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he first generation of telecommunication networks 
were circuit-switched. In such networks, each circuit is 
allocated resources along a path for its exclusive use; 
there is no uncertainty about the bandwidth or delays 

along the path. Packet switching introduced a very different 
mode of communication. In most packet-switched networks,l 
sources send their data packets into the network without any 
prereserved resources, and the network exerts its “best effort” 
to service the packets. The advantage of packet switching is 
that it allows the network resources (bandwidth, buffers) to be 
statistically shared among all sources. This is especially impor- 
tant for computer communications, since data traffic tends to 
be rather unpredictable and bursty; prereserving resources 
would lead to low utilization levels, whereas the statistical 
multiplexing of packet switching allows one to achieve much 
higher utilization levels. The quality of service (in terms of 
packet delivery delays and drops due to buffer overflow) of 
best-effort service depends not only on the network actions 
(which the network can control), but also on the offered load 
(which the network cannot control). Thus, in best-effort ser- 
vice, the network tries to forward all packets as soon as possi- 
ble, but cannot make any quantitative assurances about the 
quality of service delivered. 

The unpredictable and bursty nature of computer traffic 
not only prevents the network from making quality assur- 
ances, but also creates the problem of congestion. The ratio of 
average demand to peak demand on any particular link is 
quite high. Thus, while it is advisable to provision the network 
to have adequate resources to satisfy the average demand, it is 
not economically feasible to provision the network to satisfy 
the peak demands. Consequently, there will be times when 
the network is momentarily overloaded when many sources 
happen to send their data simultaneously. To control this con- 
gestion, the network must provide feedback to the users indi- 
cating that the network is currently, or is about to become, 
overloaded; in response to such a congestion signal, the users 
should inject their packets into the network more slowly. 
These processes, the feedback from the network and the 
source response, form the fundamental basis of congestion 

X 2 5  and its descendents are exceptions 

controL2 These congestion control algorithms have been the 
subject of intense study, and the community has made tremen- 
dous advances, both in developing effective algorithms and in 
understanding how they work; see [Z-131 and references 
therein for a few representative references. 

Given the bountiful fruits of this research endeavor and the 
obvious success of the Internet with its congestion control 
algorithms, why are we revisiting this problem? To understand 
this, note that research on congestion control has almost 
exclusively focused on the nature of the congestion signals 
and of the response to those signals. The current congestion 
control paradigm is based on the tacit assumption that we, as 
a community, can design the response of end users to conges- 
tion signals. In short, this paradigm assumes that all users are 
willing and able to cooperate. These congestion control 
designs do not work if some users choose to misbehave; in 
particular, greedy users can capture more than their share of 
bandwidth by not responding to congestion signals. Such 
greedy users not only capture more bandwidth for themselves, 
but also seriously degrade the service obtained by cooperating 
users. Thus, the current paradigm provides reasonable service 
to users only if all (relevant) users cooperate.3 

The assumption of user cooperation has been, for the most 
part, valid in the Internet. Until recently, the Internet user 
community was a small, relatively close-knit, and technically 
knowledgeable community. There has been widespread adher- 
ence to informal rules of etiquette (not just for congestion 
control, but also for the proper use of electronic mail and 
other issues). Moreover, the widespread deploynient of UNIX 
and its variants as the operating system of choice allowed the 
“standard” congestion control algorithms, transmission control 
protocol (TCP) Slow-Start [ 6 ] ,  to  be almost universally 
deployed. 

As observed by Jain [l], congestion control really has two separate com- 
ponents congeshon avoidance and congestion recovery. We will be focus- 
ing on congestion avoidance in this article 

We say relevant users since the service obtained by a user in one portion 
of the Internet typically does not depend in detail on the behavior of anoth- 
er user far away. 
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We are now facing a rather dramatic shift 
in the nature,of wide-area computer net- 
works. First, the Internet is now publicly 
accessible, and the user community is no 
longer small nor close-knit. We cannot 
expect adherence to informal social rules to 
continue to be the norm. In a public net- 
work, general appeals to a vague “public 
interest” will not be sufficient to  induce 
cooperation. Moreover, the user population, 
or more correctly the set of host machines, is 
much more heterogeneous, so deployment 
of congestion control algorithms through the 
distribution of UNIX code will not be suffi- 
cient to ensure widespread deployment (even 
if users wanted to cooperate). If the correct- 
ness of the network design depends on hav- 
ing a single, universally deployed standard, it 
will be extremely difficult to update that 
standard; smooth network evolution requires 
the assumption of multiple versions deployed 
at the same time. 

Second, the diversity of applications on 
the Internet is ever-increasing. Best-effort 
service can be used for packet voice and 
video (such as vat and nv) and reliable multi- 
cast [14] (such as is used in wb) in addition 
to its more traditional uses of file transfer, electronic mail, 
and remote login. It no longer makes sense to artificially con- 
fine users to a single acceptable congestion control algorithm 
when their needs differ. 

