise the threshold for qualification of a full node.

An increase in network demand also raises the threshold
for users to interact with the chain. As network demand
increases, the fee required to execute a transaction (or make
a record on the chain) increases. An unreasonable increase
in cost, or the inability of a chain to scale and keep fees
low, would prevents users from interacting with the chain.
An inability to keep latency low will prevent users from
experiencing the metaverse in real-time. The blockchains
that support the metaverse will have to maintain low fees
and latency at a massive scale.

To address the scalability issue, layer 2 blockchains
have been developed to increase transaction speed, lower
transaction cost, or a mix of the two. Layer 2 blockchains
execute and record transactions on their own chain and
store digests of these transactions in their layer 1 chain, in
this case Ethereum. Layer 2 blockchains have independent
security and trust assumptions from the layer 1 chain, and so
trust in both the layer 2’s security and the layer 1’s security
are a prerequisite to their use. In addition to the improved
performance compared to the layer 1, layer 2’s also alleviate
demand from the layer 1 to keep its latency and cost down.

Query services also exist to scale the data availability of
a blockchain. Query services aggregate and serve blockchain
data to consumers, removing the need for a node to query



Figure 2. Comparison of ENS smart contract architecture with DNS distributed architecture.

on-chain data. Since query services do not need to store the
data they aggregate in a Merkle tree, queries of can be done
more efficiently, especially in the case of historical data. The
use of data from these services imply trust in both the chain
and in the query service.

Centralization. Anonymous blockchains are designed with
the goal of achieving decentralization among nodes in the
network. However, gating functions are biased towards the
favoring most powerful entities in the network, creating
a centralization risk [21]. For example, Ethereum’s proof-
of-stake favors participants with more coin staking capac-
ity while Bitcoin’s proof-of-work favors participants with
more hashing power. As a result, powerful actors can gain
more block rewards and transaction fees than the others
and increase their capacity to dominate the network. Small
actors can choose to operate as a part of a larger pool
to optimize returns, further contributing to centralization.
Today, this trend is observable in most popular blockchains.
For example, more than 50% of the Ethereum validator
capacity is controlled by 8 staking pools [22], while more
than 50% of the hashing rate of Bitcoin is controlled by three
mining pools [23]. Mitigating centralization risk is crucial in
a blockchain ecosystem since whoever controls 51% percent
of the network can overwrite previous blocks, thus nullifying
the immutability guarantee given by the blockchain (e.g.
double-spending attack) [24].

4. Discussion

In this section, we identify the challenges in operating a
blockchain system to serve metaverse. We articulate the root
cause of the identified scalability and cost challenges in ENS
through a comparison with DNS and examine the role of an
immutable ledger (i.e. a blockchain) in trust management.

4.1. ENS-DNS Comparison

From the description of ENS in Section 3.2, one can
identify several fundamental differences between ENS and
DNS (Figure-2).

First, DNS name registration and lookup are completely
distributed. Each domain owner is the sole authority for
name assignment in its domain, and each domain owner runs
their own DNS nameserver(s) to provide lookup services
only for its assigned names [25]. In contrast, all allocated
ENS names are stored in the blockchain, which is replicated
on every node in the network.

Second, the DNS namespace is a shallow tree. Looking
up a DNS name is a top-down search starting from a root
domain name server, and the search walks down one branch
of the tree just a few hops to reach the server with the
answer. In contrast, performing an ENS resolution does not
involve a traversal of a hierarchical tree but a flat, two-step
lookup: first querying the ENS Registry to obtain a name’s
resolver, and then querying the resolver.

Running a DNS server is cheaper compared to running
an Ethereum node, since an DNS nameserver can dedicate
its hardware to the singular task of name resolution. A
node provisioned with the intent of ENS lookup will need
support the computational overhead of being a node, such as
continuously querying the network to stay up-to-date with
all on-chain activity. Furthermore, a developer intending
provide ENS lookup in their application will need to ensure
that their node is reachable from all deployments of the
application, which will require DNS.

Third, DNS domain owners are incentivized by necessity
to deploy their name servers to make their name reachable
to users, and their cost is low. In contrast, ENS name and
domain owners are not responsible for the infrastructure
supporting their name(s). Each full10 Ethereum node hosts

10. Ethereum has a further category of an archival node, which stores
the entire history of the chain. Ethereum full nodes keep the most recent
128 blocks.



not only the entire namespace but also all history of changes,
and each name resolution requires the use of the Ethereum
network’s resources. Nodes operators are incentivized by
transaction fees and block rewards to record and serve
blockchain-related data, e.g. ENS name registration and
resolution.

