
Congestion Control for Bes
Why We Needa New Pa

The current congestion control paradigm assumes that end users will use a single mandated
algorithm. While the work done in this area has proven to be of great value, we need to recognize

as a community that this paradigm is clearly inappropriate for future public networks.
Christopher Le€elhoc+, Fore Systems

Bryan Lyles, Xerox Pelo AIto Research Center
Scott Shenker, Xerox Palo Alto Research Center

and Lixia Zhang, UCLA

he first generation of telecommunication networks
were circuit-switched. In such networks, each circuit is
allocated resources along a path for its exclusive use;
there is no uncertainty about the bandwidth or delays

along the path. Packet switching introduced a very different
mode of communication. In most packet-switched networks,l
sources send their data packets into the network without any
prereserved resources, and the network exerts its “best effort”
to service the packets. The advantage of packet switching is
that it allows the network resources (bandwidth, buffers) to be
statistically shared among all sources. This is especially impor-
tant for computer communications, since data traffic tends to
be rather unpredictable and bursty; prereserving resources
would lead to low utilization levels, whereas the statistical
multiplexing of packet switching allows one to achieve much
higher utilization levels. The quality of service (in terms of
packet delivery delays and drops due to buffer overflow) of
best-effort service depends not only on the network actions
(which the network can control), but also on the offered load
(which the network cannot control). Thus, in best-effort ser-
vice, the network tries to forward all packets as soon as possi-
ble, but cannot make any quantitative assurances about the
quality of service delivered.

The unpredictable and bursty nature of computer traffic
not only prevents the network from making quality assur-
ances, but also creates the problem of congestion. The ratio of
average demand to peak demand on any particular link is
quite high. Thus, while it is advisable to provision the network
to have adequate resources to satisfy the average demand, it is
not economically feasible to provision the network to satisfy
the peak demands. Consequently, there will be times when
the network is momentarily overloaded when many sources
happen to send their data simultaneously. To control this con-
gestion, the network must provide feedback to the users indi-
cating that the network is currently, or is about to become,
overloaded; in response to such a congestion signal, the users
should inject their packets into the network more slowly.
These processes, the feedback from the network and the
source response, form the fundamental basis of congestion

X 2 5 and its descendents are exceptions

controL2 These congestion control algorithms have been the
subject of intense study, and the community has made tremen-
dous advances, both in developing effective algorithms and in
understanding how they work; see [Z-131 and references
therein for a few representative references.

Given the bountiful fruits of this research endeavor and the
obvious success of the Internet with its congestion control
algorithms, why are we revisiting this problem? To understand
this, note that research on congestion control has almost
exclusively focused on the nature of the congestion signals
and of the response to those signals. The current congestion
control paradigm is based on the tacit assumption that we, as
a community, can design the response of end users to conges-
tion signals. In short, this paradigm assumes that all users are
willing and able to cooperate. These congestion control
designs do not work if some users choose to misbehave; in
particular, greedy users can capture more than their share of
bandwidth by not responding to congestion signals. Such
greedy users not only capture more bandwidth for themselves,
but also seriously degrade the service obtained by cooperating
users. Thus, the current paradigm provides reasonable service
to users only if all (relevant) users cooperate.3

The assumption of user cooperation has been, for the most
part, valid in the Internet. Until recently, the Internet user
community was a small, relatively close-knit, and technically
knowledgeable community. There has been widespread adher-
ence to informal rules of etiquette (not just for congestion
control, but also for the proper use of electronic mail and
other issues). Moreover, the widespread deploynient of UNIX
and its variants as the operating system of choice allowed the
“standard” congestion control algorithms, transmission control
protocol (TCP) Slow-Start [6] , to be almost universally
deployed.

As observed by Jain [l], congestion control really has two separate com-
ponents congeshon avoidance and congestion recovery. We will be focus-
ing on congestion avoidance in this article

We say relevant users since the service obtained by a user in one portion
of the Internet typically does not depend in detail on the behavior of anoth-
er user far away.

10 0890-8044/96/$05.00 Q 1996 IEEE lEEE Network JanuaryiFebruary 1996

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on August 13,2010 at 23:59:40 UTC from IEEE Xplore. Restrictions apply.

We are now facing a rather dramatic shift
in the nature,of wide-area computer net-
works. First, the Internet is now publicly
accessible, and the user community is no
longer small nor close-knit. We cannot
expect adherence to informal social rules to
continue to be the norm. In a public net-
work, general appeals to a vague “public
interest” will not be sufficient to induce
cooperation. Moreover, the user population,
or more correctly the set of host machines, is
much more heterogeneous, so deployment
of congestion control algorithms through the
distribution of UNIX code will not be suffi-
cient to ensure widespread deployment (even
if users wanted to cooperate). If the correct-
ness of the network design depends on hav-
ing a single, universally deployed standard, it
will be extremely difficult to update that
standard; smooth network evolution requires
the assumption of multiple versions deployed
at the same time.

Second, the diversity of applications on
the Internet is ever-increasing. Best-effort
service can be used for packet voice and
video (such as vat and nv) and reliable multi-
cast [14] (such as is used in wb) in addition
to its more traditional uses of file transfer, electronic mail,
and remote login. It no longer makes sense to artificially con-
fine users to a single acceptable congestion control algorithm
when their needs differ.

Third, and most important, we have moved into an era of
commercial networking. While the Internet started out as a
research network, it has gone through a rapid transition to a
commercial service. Other network services, such as asyn-
chronous transfer mode (ATM), have been designed from the
start as international public telecommunication services, and
have thus been “commercial” from conception. The very
nature of best-effort service precludes specifying the actual
packet delays a user will experience. However, users of a com-
mercial network are unlikely to accept having the service they
receive depend on the “polite” behavior of other users.

Thus, the basic paradigm of congestion control for best-
effort service must be reformulated to suit the new context of
commercial public networks. Our congestion control paradigm
must be built on the following two basic principles. The first
principle, which was originally articulated in connection with
work on fair queuing [15, 161, states that the adequacy of ser-
vice delivered to a particular user should not depend on the
detailed behavior of other users. Clearly, the bandwidth avail-
able to a particular user must depend on whether other users
are also trying to use the network at the same time, but the
network must try to isolate the service provided to a user
from the details of how other users respond to congestion.
This principle renders the issue of cooperation moot; the ser-
vice one user gets should not depend on whether or not all
users cooperate. Providing isolation entails enforcing limits on
the resources made available to users. Resources should not
be given out on a first-come, first-served basis; the network
must more actively manage those resources.