Third, and most important, we have moved into an era of 
commercial networking. While the Internet started out as a 
research network, it has gone through a rapid transition to a 
commercial service. Other network services, such as asyn- 
chronous transfer mode (ATM), have been designed from the 
start as international public telecommunication services, and 
have thus been “commercial” from conception. The very 
nature of best-effort service precludes specifying the actual 
packet delays a user will experience. However, users of a com- 
mercial network are unlikely to accept having the service they 
receive depend on the “polite” behavior of other users. 

Thus, the basic paradigm of congestion control for best- 
effort service must be reformulated to suit the new context of 
commercial public networks. Our congestion control paradigm 
must be built on the following two basic principles. The first 
principle, which was originally articulated in connection with 
work on fair queuing [15, 161, states that the adequacy of ser- 
vice delivered to a particular user should not depend on the 
detailed behavior of other users. Clearly, the bandwidth avail- 
able to a particular user must depend on whether other users 
are also trying to use the network at the same time, but the 
network must try to isolate the service provided to a user 
from the details of how other users respond to congestion. 
This principle renders the issue of cooperation moot; the ser- 
vice one user gets should not depend on whether or not all 
users cooperate. Providing isolation entails enforcing limits on 
the resources made available to users. Resources should not 
be given out on a first-come, first-served basis; the network 
must more actively manage those resources. 

The second principle is that the network should provide 
enough feedback to users that they can effectively utilize the 
available resources. If the network is enforcing resource limi- 
tations, it should provide users with enough information about 
those limitations so that each user can use her own share of 
the resources effectively. This requires that users have a 
model of how the network is behaving; that is, we need a ser- 

vice model, or specification, for best-effort 
service. 

The reformulation of congestion control 
for best-effort service according to  these 
principles is the subject of this article. We 
are not attempting to design specific new 
congestion control algorithms. Instead, we 
are merely trying to  articulate the design 
principles. Many of these principles have 
been discussed in other forums; however, 
with A T M  current ly  designing a best-  
effort service under the name Available Bit 
Rate (ABR) and the increasing commercial- 
ization of the Internet, these issues warrant 
revisiting. 

In the next section we outline the service 
model for best-effort service. In the third 
section we describe the set of mechanisms 
available to implement this service model 
and contrast their various roles. The fourth 
section articulates the implications of our 
findings for future network design. We con- 
clude, in the fifth section, with a discussion 
of some well-known examples of congestion 
control mechanisms. 

Service Model 
e service model is an abstract definition of the service that r a network client will receive. It defines a long-term contract 

between the network and the application writer by defining a 
stable interface; details may change, but the semantics of the 
service cannot. Thus, the service model documents the com- 
mitments a network makes to  a set of clients when they 
request that service. 

In the past the Internet community has not specified the 
service model for best-effort traffic. Internet service has only 
been defined operationally, and network applications are 
designed to be flexible enough to not need a particularly well- 
defined service. 

Currently, the Internet’s best-effort service is provided by 
first-in first-out (FIFO) queuing and tail-first dropping (last-in 
first-dropped) in routers, but there is nothing in the specifica- 
tions that prevents other queuing strategies from being used. 

On the other hand, because of its commercial nature and 
demanding service requirements of the deployed end-user 
equipment, the telecommunications industry has historically 
written service requirements and models early in the process 
of defining a new service. This difference is largely due to the 
fact that the telecommunications industry started with a spe- 
cific application (i.e., telephony) and built a network to suit it. 
The Internet, on the other hand, started in exactly the oppo- 
site way: it started with a new network technology and 
explored, successfully, new applications that were able to use 
the undefined service. 

As the telecommunications industry begins to use ATM as 
its infrastructure, it is also moving to incorporate best-effort- 
like services in ABR. Therefore, it is in the context of ATM 
that the first attempt to write down a service specification for 
a best-effort traffic class is being made. As of Autumn 1995 
the first phase of this work was mostly done [17], but consid- 
erable detail remains to be finalized. The resulting service 
model has sufficient generality to be useful to the Internet 
community. The service model described below served as the 
basic input to the development of the ATM service model 
described in 1.371 [17] but is less formal than the 1.371 text. 

~~ ~ ~ 
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We now describe the broad outline of a 
service model for best-effort traffic. The first 
issue to consider in a service model is the 
requirements of the applications which will 
use best-effort services. 