Despite the above differences, ENS and DNS also
share an important commonality: both systems assure name
uniqueness by having a governing body control the root
domain of the namespace. The Internet Corporation for
Assigned Names and Numbers (ICANN), a global non-profit
organization, governs DNS. It controls the assignment of
unique top level domain names under the root domain. ENS
DAO governs ENS. Governance decisions are made via a
voting system among holders of the DAO’s governance to-
ken. ENS’s root domain is controlled by a multisig contract
whose keys are held by seven people.

4.2. Namespace Uniqueness

Running metaverse applications across entities from dif-
ferent domains requires that all entities have unique names.
In today’s internet, all applications use of uniquely assigned
DNS names. However, today’s different blockchain naming
systems (e.g. ENS, Unstoppable Domains) operate indepen-
dently from each other, have top-level domain names that
are not registered with ICANN, and do not have an over-
arching body to coordinate their different semantic names-
paces. Unstoppable Domains has offered several TLDs such
as .bitcoin, .wallet, and .blockchain in its own namespace.
ENS, on the other hand, limits ENS-native name registration
to be all under .eth, and supports the import of DNSSEC-
enabled DNS names.

Even if one could assume that the names from dif-
ferent blockchain-based naming systems will continue to
be unique, having multiple name resolution systems can
also complicate application development, since applications
need to understand which naming system should be used
for which given blockchain-based domain. If we assume
that all blockchain systems will follow the practice of ENS
(allocating names under a single TLD only), and that even-
tually their specific TLD name will have been registered
with ICANN, then a blockchain-based metaverse application
could start its name resolution with the DNS root and
convert to a blockchain based naming system when it hits
a blockchain TLD (e.g. .eth). This would allow blockchain-
based semantic names to get resolved by off-chain entities.

4.3. Blockchain’s Role In Trust Management

Anonymous blockchains provide a trustless platform for
untrusted parties to maintain a replicated ledger state. In
spite of having untrusted actors, on-chain transactions still
require authentication to occur. In our example, an entity,
/alice, wants to deliver digital tea to /bob. In order to
make this on-chain transaction, Alice first needs to know
how to address /bob, which requires Bob’s semantically
meaningful name to be mapped to his public key binding

and be endorsed by someone trusted by Alice. In the case
of ENS, entities such as Alice trust the ENS smart contracts
that define the name-key bindings and the infrastructure that
serves those bindings. Alternatively, metaverse applications
might adopt a decentralized trust model in which name-key
bindings can be defined in different forms (e.g. in a web-
of-trust fashion) by different parties and then store these
name-key bindings on the blockchain for immutability. In
both the case of ENS and decentralized trust management,
trust relies on the entity that created the binding, not on the
blockchain itself.

5. Conclusion

Anonymous blockchains have been viewed as opening a
new direction to build decentralized and secure systems. In
this paper, we verify this commonly accepted view through
a set of basic functional requirements needed in a simple
metaverse use case, which illustrates the necessity of us-
ing semantically meaningful names in securing transactions
in a decentralized metaverse. We then analyze how well
blockchain-based solutions may provide those functions.

Using Ethereum and ENS as a representative exam-
ple of blockchain-based systems, we show that, although
ENS developed a solution for mapping semantic names
to blockchain’s self-certifying names, the solution records
name allocations only; these immutable recordings provide
a highly replicated and publicly accessible logging of all
name allocations. The logging enables, but is not equivalent
to, authentication and authorization by itself for the follow-
ing reasons: i) Trust relationships are defined externally,
and then stored on-chain for immutable recording; ii) the
mapped content is not validated according to the polices to
be used in performing authentication and authorization.

We also show that blockchain-based solutions face scal-
ing challenges which stem from the blockchain’s design of
recording and replicating the complete history in all full
nodes. Our analysis further shows that blockchain-based
solutions may require centralized functions in name lookup,
lacks assurance for name uniqueness and accessible data
authentication at least for the time being.

Although blockchains have been viewed as an enabler
for decentralized applications and considered as providing
security solutions for decentralized metaverse, the set of
open issues revealed by this work raises a question mark
to the current capabilities that blockchains provide. As
next step, we plan to clearly identify the root cause of
the identified open issues with blockchain-based security
solutions, hence to further deepen our understanding on both
the capabilities and intrinsic limitations of blockchain-based
systems.