The second principle is that the network should provide
enough feedback to users that they can effectively utilize the
available resources. If the network is enforcing resource limi-
tations, it should provide users with enough information about
those limitations so that each user can use her own share of
the resources effectively. This requires that users have a
model of how the network is behaving; that is, we need a ser-

vice model, or specification, for best-effort
service.

The reformulation of congestion control
for best-effort service according to these
principles is the subject of this article. We
are not attempting to design specific new
congestion control algorithms. Instead, we
are merely trying to articulate the design
principles. Many of these principles have
been discussed in other forums; however,
with A T M current ly designing a best-
effort service under the name Available Bit
Rate (ABR) and the increasing commercial-
ization of the Internet, these issues warrant
revisiting.

In the next section we outline the service
model for best-effort service. In the third
section we describe the set of mechanisms
available to implement this service model
and contrast their various roles. The fourth
section articulates the implications of our
findings for future network design. We con-
clude, in the fifth section, with a discussion
of some well-known examples of congestion
control mechanisms.

Service Model
e service model is an abstract definition of the service that r a network client will receive. It defines a long-term contract

between the network and the application writer by defining a
stable interface; details may change, but the semantics of the
service cannot. Thus, the service model documents the com-
mitments a network makes to a set of clients when they
request that service.

In the past the Internet community has not specified the
service model for best-effort traffic. Internet service has only
been defined operationally, and network applications are
designed to be flexible enough to not need a particularly well-
defined service.

Currently, the Internet’s best-effort service is provided by
first-in first-out (FIFO) queuing and tail-first dropping (last-in
first-dropped) in routers, but there is nothing in the specifica-
tions that prevents other queuing strategies from being used.

On the other hand, because of its commercial nature and
demanding service requirements of the deployed end-user
equipment, the telecommunications industry has historically
written service requirements and models early in the process
of defining a new service. This difference is largely due to the
fact that the telecommunications industry started with a spe-
cific application (i.e., telephony) and built a network to suit it.
The Internet, on the other hand, started in exactly the oppo-
site way: it started with a new network technology and
explored, successfully, new applications that were able to use
the undefined service.

As the telecommunications industry begins to use ATM as
its infrastructure, it is also moving to incorporate best-effort-
like services in ABR. Therefore, it is in the context of ATM
that the first attempt to write down a service specification for
a best-effort traffic class is being made. As of Autumn 1995
the first phase of this work was mostly done [17], but consid-
erable detail remains to be finalized. The resulting service
model has sufficient generality to be useful to the Internet
community. The service model described below served as the
basic input to the development of the ATM service model
described in 1.371 [17] but is less formal than the 1.371 text.

~~ ~ ~

IEEE Network Januarypebruary 1996 11

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on August 13,2010 at 23:59:40 UTC from IEEE Xplore. Restrictions apply.

We now describe the broad outline of a
service model for best-effort traffic. The first
issue to consider in a service model is the
requirements of the applications which will
use best-effort services.

These requirements form the basis of the
service requirements. We claim that the
delay requirements are as soon as possible
(ASAP), and corresponding bandwidth
requirements are as much as possible
(AMAP). Applications that utilize best-
effort service can typically use data as soon
as it arrives. Although many of them, such as
remote login, desire a short delivery delay,
nevertheless they always use the data, even
when the data has suffered from a long net-
work delay; that is, these applications do not
have quantitative real-time constraints. Simi-
larly, applications that use best-effort service
can typically use as much bandwidth as is
available, yet are capable of making progress
with as little as they are given. If the applica-
tion completes sooner due to being given
additional bandwidth, the user’s satisfaction
will increase; the sooner the application completes, the better.
This is in sharp contrast to applications such as voice trans-
mission, where failure to receive specified service amounts
and delays may result in application failure, and the applica-
tion is intrinsically incapable of using additional bandwidth
even when it is available. In short, the bandwidth and delay
requirements of best-effort applications are elastic or scalable.

Because the bandwidth requirements are scalable, users
may dynamically share available bandwidth. This leads to a
major difference between best-effort service and previously
existing telecommunications circuit services: the bandwidth
available to the user, and the delivery delay of their packets,
varies moment to moment. More important, there should not
be an admission control to this service [18]. Consequently,
there should not be any quantitative bounds to the service;
there are no lower bounds on bandwidth and no upper bounds
on delay.

What does it mean to offer a service model when the net-
work makes no quantitative assurances? There are two kinds
of commitments the network can make: relative and procedu-
ral. Relative assurances are those in which the network
ensures that the bandwidth received by those flows that share
the same path or the same bottleneck point is fairly appor-
t i ~ n e d , ~ according to some commonly agreed-upon definition
of fa i rne~s .~ Why include such a relative assurance of fairness?
There are several reasons for this. The first is that, with a
best-effort service, the user is not purchasing a quantified ser-
vice, but rather a procedure for delivering service. Customers
and regulatory bodies are likely to insist that this procedure
be fair. The second reason is that there seems to be a strong
link between network stability and fairness. While it is not
known if fairness is a necessary condition for stability, it is

Fairness does not necessarily imply equal portions. Weighted fairness
provides network operators the ability to apportion bandwidth on the basis
of policy considerations. I371 uses the term “defined allocation policy”
instead of ‘tfairness” to emphasize this point. Fairness, however, does
imply that there will not be unequal allocation for non-policy reasons.

5 Relative assurances can also apply to the assurance that higherpriority
levels will receive better service (even though no level is given a quantitative
assurance).

known to be a sufficient condition [26].
Procedural assurances tell users what they

can expect if they respond to the network‘s
congestion signals appropriately. Although
the absence of admission control makes it
impossible to ensure quantitative delay or
throughput in service, there are still possibili-
ties to control packet losses. A user can
achieve a low packet loss rate if the network
provides feedback to inform users of the
bandwidth actually available at that instant
in time. A procedural assurance takes the
form “if you use the service in this particular
manner then you will not lose (many) pack-
ets.” While the network cannot promise how
many packets it will deliver or when it will
do so, it can make the promise that if the
source behaves in a certain way in response
to network conditions, then no (or few) pack-
ets will be dropped due to congestion. Thus,
the form and content of that feedback com-
pose the most important element of the ser-
vice model. The relative assurances described
above mean that two users sharing the same

path and same weights will receive similar feedback content.
Taken together, these relative and procedural service

model elements define a service which operates via a closed-
loop control. The users can only achieve good performance
when they participate in the closed-loop control system. Of
course, a full service model will involve much more detailed
specifications. Interested readers are referred to [20] for the
evolving ABR service definition in the ATM community.

Mechanisms
o support the service model, the network must actively T manage its own resources and also provide feedback to

users. Users must respond effectively to these congestion sig-
nals. What mechanisms can we use to accomplish these goals?