These requirements form the basis of the 
service requirements. We claim that  the 
delay requirements are as soon as possible 
(ASAP), and corresponding bandwidth 
requirements are  as much as possible 
(AMAP). Applications that  utilize best- 
effort service can typically use data as soon 
as it arrives. Although many of them, such as 
remote login, desire a short delivery delay, 
nevertheless they always use the data, even 
when the data has suffered from a long net- 
work delay; that is, these applications do not 
have quantitative real-time constraints. Simi- 
larly, applications that use best-effort service 
can typically use as much bandwidth as is 
available, yet are capable of making progress 
with as little as they are given. If the applica- 
tion completes sooner due to being given 
additional bandwidth, the user’s satisfaction 
will increase; the sooner the application completes, the better. 
This is in sharp contrast to applications such as voice trans- 
mission, where failure to receive specified service amounts 
and delays may result in application failure, and the applica- 
tion is intrinsically incapable of using additional bandwidth 
even when it is available. In short, the bandwidth and delay 
requirements of best-effort applications are elastic or scalable. 

Because the bandwidth requirements are scalable, users 
may dynamically share available bandwidth. This leads to a 
major difference between best-effort service and previously 
existing telecommunications circuit services: the bandwidth 
available to the user, and the delivery delay of their packets, 
varies moment to moment. More important, there should not 
be an admission control to this service [18]. Consequently, 
there should not be any quantitative bounds to the service; 
there are no lower bounds on bandwidth and no upper bounds 
on delay. 

What does it mean to offer a service model when the net- 
work makes no quantitative assurances? There are two kinds 
of commitments the network can make: relative and procedu- 
ral. Relative assurances are  those in which the network 
ensures that the bandwidth received by those flows that share 
the same path or the same bottleneck point is fairly appor- 
t i ~ n e d , ~  according to some commonly agreed-upon definition 
of fa i rne~s .~  Why include such a relative assurance of fairness? 
There are several reasons for this. The first is that, with a 
best-effort service, the user is not purchasing a quantified ser- 
vice, but rather a procedure for delivering service. Customers 
and regulatory bodies are likely to insist that this procedure 
be fair. The second reason is that there seems to be a strong 
link between network stability and fairness. While it is not 
known if fairness is a necessary condition for stability, it is 

Fairness does not necessarily imply equal portions. Weighted fairness 
provides network operators the ability to apportion bandwidth on the basis 
of policy considerations. I371 uses the term “defined allocation policy” 
instead of ‘tfairness” to emphasize this point. Fairness, however, does 
imply that there will not be unequal allocation for non-policy reasons. 

5 Relative assurances can also apply to the assurance that higherpriority 
levels will receive better service (even though no level is given a quantitative 
assurance). 

known to be a sufficient condition [26]. 
Procedural assurances tell users what they 

can expect if they respond to the network‘s 
congestion signals appropriately. Although 
the absence of admission control makes it 
impossible to ensure quantitative delay or 
throughput in service, there are still possibili- 
ties to  control packet losses. A user can 
achieve a low packet loss rate if the network 
provides feedback to  inform users of the 
bandwidth actually available at that instant 
in time. A procedural assurance takes the 
form “if you use the service in this particular 
manner then you will not lose (many) pack- 
ets.” While the network cannot promise how 
many packets it will deliver or when it will 
do so, it can make the promise that if the 
source behaves in a certain way in response 
to network conditions, then no (or few) pack- 
ets will be dropped due to congestion. Thus, 
the form and content of that feedback com- 
pose the most important element of the ser- 
vice model. The relative assurances described 
above mean that two users sharing the same 

path and same weights will receive similar feedback content. 
Taken together, these relative and procedural service 

model elements define a service which operates via a closed- 
loop control. The users can only achieve good performance 
when they participate in the closed-loop control system. Of 
course, a full service model will involve much more detailed 
specifications. Interested readers are referred to [20] for the 
evolving ABR service definition in the ATM community. 

Mechanisms 
o support the service model, the network must actively T manage its own resources and also provide feedback to 

users. Users must respond effectively to these congestion sig- 
nals. What mechanisms can we use to accomplish these goals? 

In this section we discuss four orthogonal aspects of con- 
gestion control mechanisms out of which a best-effort service 
can be built: packet scheduling, buffer management, feedback, 
and end adjustment. We believe it highly likely that elements 
from all four of these aspects are required for a complete 
description of a best-effort mechanism. Our purpose here is to 
delineate the different roles these aspects play in providing 
effective congestion control for best-effort service. 

Scheduling 
There are two ways in which the network can actively manage 
its own resources: packet scheduling and buffer management. 
When the instantaneous load is very light and there is little, if 
any, queuing of packets, the scheduling and buffer manage- 
ment algorithms show little effect. When there are sizable 
queues, however, these two mechanisms control which flows 
get access to bandwidth and the buffer. Thus, in what follows 
we will focus mainly on the behavior of these mechanisms 
under high instantaneous loads. 