References

[1] “The Metaverse is the Future of Digital Connection | Meta.”
[Online]. Available: https://about.meta.com/metaverse/

[2] “Metaverse landscape & outlook series.” [Online]. Available:
https://versemaker.org



[3] A. Al-Ghaili, H. Kasim, N. M. Al-Hada, Z. Hassan, M. Othman,
T. Jakir Hussain, R. Kasmani, and I. Shayea, “A Review of Meta-
verse’s Definitions, Architecture, Applications, Challenges, Issues,
Solutions, and Future Trends,” IEEE Access, vol. 10, pp. 125 835–
125 866, Dec. 2022.

[4] “Lamina1 white paper.” [Online]. Available:
https://www.lamina1.com

[5] B. Lampson, “Computer Security in the Real World,” Annual Com-
puter Security Applications Conference, vol. 16, Dec. 2000.

[6] S. Garfinkel, PGP: Pretty Good Privacy. ”O’Reilly Media, Inc.”,
1995, google-Books-ID: cSe 0OnZqjAC.

[7] Z. Li, Q. A. Chen, R. Yang, and Y. Chen, “Threat Detection
and Investigation with System-level Provenance Graphs: A
Survey,” Dec. 2020, arXiv:2006.01722 [cs]. [Online]. Available:
http://arxiv.org/abs/2006.01722

[8] R. C. Merkle, “A Digital Signature Based on a Conventional En-
cryption Function,” in Advances in Cryptology — CRYPTO ’87, ser.
Lecture Notes in Computer Science, C. Pomerance, Ed. Berlin,
Heidelberg: Springer, 1988, pp. 369–378.

[9] A. M. Antonopoulos, Mastering Bitcoin: unlocking digital cryptocur-
rencies. ” O’Reilly Media, Inc.”, 2014.

[10] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System.”

[11] Y. Xiao, N. Zhang, W. Lou, and Y. T. Hou, “A Survey
of Distributed Consensus Protocols for Blockchain Networks,”
IEEE Communications Surveys & Tutorials, vol. 22, no. 2,
pp. 1432–1465, 2020, arXiv:1904.04098 [cs]. [Online]. Available:
http://arxiv.org/abs/1904.04098

[12] “Proof-of-stake (PoS).” [Online]. Available: https://ethereum.org

[13] A. Antonopoulos, Mastering Ethereum. O’Reilly Media, Inc., Mar.
2023, original-date: 2016-08-10T15:07:54Z. [Online]. Available:
https://github.com/ethereumbook/ethereumbook

[14] “Ethereum development documentation.” [Online]. Available:
https://ethereum.org

[15] “ENS Documentation.” [Online]. Available: https://docs.ens.domains/

[16] “Unstoppable Domains.” [Online]. Available:
https://unstoppabledomains.com/

[17] “Handshake Developer Documentation.” [Online]. Available:
https://hsd-dev.org/

[18] M. Inoue, “ENS.” [Online]. Available: https://dune.com/makoto/ens

[19] N. Johnson, “ERC-137: Ethereum Domain Name Service - Specifi-
cation.” [Online]. Available: https://eips.ethereum.org/EIPS/eip-137

[20] etherscan.io, “Ethereum Node Tracker | Etherscan.” [Online].
Available: http://etherscan.io/nodetracker

[21] A. E. Gencer, S. Basu, I. Eyal, R. van Renesse, and
E. G. Sirer, “Decentralization in Bitcoin and Ethereum
Networks,” Mar. 2018, arXiv:1801.03998 [cs]. [Online]. Available:
http://arxiv.org/abs/1801.03998

[22] “Staking Pools Services Overview - Open Source Ethereum
Blockchain Explorer - beaconcha.in - 2023.” [Online]. Available:
https://beaconcha.in/pools

[23] “Pool Stats - BTC.com.” [Online]. Available:
https://btc.com/stats/pool

[24] “51% Attacks,” Jul. 2020. [Online]. Available: https://dci.mit.edu/51-
attacks

[25] P. Mockapetris, “RFC 1034 DOMAIN NAMES -
CONCEPTS AND FACILITIES.” [Online]. Available:
https://www.ietf.org/rfc/rfc1034.txt