In this section we discuss four orthogonal aspects of con-
gestion control mechanisms out of which a best-effort service
can be built: packet scheduling, buffer management, feedback,
and end adjustment. We believe it highly likely that elements
from all four of these aspects are required for a complete
description of a best-effort mechanism. Our purpose here is to
delineate the different roles these aspects play in providing
effective congestion control for best-effort service.

Scheduling
There are two ways in which the network can actively manage
its own resources: packet scheduling and buffer management.
When the instantaneous load is very light and there is little, if
any, queuing of packets, the scheduling and buffer manage-
ment algorithms show little effect. When there are sizable
queues, however, these two mechanisms control which flows
get access to bandwidth and the buffer. Thus, in what follows
we will focus mainly on the behavior of these mechanisms
under high instantaneous loads.

Scheduling controls the order in which individual packets
get served (or whether they get served at all). Scheduling is
the most direct control over how the network serves every
user. We furthermore believe it is the only effective control.
As we argue below, buffer management alone cannot provide
flexible and robust control of bandwidth usage. Moreover, if
we use scheduling effectively, the buffer management algo-

12 IEEE Network * Januarypebruary 1996

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on August 13,2010 at 23:59:40 UTC from IEEE Xplore. Restrictions apply.

rithm need not be precisely tuned.
Two of the most popular scheduling algo-

rithms are FIFO and weighted fair queuing
(WFQ) [16]. FIFO serves packets in the
order of arrival. Due to its simplicity, FIFO
scheduling can be found in most of today’s
network implementations. With FIFO, all
users experience the same delay on average,
even if the overload is caused by a small
subset of the users; thus, it provides no pro-
tection against uncooperative users. Worse
yet, it may also lead to pathological unfair-
ness even when all end users behave proper-
ly; this phenomenon of flow segregation is
described in [5 , 161. FIFO scheduling may
also create packet clumps; such clumps are
formed when a series of packets in a particu-
lar flow enter the switch well separated but
then, because they are queued up and there
have been no other intervening arrivals, the
packets leave the router in a back-to-back
clump. This form of clumping can cause con-
gestion at downstream routers.

Fair queuing, or any of its rough function-
al equivalents such as round-robin, attempts
to split the bandwidth evenly among the cur-
rently present flows; see [16, 21-23] for
more extensive discussion of such scheduling
algorithms. This active management of band-
width provides each flow with a great degree
of protection from other flows. FQ also
avoids or reduces the packet clumping prob-
lems; because of its round-robin-like behav-
ior, FQ interleaves packets from competing
flows. This can be thought of as putting a flow through a low-
pass filter.

We are not saying that all switches must implement FQ,
only that they must implement some scheduling algorithm
that can enforce a bandwidth allocation policy. Otherwise,
greedy users can capture more than their share of the band-
width.

However, scheduling alone does not prevent substantial
packet losses. Because network load can change rapidly, pack-
ets are likely to be dropped whenever a surge of packets
occurs unless adequate buffer space is available to temporarily
harbor the packets. Thus, buffer management algorithms are
an important part of congestion control; we discuss them in
the next section.

Buffer Management
Buffering is required at a switch whenever packets arrive
faster than they can be sent out. However, if the packet over-
load persists for a long enough period, the switch’s (necessari-
ly finite) buffering capacity will eventually be exceeded, and
packets must be discarded. The role of buffer management is
to select which packets get dropped in such an overload situa-
tion. Our best-effort service model requires that a user who
responds appropriately to the congestion feedback given by
the network will see a low loss rate. When the bandwidth
available to a user decreases, the system must provide suffi-
cient buffering so the user has a chance to reduce his or her
load. Thus, buffer management is an important aspect of con-
gestion control. Two of the most popular schemes for buffer
management are shared buffer pool and per-flow allocation.

The shared pool approach aggregates the buffer require-
ments of all flows into one buffer pool. It serves packets in a

first-come first-use (FCFU) way, and packet
dropping is based on the occupancy level of
the shared pool. Due to its simplicity, the
FCFU pool can be found in most implemen-
tations today. Shared pool buffer manage-
ment clearly does not protect flows from
each other; a single flow can occupy all of
the buffers, causing other flows to be denied
service.

Schemes that allocate buffers on a per-
flow basis keep track of the buffer utilization
of each flow and drop packets based on the
occupancy level of an individual flow’s allo-
cated buffers. Per-flow buffer management
schemes protect well-behaved flows in terms
of buffer usage. Knowing the amount of
buffering available can help the flow deter-
mine how it should respond to congestion
signals in order to prevent excessive packet
drops. There are a wide variety of possible
policies on buffer allocations; in addition to
depending on the number of other flows pre-
sent, the buffer allocation might depend on
the current allocated bandwidth and the pre-
vious buffer allocation. Such sophisticated
buffer allocation policies are probably the
least well understood aspect of congestion
control mechanisms.

Feedback

Feedback from the network to the network
client provides the client with information
necessary to adjust to changes in the avail-

able bandwidth. Over the years there have been many differ-
ent mechanisms described for feedback. What considerations
are relevant when designing the feedback mechanism?

One important factor is multicast data delivery - the deliv-
ery of data from one or more senders to a group of receivers.
Multicast does not imply significant design changes for
scheduling or buffer management, but it is relevant to feed-
back mechanisms. In particular, two issues that arise in the
context of multicast are scalability and policy. How does one
avoid feedback implosion at the source? Should the feedback
mechanism have embedded within it the policy on how to
respond to different congestion levels along different branches
in the multicast path?

Also, in designing a network that will be heterogeneous
with respect to switch design and manufacture, it is architec-
turally important to separate the manner in which feedback is
given from the precise mechanisms used in the switches. That
is, we should separate the interfaces used to communicate
feedback from the implementation of that feedback signal.

With these design issues in mind, in this section we will try
to provide a taxonomy for these congestion feedback mecha-
nisms and discuss some of the issues that should be addressed
when a particular mechanism is chosen.

Feedback can be either explicit or implicit. Explicit feed-
back uses an explicit indicator or field in the packet stream to
convey network status. An example of explicit feedback is the
DECBit protocol [l], in which a single bit of information is
conveyed by the network from the sender to the receiver,
where it is the receiver’s responsibility to return the informa-
tion to the sender.

In contrast, implicit feedback requires end users to monitor
the performance of their data transmission for clues to the
current network status. The most well-known example of

IEEE Network January/February 1996 13

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on August 13,2010 at 23:59:40 UTC from IEEE Xplore. Restrictions apply.

implicit feedback is the TCP Slow-Start algo-
rithm, which uses packet drops as implicit
feedback of congestion. Two other examples
of implicit feedback are the packet pair pro-
tocol [24], which uses the absolute delay dis-
persions of packets exiting the network as
feedback on the maximum rate at which the
network could provide service, and NET-
BLT, which compares the observed through-
put with the transmission rate to determine
the maximum achievable throughput [25].