Scheduling controls the order in which individual packets 
get served (or whether they get served at all). Scheduling is 
the most direct control over how the network serves every 
user. We furthermore believe it is the only effective control. 
As we argue below, buffer management alone cannot provide 
flexible and robust control of bandwidth usage. Moreover, if 
we use scheduling effectively, the buffer management algo- 
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rithm need not be precisely tuned. 
Two of the most popular scheduling algo- 

rithms are FIFO and weighted fair queuing 
(WFQ) [16]. FIFO serves packets in the 
order of arrival. Due to its simplicity, FIFO 
scheduling can be found in most of today’s 
network implementations. With FIFO, all 
users experience the same delay on average, 
even if the overload is caused by a small 
subset of the users; thus, it provides no pro- 
tection against uncooperative users. Worse 
yet, it may also lead to pathological unfair- 
ness even when all end users behave proper- 
ly; this phenomenon of flow segregation is 
described in [ 5 ,  161. FIFO scheduling may 
also create packet clumps; such clumps are 
formed when a series of packets in a particu- 
lar flow enter the switch well separated but 
then, because they are queued up and there 
have been no other intervening arrivals, the 
packets leave the router in a back-to-back 
clump. This form of clumping can cause con- 
gestion at downstream routers. 

Fair queuing, or any of its rough function- 
al equivalents such as round-robin, attempts 
to split the bandwidth evenly among the cur- 
rently present flows; see [16, 21-23] for 
more extensive discussion of such scheduling 
algorithms. This active management of band- 
width provides each flow with a great degree 
of protection from other  flows. FQ also 
avoids or reduces the packet clumping prob- 
lems; because of its round-robin-like behav- 
ior, FQ interleaves packets from competing 
flows. This can be thought of as putting a flow through a low- 
pass filter. 

We are not saying that all switches must implement FQ, 
only that they must implement some scheduling algorithm 
that can enforce a bandwidth allocation policy. Otherwise, 
greedy users can capture more than their share of the band- 
width. 

However, scheduling alone does not prevent substantial 
packet losses. Because network load can change rapidly, pack- 
ets are  likely to be dropped whenever a surge of packets 
occurs unless adequate buffer space is available to temporarily 
harbor the packets. Thus, buffer management algorithms are 
an important part of congestion control; we discuss them in 
the next section. 

Buffer Management 
Buffering is required at a switch whenever packets arrive 
faster than they can be sent out. However, if the packet over- 
load persists for a long enough period, the switch’s (necessari- 
ly finite) buffering capacity will eventually be exceeded, and 
packets must be discarded. The role of buffer management is 
to select which packets get dropped in such an overload situa- 
tion. Our best-effort service model requires that a user who 
responds appropriately to the congestion feedback given by 
the network will see a low loss rate. When the bandwidth 
available to a user decreases, the system must provide suffi- 
cient buffering so the user has a chance to reduce his or her 
load. Thus, buffer management is an important aspect of con- 
gestion control. Two of the most popular schemes for buffer 
management are shared buffer pool and per-flow allocation. 

The shared pool approach aggregates the buffer require- 
ments of all flows into one buffer pool. It serves packets in a 

first-come first-use (FCFU) way, and packet 
dropping is based on the occupancy level of 
the shared pool. Due to its simplicity, the 
FCFU pool can be found in most implemen- 
tations today. Shared pool buffer manage- 
ment clearly does not protect flows from 
each other; a single flow can occupy all of 
the buffers, causing other flows to be denied 
service. 

Schemes that allocate buffers on a per- 
flow basis keep track of the buffer utilization 
of each flow and drop packets based on the 
occupancy level of an individual flow’s allo- 
cated buffers. Per-flow buffer management 
schemes protect well-behaved flows in terms 
of buffer usage. Knowing the amount of 
buffering available can help the flow deter- 
mine how it should respond to congestion 
signals in order to prevent excessive packet 
drops. There are a wide variety of possible 
policies on buffer allocations; in addition to 
depending on the number of other flows pre- 
sent, the buffer allocation might depend on 
the current allocated bandwidth and the pre- 
vious buffer allocation. Such sophisticated 
buffer allocation policies are probably the 
least well understood aspect of congestion 
control mechanisms. 

Feedback 

Feedback from the network to the network 
client provides the client with information 
necessary to adjust to changes in the avail- 

able bandwidth. Over the years there have been many differ- 
ent mechanisms described for feedback. What considerations 
are relevant when designing the feedback mechanism? 

One important factor is multicast data delivery - the deliv- 
ery of data from one or more senders to a group of receivers. 
Multicast does not imply significant design changes for 
scheduling or buffer management, but it is relevant to feed- 
back mechanisms. In particular, two issues that arise in the 
context of multicast are scalability and policy. How does one 
avoid feedback implosion at the source? Should the feedback 
mechanism have embedded within it the policy on how to 
respond to different congestion levels along different branches 
in the multicast path? 