We now discuss the implicit and explicit
approaches in more detail.
impiicii Feedback - Packet dropping is the
most common form of implicit signal. The
dropping of a packet does not necessarily
have to be an indication of buffer exhaus-
tion. Algorithms such as random early drop
(RED) use packet drops to signal the
approach to congestion. Note that unless the
end host knows which dropping algorithm is
being used in the switch, it cannot distin-
guish between RED’S indication of the
onset of congestion and a FIFO switch’s
indication of buffer exhaustion, and thus may not be able to
appropriately choose a control strategy.6

Another implicit feedback that has been used is observation
of the rate at which packets emerge from the network. This
works if the bottleneck rate is reflected in the packet stream
rate at the egress point. For small numbers of packets the sig-
nal may be very noisy, thus requiring averaging over intervals.
A key issue is the length of the time interval over which aver-
aging occurs. If this interval is larger than the interval over
which feedback must be returned to the sender, problems due
to control delay will occur. The scheduling algorithms at the
switches interact strongly with the necessary averaging intervals.

A final example of implicit feedback is measurement of the
end-to-end delay change as one changes the transmission rate
(e.g., TCP Vegas [2] or delay-based congestion control [l]).
With FQ switches, delay will be relatively constant until the
fair-share bandwidth allocation is reached, at which time
queuing will occur, and a sharp increase in delay with no
increase in bandwidth will be observed by the application.
However, such an approach may not work very well in a net-
work with FIFO switches, where one can still observe an
increased throughput by increasing the transmission rate, even
when the queue builds up and total delay increases.

The: chief advantage of implicit feedback over explicit feed-
back is that with implicit feedback the network only needs to
focus on resource allocation, but does not have to calculate a
precise control signal. End users can always derive implicit
feedback from the observed throughput, delay, and packet
losses. The question is whether one can derive correct and
accurate information from the perceived performance. For
example, as in the case of flow segregation, an implicit feed-
back signal can be misleading; thus, a prerequisite for implicit
feedback is a well-defined policy for resource allocation - the
scheduling control and buffer management we discussed earli-
er - used by all switches in the network.

Expiicit Feedback - Explicit feedback can be given in either
the forward or reverse directions. In forward feedback the

It is not clear that there is a difference in the appropriate response in
these two cases (RED and FIFO), but there are presumably otherpossible
dropping strategies where the difference is more important.

packet stream is marked as it traverses the
network from sender to receiver. It is the
receiver’s responsibility to return the feed-
back signal to the sender. In reverse (or
backwards) feedback the signal is carried
directly from the switches back to the sender
in a reverse flow. In the Internet protocol
(IP) suite a Source Quench ICMP message
is a form of backwards feedback. Frame
relay has both a forward explicit congestion
notification (FECN) indication and a back-
wards explicit congestion notification
(BECN) message.

Note that BECN does not fit the multicast
model very well. If the congestion signals
from each node are sent independently to
the source, we have an implosion of such
control messages, which does not scale well
for large multicast groups. If these conges-
tion signals are merged by the network along
the reverse path, the network has to embody
the policy on how such congestion signals
should be combined. Neither approach is
satisfactory. The FECN approach leaves it to

the application to determine how best to merge such conges-
tion information.

Explicit feedback signals can also be either binary (i.e.,
“congestion experienced”) or multivalued (i.e., “how much
congestion has been experienced”). If the feedback is binary,
or restricted to only a few values, the end-systems must guess
the quantitative significance of the feedback. With binary
feedback the network specifies when it is congested but not
how badly. This leads to asymmetrical behavior on the part of
senders: rapid drop of the transmission rate to an “estimated”
safe value when congestion is indicated, followed by slow
increases when the congestion feedback is no longer set.

Explicit feedback requires the switch to calculate the feed-
back associated with a flow and to inject that feedback into
the packet stream. Thus, it differs from implicit feedback,
where it is the effects of the switching elements on the packet
stream that are being measured. Explicit feedback requires an
extra mechanism. However, one advantage with explicit feed-
back is that it can provide more quantitative control informa-
tion to end users and thus speed up the adjustment process to
load changes.

End Adjustment

The end adjustment algorithm is heavily dependent on the
form of feedback and the quantities being controlled within
the network. If the feedback information from the network is
imprecise or incomplete, it may even be necessary to search
for the correct operating point. For example, with a binary
feedback signal the correct operating point is found through
an iteration process of network feedback and end-system
adjustments.

The end-system adjustment is the response to a servo con-
trol loop. For rate-controlled systems this servo loop needs to
match the rate at which the source is sending to the rate at
which the network bottleneck can carry packets. In addition,
when a temporary overload occurs It must allow queued data
to drain out of the bottleneck node.

The precision of the servo loop determines network perfor-
mance. If switch buffers are allowed to become empty, one
may not reach the maximum possible throughput. Keeping
some data in switch buffers keeps the throughput high since
the line would never go idle even in the presence of feedback

14 IEEE Network 4 JanuaryFebruary 1996

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on August 13,2010 at 23:59:40 UTC from IEEE Xplore. Restrictions apply.

delay. On the other hand, if the buffers
become too full, packets will be discarded
by the buffer management algorithms.

As discussed previously, the network must
not depend on homogeneous implementa-
tion of a single adjustment algorithm at all
user ends. We should note that heterogene-
ity will also arise because individual users
are likely to react differently to the same
feedback signal because different applica-
tions have different sensitivities to delays
and losses. For instance, if an application is
designed to tolerate high losses (e.g., the
image transfer protocol designed by Turner
and Peterson [26]), it is unlikely to react to
feedback in order to reduce the loss rate as
quickly or aggressively as a loss-sensitive
application would.

Beyond issues of loss, best-effort multicast
service also raises a new issue: how to han-
dle a multivalued feedback. Consider a mul-
ticast network where one receiver has a
much slower network link than all the oth-
ers. Is the correct source response to this to
slow down, or to continue at the rate that the other receivers
can handle? Or, is it to layer-code the data and expect bottle-
neck switches to selectively discard based on the layer coding?
The answer is application-specific and thus should not be built
into the network’s calculation of feedback.

In summary, there is not a single expected or acceptable
end behavior. The network should not have a fixed expecta-
tion for end-system behavior. On the other hand, the network
must have a defined behavior on which the end user can
count. Otherwise, the network response to end-system adjust-
ments will not be predictable, and the application cannot use
adjustments to implement policy or even to control loss.

Why W e Believe that All Four Are
Necessary and Sufficient
We believe that packet scheduling, buffer management, feed-
back, and end adjustments are all necessary components of
any best-effort network design, and we speculate that they are
sufficient components for providing best-effort services.
Scheduling and buffer management are the methods by which
the network and each individual switch enforce policy. Feed-
back is the method by which switches inform the end-system
about the state of the network. End-system adjustments close
the control loop and implement application-specific policies.

Scheduling controls the rate at which users gain service and
ensures that a user transmitting at its share of the bandwidth
will not be denied service by a user who is not. A more sophis-
ticated scheduling scheme than FIFO must be present to
enforce sharing. Share enforcement cannot be done by buffer
management alone because with FIFO, a user’s share of the
bandwidth is proportional to the number of packets queued in
the FIFO queue. Buffer management without some form of
scheduling beyond FIFO can give fair shares only when each
user is allocated the same share of the buffer, and the users
all keep their share of the buffer completely full all the time.
Unfortunately, keeping the buffers full results in high packet
loss rates. Thus, buffer management cannot be a replacement
for scheduling control.

Buffer management is necessary because even the best
packet-scheduling algorithms do not by themselves protect
against abusive users. For example, WFQ scheduling may
guarantee a fair share of the bandwidth of the outgoing link,

but it does not guarantee buffer space. Con-
sider a switch with two users, A and B, each
on a separate input link. Assume that A and
B’s fair share of the bandwidth is 50 percent
(unweighted). Even if A is transmitting exact-
ly at its fair share, B could be transmitting at
100 percent. Absent any buffer management,
B will fill up all the buffers in the switch.
Now assume that A’s share of the bandwidth
decreases because a source C comes on-line.
By using up all the buffers, B will have
denied A the ability to track changes in the
available bandwidth without losing packets.

The precise allocation of buffers is depen-
dent on the scheduling algorithm used. As
scheduling algorithms depart from a fluid
flow model (e.g., WFQ), clumping can occur in
the packet flow. This clumping must be
allowed for by the buffer allocation algorithm.

Feedback informs the end users of net-
work conditions and allows the users to cal-
culate their current fair shares. If the
network provides unfair or inconsistent feed-
back to the user, a variety of pathologies will

occur. Thus, feedback is a necessary component in a network
design. However, feedback cannot force the user to actually
obey it. Thus, feedback must be supplemented by enforce-
ment mechanisms such as scheduling and buffer management.

End adjustments close the control loop. They are the
response to network feedback. Poor-quality adjustments will
potentially result in high loss rates or low network utilizations.
However, just as the network cannot count on end users to
obey feedback, the network cannot count on users to imple-
ment any specific form of end-system adjustment. Network
integrity must depend on switch-resident mechanisms (i.e.,
packet scheduling and buffer management), not end adjust-
ments; and end adjustments cannot work well if the quality of
the feedback is poor.

implications for the Design of Networks
n this section we will argue that carefully thinking through I the roles of the four mechanisms is essential if we are to

build a network which has long-term evolutionary potential.
In particular, we must ask the architectural question of “what
belongs in the center of the network (i.e., in the switches) and
what belongs at the edge of the network (i.e., in the terminal
equipment)?”

Equipment at the center of a network is usually exception-
ally stable. This is due to the operational constraints of run-
ning a production network; the network operator cannot run
the risk of either destabilizing an operational network or
desupporting running applications. As a result, any new appli-
cation that requires an upgrade to the core of the network is
likely to have very long introduction times. Thus, we should
consider the core of the network as requiring long-term stabil-
ity and plan for evolution to occur at the periphery.

Of the four mechanisms, two are likely to be quite stable
and one mostly stable. Scheduling may take many forms and
implemen ta t ions (e.g., WFQ, round-robin, token buckets,
and/or approximations to these mechanisms), but there are
deep theoretical similarities between all rate-allocating sched-
ulers, leading one to believe that the exact form of scheduling
may be less important than the presence of scheduling.
Changing the form or content of the feedback implies a fun-
damental redesign of the network and is therefore unlikely.

IEEE Network January/February 1996 15

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on August 13,2010 at 23:59:40 UTC from IEEE Xplore. Restrictions apply.

Thus, we expect scheduling and feedback to
be quite stable.

Since buffer allocation must respect con-
trol loop delays, buffer management requires
both knowledge of the average time delays
in the control loop and the average rates at
which a flow is legally transmitting. It can
also make good use of knowledge of traffic
statistics. Over time it is likely that imple-
mentations will change estimating tech-
niques for delay bandwidth products and will
utilize improved estimates of traffic fluctua-
tions, thus changing the absolute amount of
buffering allocated to a flow. However,
changes in the amount of buffering allocated
to a flow primarily affect the loss rate on
that flow during periods of congestion. Thus,
one would expect that buffer management
policy can experience some change without
adversely affecting end users.

It is when we consider end adjustments
(i.e., end-system control of the servo loop)
that we find an area where rapid and signifi-
cant change is both possible and desirable.
When a network is robust there is no need
to enforce a specific behavior 011 the user.
Users can change both the parameters of the
servo loop and the algorithms. Parameter
changes include, for example, changes to the
rate at which the user increases her or his sending rate and
the amount of data in transit at any given time. An example
of an algorithm change would be new methods of more pre-
cisely estimating the evolution of network state based on prior
feedback. Robustness enables and encourages experimenta-
tion and evolution in end adjustments.

If the most likely sources of technical change are the
adjustments of the servo loop, adjustments should be made
only at the periphery (e.g., at end-systems). Switches should
only provide feedback, not participate directly in the control
loop calculations. Although the previous statement sounds
simple, it tends to rule out hop-by-hop schemes, especially
those where the network can run either end-to-end or hop-by-
hop, and feedback schemes that rely on the switches modify-
ing feedback based on control-loop-like considerations.7

Exampies
n this section we briefly describe several well-known conges- I tion control algorithms, and explain where they fit into our

taxonomy discussed earlier in the article.

Current lnternef
Until recently, the traffic across the Internet has been domi-
nated by data applications, with electronic mail, remote login, and
file transfer being the main sources of data. These data appli-
cations run on top of the reliable TCP transport protocol [27].
Only recently, due to audio and video transmissions on the
multicast backbone (MBone) [28], has user datagram protocol
(UDP) traffic become a significant factor in Internet traffic.