Also, in designing a network that will be heterogeneous 
with respect to switch design and manufacture, it is architec- 
turally important to separate the manner in which feedback is 
given from the precise mechanisms used in the switches. That 
is, we should separate the interfaces used to communicate 
feedback from the implementation of that feedback signal. 

With these design issues in mind, in this section we will try 
to provide a taxonomy for these congestion feedback mecha- 
nisms and discuss some of the issues that should be addressed 
when a particular mechanism is chosen. 

Feedback can be either explicit or implicit. Explicit feed- 
back uses an explicit indicator or field in the packet stream to 
convey network status. An example of explicit feedback is the 
DECBit protocol [l], in which a single bit of information is 
conveyed by the network from the sender to the receiver, 
where it is the receiver’s responsibility to return the informa- 
tion to the sender. 

In contrast, implicit feedback requires end users to monitor 
the performance of their data transmission for clues to the 
current network status. The most well-known example of 
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implicit feedback is the TCP Slow-Start algo- 
rithm, which uses packet drops as implicit 
feedback of congestion. Two other examples 
of implicit feedback are the packet pair pro- 
tocol [24], which uses the absolute delay dis- 
persions of packets exiting the network as 
feedback on the maximum rate at which the 
network could provide service, and NET- 
BLT, which compares the observed through- 
put with the transmission rate to determine 
the maximum achievable throughput [25]. 

We now discuss the implicit and explicit 
approaches in more detail. 
impiicii Feedback - Packet dropping is the 
most common form of implicit signal. The 
dropping of a packet does not necessarily 
have to be an indication of buffer exhaus- 
tion. Algorithms such as random early drop 
(RED) use packet drops to  signal the 
approach to congestion. Note that unless the 
end host knows which dropping algorithm is 
being used in the switch, it cannot distin- 
guish between RED’S indication of the  
onset of congestion and a FIFO switch’s 
indication of buffer exhaustion, and thus may not be able to 
appropriately choose a control strategy.6 

Another implicit feedback that has been used is observation 
of the rate at which packets emerge from the network. This 
works if the bottleneck rate is reflected in the packet stream 
rate at the egress point. For small numbers of packets the sig- 
nal may be very noisy, thus requiring averaging over intervals. 
A key issue is the length of the time interval over which aver- 
aging occurs. If this interval is larger than the interval over 
which feedback must be returned to the sender, problems due 
to control delay will occur. The scheduling algorithms at the 
switches interact strongly with the necessary averaging intervals. 

A final example of implicit feedback is measurement of the 
end-to-end delay change as one changes the transmission rate 
(e.g., TCP Vegas [2] or delay-based congestion control [l]). 
With FQ switches, delay will be relatively constant until the 
fair-share bandwidth allocation is reached, at which time 
queuing will occur, and a sharp increase in delay with no 
increase in bandwidth will be observed by the application. 
However, such an approach may not work very well in a net- 
work with FIFO switches, where one can still observe an  
increased throughput by increasing the transmission rate, even 
when the queue builds up and total delay increases. 

The: chief advantage of implicit feedback over explicit feed- 
back is that with implicit feedback the network only needs to 
focus on resource allocation, but does not have to calculate a 
precise control signal. End users can always derive implicit 
feedback from the observed throughput, delay, and packet 
losses. The question is whether one can derive correct and 
accurate information from the perceived performance. For 
example, as in the case of flow segregation, an implicit feed- 
back signal can be misleading; thus, a prerequisite for implicit 
feedback is a well-defined policy for resource allocation - the 
scheduling control and buffer management we discussed earli- 
er - used by all switches in the network. 

Expiicit Feedback - Explicit feedback can be given in either 
the forward or reverse directions. In forward feedback the 

It is not clear that there is a difference in the appropriate response in 
these two cases (RED and FIFO), but there are presumably otherpossible 
dropping strategies where the difference is more important. 

packet stream is marked as it traverses the 
network from sender to receiver. It is the 
receiver’s responsibility to return the feed- 
back signal to  the sender. In reverse (or  
backwards) feedback the signal is carried 
directly from the switches back to the sender 
in a reverse flow. In the Internet protocol 
(IP) suite a Source Quench ICMP message 
is a form of backwards feedback. Frame 
relay has both a forward explicit congestion 
notification (FECN) indication and a back- 
wards explicit congestion notification 
(BECN) message. 

Note that BECN does not fit the multicast 
model very well. If the congestion signals 
from each node are sent independently to 
the source, we have an implosion of such 
control messages, which does not scale well 
for large multicast groups. If these conges- 
tion signals are merged by the network along 
the reverse path, the network has to embody 
the policy on how such congestion signals 
should be combined. Neither approach is 
satisfactory. The FECN approach leaves it to 

the application to determine how best to merge such conges- 
tion information. 