One strength of today’s Internet is TCP’s extremely well-
designed adaptive retransmission and congestion control
mechanism (Slow-Start), which was designed and implement-
ed by Van Jacobson in the mid-’8Qs [6] . When Slow-Start was
designed the Internet had a deployed base of routers with
FIFO scheduling, FCFU buffer management, and (as a result)

drop-tail service. Thus, TCP Slow-Start uses
the packet losses from the network as an
implicit signal for network congestion. When-
ever packet losses are observed, a sender
immediately reduces its data transmission
rate to one packet per round-trip time, and
gradually opens up the congestion control
window only if no fur ther losses a re
observed. The increase in transmission rate
is divided into two phases: congestion recov-
ery, during which the window size opens up
rapidly, and congestion avoidance, during
which the window size increases by only one
packet per round-trip time. Universal deploy-
ment of this conservative approach together
with improved network capacity have kept
the Internet from congestion collapse even
in the face of exponential growth in both the
user population and the traffic load.

We note that the feasibility and effective-
ness of Slow-Start congestion control relies on
the homogeneity of the transport protocol
and, probably more important, the coopera-
tion of essentially all end hosts. When one or
a few end hosts do not follow the rule, they
can grab as much network bandwidth as they
like while other, obedient users back off
from congestion. The growing UDP traffic
from MBone applications, which do not

implement Slow-Start, provides a challenge to the previously
homogeneous end-host behavior; recently, a token-bucket
mechanism has been added to all MBone routers to limit the
total volume of MBone traffic.

According to our taxonomy, the approach of the current
Internet can best be described as no scheduling control of
allocations, no buffer management control of allocations,
implicit feedback, and cooperating end hosts. As pointed out
in [6], however, end-host adaptation can only be part of the
story. To minimize congestion losses and provide fair services,
network switches must also be engaged in the control. The
recent RED work [3], which we describe next, is one step for-
ward in that direction.

RED
The RED congestion control algorithm design retains the
basic design of today’s FIFO routers. I t uses the average
queue length as an indicator of network load, but no other
state information is kept concerning the resource utilization of
individual flows. Incoming packets are randomly dropped as
soon as the potential of overloading exists, well before the
switch reaches buffer pool exhaustion. RED provides implicit
feedback via dropping and thus does not require any changes
to the existing end implementation of TCP Slow-Start.

Because packets to be dropped are randomly chosen from
the incoming data stream, flows sending at faster rates will
incur more packet losses than flows sending at slower rates
(but all flows experience the same packet loss rates, in that
the number of losses for each flow will be, on average, pro-
portional to the number of packets trasmitted by the flow).

7An example of such a switch involvement in control-loop calculations 1s
a scheme such as has been proposed by the ATM Forum in which the sole
feedback is rate. As a result, the switches have to modify the rate feedback
based on buffer occupancy - a calculation which embeds control-loop
functionality in the rate feedback

16 IEEE Network JanuaryiFebruary 1996

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on August 13,2010 at 23:59:40 UTC from IEEE Xplore. Restrictions apply.

However, flows which do not implement
Slow-Start can capture more than their share
of bandwidth (i.e., have more packets for-
warded). Therefore, this stateless scheme, by
itself, does not provide effective resource
usage enforcement. Reference [3] suggests
that, in the presence of persistent heavy load
despite RED, the switch can identify specific
sources as offenders from the number of
dropped packets and treat them specially
(e.g., dropping all of their packets) - that
is, to enhance the switch with some per-flow
state.

By our taxonomy, one may consider RED
as both an indirect method of scheduling
control and a buffer management strategy,
with implicit feedback and the Slow-Start
end adjustment algorithm. RED does not
ensure fair sharing of resources. With the
enhancement of per-flow state for misbehav-
ing hosts, RED may function adequately as
long as the vast majority of users adopt the
same congestion response algorithm.

DECbit
The DECbit congestion control scheme predates Slow-Start
[24]. It is an end-to-end explicit feedback control scheme with
a binary value signal, the congestion indication bit. The goal
of DECbit design is congestion prevention. The performance
of the network is measured by “power,” which is defined as
the ratio of throughput over delay, which achieves its maxi-
mum value when the link stays busy all the time and the
queue size is kept to one. Therefore, in DECbit the switches
measure the average queue length, and set the congestion
indication bit upon a packet arrival whenever the average
queue length exceeds one. Switches along the path may set
the bit, but can never clear the bit once it is set.

The receiving end sends the bit in each data packet back to
the sender in the acknowledgment packet for that data pack-
et. The sender then examines the bit in the last W packets,
and reduces the flow control window size if at least 50 percent
of the packets have the bit set; otherwise, the sender increases
the window. The window size adaptation uses a multiplicative-
decrease with additive-increase scheme, aiming at fast adapta-
tion to congestion and incremental speedup in the absence of
congestion. However, because the multiplicative factor used in
the decrease is large (0.875), the actual adaptation speed is
rather slow as compared to the radical reduction taken by
Slow-Start upon a packet loss.

As one can see, DECbit is very similar to Slow-Start. In our
categorization, DECbit has no scheduling control and a
shared buffer pool management strategy (i.e., keeping the
average queue from exceeding one). The most noticeable dif-
ference is its explicit congestion bit, as opposed to implicit
feedback in Slow-Start or RED. Through simulation the
DECbit designers noticed unfair service due to the stateless
control even when all end hosts obey the control rules. A bit-set-
ting scheme based on per-flow measurement has been pro-
posed as a fix to this unfairness [29]; but even with that fix, the
entire control scheme relies on cooperation from all end hosts.

The Hop-by-Uop Credit Scheme
Hop-by-hop credit [7, 8, 301 differs from the three examples
above in three important ways. First, hop-by-hop credit bases
its controls and feedback on the amount of space left in

switch buffers. Feedback is explicit and mul-
tivalued: the number of unused units worth
of buffering. Second, hop-by-hop credit
always attempts to utilize all available unused
units of buffering. Hop-by-hop attempts to
keep the buffers completely full instead of
mostly empty. Third, it segments the control
loop at each switch instead of running an
end-to-end control algorithm. This segmen-
tation is forced because the control algo-
rithm attempts to keep the buffers full; if an
end-to-end control algorithm tried to keep
buffers full, buffer overflow would inevitably
happen. However, hop-by-hop credit
schemes tend to get very good network uti-
lization, even in the face of widely varying
traffic loads, because there is usually always
data in the switch buffers which can be sent
when an opportunity arises.

Hop-by-hop credit schemes require per-
flow queuing to avoid both head-of-line
blocking and deadlock. Once per-flow queu-
ing is in place, a method of scheduling is
required; the algorithms in [7 , 8, 301 use

round-robin scheduling. A side effect of this scheduling is that
flows are given fair service.

Hop-by-hop credit schemes must do explicit buffer manage-
ment since the feedback is in terms of the space left in the
buffer. Reference [30] describes a scheme in which each flow
is given a static allocation of buffer memory. Unfortunately,
such a static allocation, while simple, leads to large memory
requirements in the wide area. Subsequent schemes have been
developed [lS, 161 that do dynamic allocation of buffer space.
Dynamic allocation seems to require knowledge of the rate at
which a connection is being serviced. It also introduces statis-
tical sharing of buffers, and therefore the possibility of loss.

There are two potential issues with hop-by-hop credit
schemes. The first is that in order to achieve good throughput,
buffers a re kept full, with the concurrent possibility of
increased transmission delay within the network. The other
potential issue is that the switch-by-switch control loops
embed control policy within the hardware of the network. In
case of multicast data delivery, for example, it enforces a poli-
cy of everyone adjusting to the slowest receiver, leaving no
option for the application to decide on a different policy.

A Strawman Proposal

In a contribution to American National Standards Institute
(ANSI) Committee TlS1, one of the authors of this article
describes a mechanism that was built using the insights
described in this article [31]. This mechanism uses WFQ as
the scheduling mechanism, buffer allocation based on the
user’s allocated bandwidth, forward explicit feedback of the
bottleneck rate and buffer utilization, and an end-system
adjustment that tracks the bottleneck rate but allows for over-
ly full buffers to drain.

Effectively, the mechanism takes the packet pair protocol
of Keshav [24], which uses implicit feedback (dispersion of
packets, packets in transit) to allow the destination to calcu-
late the bottleneck rate and the buffer occupancy in the net-
work, and makes what had been implicit explicit. This explicit
data is carried by special ATM cells called “resource manage-
ment (RM)” cells. The values contained in the RM cells are
modified as the cells traverse the network.

The combination of bottleneck rate and bottleneck buffer
occupancy allows the end adjustment to carefully control the

IEEE Network JanuaryFebruary 1996 17

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on August 13,2010 at 23:59:40 UTC from IEEE Xplore. Restrictions apply.

bottleneck queue length, thus ensuring that
packets are not lost due to queue overflows
and that the user does not lose throughput
by letting the bottleneck queue go empty.
Because [24] did not address buffer manage-
ment (although it was clearly understood to
be an issue), it was not possible to show
robustness and stability in the presence of
ill-behaved users.

While the scheme in [31] is not known to
be optimal in any sense of the word, it does
provide near 100 percent link utilization
without packet loss for the configurations
and loads for which it has been simulated.
The intent of the contribution to T l S l was
to demonstrate to the ATM community the
potential performance of a carefully
designed end-to-end rate-based feedback
scheme which also had substantial theoreti-
cal grounding. For the purposes of this arti-
cle it demonstrates how explicitly thinking
about the service model and mechanism
"knobs" of our best-effort service gives us
insight into mechanism design.

Summary

he current congestion control paradigm 7- assumes that end users will use a single
mandated algorithm. While the work done
in this area has proven to be of great value,
and is extremely interesting, we need to rec-
ognize as a community that this paradigm is
clearly inappropriate for future public net-
works. There are many reasons for this. First, we cannot count
on user cooperation in such public networks. Second, given
that there are many uses of best-effort traffic with very differ-
ent delay and drop sensitivities, it makes little sense to man-
date a single algorithm. Third, in a commercial network users
will not accept a service so dependent on the detailed behav-
ior of other users.

Thus, we must turn towards a paradigm that is not built on
the assumption of homogeneity. One principle underlying this
new paradigm is that the network should enable users to
achieve good service. This requires that the network provide
sufficient feedback so end users can use the available band-
width effectively. This, in turn, requires that there be a well-
defined service model which describes the nature of the
service provided. Another fundamental principle is that the
network, in delivering service to a particular user, must not
count on cooperation from other users. This requires that the
network protect flows from each other by enforcing restric-
tions on resource usage. We believe packet scheduling is the
most effective tool for this enforcement.

It is through the consideration of both network evolution
and the types of mechanism available to support best-effort
traffic that we may derive a very general design principle: the
network should provide isolation of flows and give the best
explicit feedback possible, while the end-systems should
implement the control function.

These points are very simple, but they reflect a fundamen-
tal change from the current discussions of congestion control.
Our purpose in this article is not to design the details of
future algorithms, but to change the nature of the debate
about those algorithms.

Ac kn o wledg m en is
Many people have provided feedback on ear-
lier versions of these ideas. We would like to
thank our colleagues in the ANSIiInterna-
tional Telecommunications Union (ITU)
ATM community for their feedback on the
service model. We would like to explicitly
thank Kevin Kahn and Tom Anderson for
their feedback.

This research was supported in part by the
Advanced Research Projects Agency, moni-
tored by Fort Huachuca under contracts

0034 (BL, CL), and DABT63-92-C-0002
(CL). The views expressed here do not
reflect the position or policy of the U.S. gov-
ernment.

DABT63-94-C-0073 (SS,LZ), DABT63-92-C-

References
[l] R. Jain, "A Delay-Based Approach for Congestion

Avoidance in interconnected Heterogeneous Computer
Networks," Comp. Commun. Rev., vol. 19, no. 5 ,
1989, pp. 56-71.

[2] L. Brakmo, S. OMalley, and L. Peterson, "TCP Vegas:
New Techniques for congestion detection and avoid-
ance," Proc. SIGCOMM '94, Aug. 1994.

[3] S . Floyd and V. Jacobson, "Random Early Detection
Gateways for Congestion Avoidance," I€€€/ACM
Trans. on Networking, vol. 1, no. 4, Aug. 1993.

[4] A. Charney, "An Algorithm for Rate Allocation in a
Packet-Switching Network with Feedback," Master the-
sis, MIT Laboratory for Computer Science, May 1994.

[SI S. Floyd ond V. Jacobson, "On Traffic Phase Effects in
Packet-Switched Gateways," Infernetworking: Res. and
Exp., vol. 3, no. 3, Sept. 1992.

[6] V. Jacobson, "Congestion Avoidance and Control,"
Proc. SIGCOMM '88, Aug., 1988.

[7] H. T. Kung, T. Blackwell, and A. Chapman, "Credit-
Based Flow Control for ATM Networks: Credit Update

Protocol, Adaptive Credit Allocation, and Statistical Multiplexing," Proc. SIG-

[8] H. T. Kung and K. Chang, "Receiver-Oriented Adaptive Buffer Allocation in
Credit-Based Flow Control for ATM Networks," Proc. lnfocom '95, April
1995, pp. 239-52.

[9] K. K. Ramakrishnan and R. Jain, "A Binary Feedback Scheme for Congestion
Avoidance in Computer Networks," ACM Trans. on Comp. Sys., vol. 8,

COMM '94, Aug. 1994, PP 101-15.