Explicit feedback signals can also be either binary (i.e., 
“congestion experienced”) or multivalued (i.e., “how much 
congestion has been experienced”). If the feedback is binary, 
or restricted to only a few values, the end-systems must guess 
the quantitative significance of the feedback. With binary 
feedback the network specifies when it is congested but not 
how badly. This leads to asymmetrical behavior on the part of 
senders: rapid drop of the transmission rate to an “estimated” 
safe value when congestion is indicated, followed by slow 
increases when the congestion feedback is no longer set. 

Explicit feedback requires the switch to calculate the feed- 
back associated with a flow and to inject that feedback into 
the packet stream. Thus, it differs from implicit feedback, 
where it is the effects of the switching elements on the packet 
stream that are being measured. Explicit feedback requires an 
extra mechanism. However, one advantage with explicit feed- 
back is that it can provide more quantitative control informa- 
tion to end users and thus speed up the adjustment process to 
load changes. 

End Adjustment 

The end adjustment algorithm is heavily dependent on the 
form of feedback and the quantities being controlled within 
the network. If the feedback information from the network is 
imprecise or incomplete, it may even be necessary to search 
for the correct operating point. For example, with a binary 
feedback signal the correct operating point is found through 
an iteration process of network feedback and end-system 
adjustments. 

The end-system adjustment is the response to a servo con- 
trol loop. For rate-controlled systems this servo loop needs to 
match the rate at which the source is sending to the rate at 
which the network bottleneck can carry packets. In addition, 
when a temporary overload occurs It must allow queued data 
to drain out of the bottleneck node. 

The precision of the servo loop determines network perfor- 
mance. If switch buffers are allowed to become empty, one 
may not reach the maximum possible throughput. Keeping 
some data in switch buffers keeps the throughput high since 
the line would never go idle even in the presence of feedback 
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delay. On the other  hand, if the buffers 
become too full, packets will be discarded 
by the buffer management algorithms. 

As discussed previously, the network must 
not depend on homogeneous implementa- 
tion of a single adjustment algorithm at all 
user ends. We should note that heterogene- 
ity will also arise because individual users 
are likely to react differently to the same 
feedback signal because different applica- 
tions have different sensitivities to delays 
and losses. For instance, if an application is 
designed to tolerate high losses (e.g., the 
image transfer protocol designed by Turner 
and Peterson [26]), it is unlikely to react to 
feedback in order to reduce the loss rate as 
quickly or aggressively as a loss-sensitive 
application would. 

Beyond issues of loss, best-effort multicast 
service also raises a new issue: how to han- 
dle a multivalued feedback. Consider a mul- 
ticast network where one  receiver has a 
much slower network link than all the oth- 
ers. Is the correct source response to this to 
slow down, or to continue at the rate that the other receivers 
can handle? Or, is it to layer-code the data and expect bottle- 
neck switches to selectively discard based on the layer coding? 
The answer is application-specific and thus should not be built 
into the network’s calculation of feedback. 

In summary, there is not a single expected or acceptable 
end behavior. The network should not have a fixed expecta- 
tion for end-system behavior. On the other hand, the network 
must have a defined behavior on which the end user can 
count. Otherwise, the network response to end-system adjust- 
ments will not be predictable, and the application cannot use 
adjustments to implement policy or even to control loss. 

Why W e  Believe that All Four Are 
Necessary and Sufficient 
We believe that packet scheduling, buffer management, feed- 
back, and end adjustments are all necessary components of 
any best-effort network design, and we speculate that they are 
sufficient components for providing best-effort services. 
Scheduling and buffer management are the methods by which 
the network and each individual switch enforce policy. Feed- 
back is the method by which switches inform the end-system 
about the state of the network. End-system adjustments close 
the control loop and implement application-specific policies. 

Scheduling controls the rate at which users gain service and 
ensures that a user transmitting at its share of the bandwidth 
will not be denied service by a user who is not. A more sophis- 
ticated scheduling scheme than FIFO must be present to 
enforce sharing. Share enforcement cannot be done by buffer 
management alone because with FIFO, a user’s share of the 
bandwidth is proportional to the number of packets queued in 
the FIFO queue. Buffer management without some form of 
scheduling beyond FIFO can give fair shares only when each 
user is allocated the same share of the buffer, and the users 
all keep their share of the buffer completely full all the time. 
Unfortunately, keeping the buffers full results in high packet 
loss rates. Thus, buffer management cannot be a replacement 
for scheduling control. 

Buffer management is necessary because even the best 
packet-scheduling algorithms do not by themselves protect 
against abusive users. For example, WFQ scheduling may 
guarantee a fair share of the bandwidth of the outgoing link, 

but it does not guarantee buffer space. Con- 
sider a switch with two users, A and B, each 
on a separate input link. Assume that A and 
B’s fair share of the bandwidth is 50 percent 
(unweighted). Even if A is transmitting exact- 
ly at its fair share, B could be transmitting at 
100 percent. Absent any buffer management, 
B will fill up all the buffers in the switch. 
Now assume that A’s share of the bandwidth 
decreases because a source C comes on-line. 
By using up all the  buffers, B will have 
denied A the ability to track changes in the 
available bandwidth without losing packets. 

The precise allocation of buffers is depen- 
dent on the scheduling algorithm used. As 
scheduling algorithms depart from a fluid 
flow model (e.g., WFQ), clumping can occur in 
the packet flow. This clumping must be 
allowed for by the buffer allocation algorithm. 

Feedback informs the end users of net- 
work conditions and allows the users to cal- 
culate their current fair shares. If the 
network provides unfair or inconsistent feed- 
back to the user, a variety of pathologies will 

occur. Thus, feedback is a necessary component in a network 
design. However, feedback cannot force the user to actually 
obey it. Thus, feedback must be supplemented by enforce- 
ment mechanisms such as scheduling and buffer management. 

End adjustments close the control loop. They are  the 
response to network feedback. Poor-quality adjustments will 
potentially result in high loss rates or low network utilizations. 
However, just as the network cannot count on end users to 
obey feedback, the network cannot count on users to imple- 
ment any specific form of end-system adjustment. Network 
integrity must depend on switch-resident mechanisms (i.e., 
packet scheduling and buffer management), not end adjust- 
ments; and end adjustments cannot work well if the quality of 
the feedback is poor. 

implications for the Design of Networks 
n this section we will argue that carefully thinking through I the roles of the four mechanisms is essential if we are to 

build a network which has long-term evolutionary potential. 
In particular, we must ask the architectural question of “what 
belongs in the center of the network (i.e., in the switches) and 
what belongs at the edge of the network (i.e., in the terminal 
equipment)?” 

Equipment at the center of a network is usually exception- 
ally stable. This is due to the operational constraints of run- 
ning a production network; the network operator cannot run 
the risk of either destabilizing an operational network or 
desupporting running applications. As a result, any new appli- 
cation that requires an upgrade to the core of the network is 
likely to have very long introduction times. Thus, we should 
consider the core of the network as requiring long-term stabil- 
ity and plan for evolution to occur at the periphery. 

Of the four mechanisms, two are likely to be quite stable 
and one mostly stable. Scheduling may take many forms and 
implemen ta t ions  (e.g., WFQ, round-robin, token buckets, 
and/or approximations to these mechanisms), but there are 
deep theoretical similarities between all rate-allocating sched- 
ulers, leading one to believe that the exact form of scheduling 
may be less important than the presence of scheduling. 
Changing the form or content of the feedback implies a fun- 
damental redesign of the network and is therefore unlikely. 
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Thus, we expect scheduling and feedback to 
be quite stable. 

Since buffer allocation must respect con- 
trol loop delays, buffer management requires 
both knowledge of the average time delays 
in the control loop and the average rates at 
which a flow is legally transmitting. It can 
also make good use of knowledge of traffic 
statistics. Over time it is likely that imple- 
mentations will change estimating tech- 
niques for delay bandwidth products and will 
utilize improved estimates of traffic fluctua- 
tions, thus changing the absolute amount of 
buffering allocated to  a flow. However, 
changes in the amount of buffering allocated 
to  a flow primarily affect the loss rate on 
that flow during periods of congestion. Thus, 
one would expect that buffer management 
policy can experience some change without 
adversely affecting end users. 

It is when we consider end adjustments 
(i.e., end-system control of the servo loop) 
that we find an area where rapid and signifi- 
cant change is both possible and desirable. 
When a network is robust there is no need 
to enforce a specific behavior 011 the user. 
Users can change both the parameters of the 
servo loop and the algorithms. Parameter 
changes include, for example, changes to the 
rate at which the user increases her or his sending rate and 
the amount of data in transit at any given time. An example 
of an algorithm change would be new methods of more pre- 
cisely estimating the evolution of network state based on prior 
feedback. Robustness enables and encourages experimenta- 
tion and evolution in end adjustments. 

If the most likely sources of technical change are  the 
adjustments of the servo loop, adjustments should be made 
only at the periphery (e.g., at end-systems). Switches should 
only provide feedback, not participate directly in the control 
loop calculations. Although the previous statement sounds 
simple, it tends to rule out hop-by-hop schemes, especially 
those where the network can run either end-to-end or hop-by- 
hop, and feedback schemes that rely on the switches modify- 
ing feedback based on control-loop-like considerations.7 

Exampies 
n this section we briefly describe several well-known conges- I tion control algorithms, and explain where they fit into our 

taxonomy discussed earlier in the article. 