1990, pp 15-81
[lo] S Shenker, 1 Zhang, and D Clark, "Some Observations on the Dynamics

of a Conqestion Control Alqorithm," ACM Comp Commun Rev, vol 20,
no. 4, Oc?. 1990, pp. 3C-39.

[l 11 R. Wilder, K. K. Ramakrishnan, and A. Mankin, "Dynamics of a Congestion
Control and Avoidance of Two-way Traffic in an OSi Testbed," ACM Comp.
Commun. Rev., vol. 21, no. 2, Apr. 1991.

[12] L. Zhang and D. Clark, "Oscillating Behavior of Network Traffic: A Case
Study Simulation," J . Interneborking: Res. and Exp., vol. 1, 1990, pp.
101-12.

[13] L. Zhong, S. Shenker, and D. Clark, "Observations on the Dynomics of a
Congestion Control Algorithm: The Effects of Two-way Traffic," Proc. SIG-
COMM '91, 1991.

[14] S. Floyd et al., "A Reliable Multicast Framework for Light-weight Sessions
and Application Level Framing," Proc. ACM SIGCOMM '95, Comp. Com-
mum Rev., vol. 25, no. 4, 1995, pp. 342-56.

[15] J. Nagle, "On Packet Switches with infinite Storage," l€€E Trans. on Com-
mun. vol. 35, 1987, pp. 435-38.

[16] A. Demers, S. Keshav, and S. Shenker. "Analysis and Simulation of o Fair
Queueing Algorithm," J . Internetworking: Res. and Exp., vol. 1, 1990, pp.
3-26; also in Proc. ACM SIGCOMM '89, pp. 3-1 2.

11 71 ITU-T, Study Group 13, "Draft Recommendation 1.371 ," Geneva, Switzer-
land, July 1995.

[18] S. Shenker, "Fundamental Design Issues for the Future Internet," IEE€/ACM
Trans. on Networking, vol. 13, no. 7, Sept. 1995.

[19] S. Shenker, "A Theoretical Analysis of Feedback Flow Control," Proc. SIG-
COMM '90, 1990.

[ZO] Bryan Lyles, ed., ABR Basehe Documenf TIS1.5/94-005R3, revision R3
dated Oct. 14, 1994. Releases of the document prior to Oct. 14, 1994 were
entitled Class-Y Baseline Document.

[21] M. Katevenis, "Fast Switching and Fair Control of Congested Flow in Broad-
band Networks," I€€€ JSAC, vol. 5, 1987, pp. 131 5-26.

IEEE Network JanuaryiEebruary 1996 18

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on August 13,2010 at 23:59:40 UTC from IEEE Xplore. Restrictions apply.

122) S. Morgan, "Queueing Disciplines and Passive Con-
gestion Control in Byte-Stream Networks," Proc. Info-
com '89, 1989, pp. 71 1-20.

[23] E. Hahne, "Round-Robin Scheduling for Max-Min
Fairness in Data Networks," I€€€ JSAC, vol. 9, 1991,
pp. 1024-39.

[24] S . Keshav, "A Control-Theoretic Approach to Flow
Control," Proc. SIGCOMM '91, Sept. 1991, pp.

[25] M. Lambert, "An End-Point Adaptive Rate Control
Strategy for the NETBLT Protocol," preprint, 1988.

[26] C. Turner and L. Peterson, "Image Transfer: An End-
to-End Design," froc. SlGCOMM '92, Aug. 1992.

[27] J. Postel, "DoD Standard Transmission Control Proto-
col," Network Information Center RFC-793, SRI Inter-
national, Sept. 1981.

I281 S. Casner and S. Deering, "First IETF Internet Audio-
cast," ACM Comp. Commun. Rev., vol. 22, no. 3,
July 1992.

[29] K. K. Ramakrishnan, D. M. Chiu, and R. Join, "Can-
gestion Avoidance in Computer Networks with a Con-
nectionless Network Layer - Port IV: A Selective
Binary Feedback Scheme for General Topologies," DEC Tech. Rep. DEC-TR-
51 0, 1987.

[30] C. Ozveren, R. Simcoe, and G. Varghese, "Reliable and Efficient Hop-by-
Hop Flow Control," Proc. SIGCOMM '94, Aug. 1994, pp. 89-1 00.

[31] B. Lyles and A. Lin, "A Class-Y mechanism and preliminary simulations,"
TlSl.5/94-207, July 11-15, 1994, St. Louis, MO.

3-15.

Biographies
CHRISTOPHER LEFELHOCZ received an M.S. degree in computer science from the
Massachusetts Institute of Technology and a B.S. degree in computer engineering
from Carnegie Mellon University. He currently works at Fore Systems in the soh-
ware engineering division. Prior to joining Fore, he spent a summer working at

Xerox PARC on congestion control issues in best effort ser-
vice.

BRYAN LYLES [M '821 received his undergraduate degrees
from the University of Virginia, Charlottesville, and Ph.D.
degree from the Unviersity of Rochester, Rochester, NY, in
1972 and 1983, respective1 . Since 1988, he has been a
member of the research s ta ia t Xerox Palo Alto Research
Center, working in the area of ATM networks. He has
been a faculty member at the University of Linkoping,
Linkoping, Sweden.

SCOTT SHENKER i s currently a principal scientist at the
Xerox Polo Alto Research Center. He received his Sc.8.
(1 978) from Brown University, his Ph.D. (1 983) in theoret-
ical physics from the University of Chicago, and spent the
1983-4 academic year at Cornell University as a post-
doctoral osrociate. His most recent computer science
research focuses on he design of integrated services pack-
et networks and the related issues of service models,
scheduling algorithms, and reservation protocols. His
recent economic research addresses incentive compatibility

and fairness in various cost-sharing mechanisms. Besides computer networks and
theoretical economics, his other research interests include chaos in nonlinear sys-
tems, critical phenomena, distributed algorithms, conservative garboge collection,
and performance analysis.

~ X I A ZHANG is on associate professor of computer science at UCM. She received
her B.S. degree in physics from Heilongjiang University, China, in 1976 and her
Ph.D. in computer science from the Massachusetts Institute of Technology in
1989. From 1989 to 1995 she was a member of the research staff at Xerox
PARC. Zhang i s an active member of the Internet Engineering Task Force (IETF)
and is currently serving on the Internet Architecture Board (IAB). Her research
interests include network architectures and protocols, protocol implementations,
and performance analysis.

IEEE Network JanuaryFebruary 1996 19

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on August 13,2010 at 23:59:40 UTC from IEEE Xplore. Restrictions apply.