Current lnternef 
Until recently, the traffic across the Internet has been domi- 
nated by data applications, with electronic mail, remote login, and 
file transfer being the main sources of data. These data appli- 
cations run on top of the reliable TCP transport protocol [27]. 
Only recently, due to audio and video transmissions on the 
multicast backbone (MBone) [28], has user datagram protocol 
(UDP) traffic become a significant factor in Internet traffic. 

One strength of today’s Internet is TCP’s extremely well- 
designed adaptive retransmission and congestion control 
mechanism (Slow-Start), which was designed and implement- 
ed by Van Jacobson in the mid-’8Qs [6] .  When Slow-Start was 
designed the Internet had a deployed base of routers with 
FIFO scheduling, FCFU buffer management, and (as a result) 

drop-tail service. Thus, TCP Slow-Start uses 
the packet losses from the network as an 
implicit signal for network congestion. When- 
ever packet losses are observed, a sender 
immediately reduces its data transmission 
rate to one packet per round-trip time, and 
gradually opens up the congestion control 
window only if no  fur ther  losses a re  
observed. The increase in transmission rate 
is divided into two phases: congestion recov- 
ery, during which the window size opens up 
rapidly, and congestion avoidance, during 
which the window size increases by only one 
packet per round-trip time. Universal deploy- 
ment of this conservative approach together 
with improved network capacity have kept 
the Internet from congestion collapse even 
in the face of exponential growth in both the 
user population and the traffic load. 

We note that the feasibility and effective- 
ness of Slow-Start congestion control relies on 
the homogeneity of the transport protocol 
and, probably more important, the coopera- 
tion of essentially all end hosts. When one or 
a few end hosts do not follow the rule, they 
can grab as much network bandwidth as they 
like while other, obedient users back off 
from congestion. The growing UDP traffic 
from MBone applications, which do not 

implement Slow-Start, provides a challenge to the previously 
homogeneous end-host behavior; recently, a token-bucket 
mechanism has been added to all MBone routers to limit the 
total volume of MBone traffic. 

According to our taxonomy, the approach of the current 
Internet can best be described as no scheduling control of 
allocations, no buffer management control of allocations, 
implicit feedback, and cooperating end hosts. As pointed out 
in [6], however, end-host adaptation can only be part of the 
story. To minimize congestion losses and provide fair services, 
network switches must also be engaged in the control. The 
recent RED work [3], which we describe next, is one step for- 
ward in that direction. 

RED 
The RED congestion control algorithm design retains the 
basic design of today’s FIFO routers. I t  uses the average 
queue length as an indicator of network load, but no other 
state information is kept concerning the resource utilization of 
individual flows. Incoming packets are randomly dropped as 
soon as the potential of overloading exists, well before the 
switch reaches buffer pool exhaustion. RED provides implicit 
feedback via dropping and thus does not require any changes 
to the existing end implementation of TCP Slow-Start. 

Because packets to be dropped are randomly chosen from 
the incoming data stream, flows sending at faster rates will 
incur more packet losses than flows sending at slower rates 
(but all flows experience the same packet loss rates, in that 
the number of losses for each flow will be, on average, pro- 
portional to the number of packets trasmitted by the flow). 

7An example of such a switch involvement in control-loop calculations 1s 
a scheme such as has been proposed by the ATM Forum in which the sole 
feedback is rate. As a result, the switches have to modify the rate feedback 
based on buffer occupancy - a calculation which embeds control-loop 
functionality in the rate feedback 
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However, flows which do  not implement 
Slow-Start can capture more than their share 
of bandwidth (i.e., have more packets for- 
warded). Therefore, this stateless scheme, by 
itself, does not provide effective resource 
usage enforcement. Reference [3] suggests 
that, in the presence of persistent heavy load 
despite RED, the switch can identify specific 
sources as offenders from the number of 
dropped packets and treat them specially 
(e.g., dropping all of their packets) - that 
is, to enhance the switch with some per-flow 
state. 

By our taxonomy, one may consider RED 
as both an indirect method of scheduling 
control and a buffer management strategy, 
with implicit feedback and the Slow-Start 
end adjustment algorithm. RED does not 
ensure fair sharing of resources. With the 
enhancement of per-flow state for misbehav- 
ing hosts, RED may function adequately as 
long as the vast majority of users adopt the 
same congestion response algorithm. 

DECbit 
The DECbit congestion control scheme predates Slow-Start 
[24]. It is an end-to-end explicit feedback control scheme with 
a binary value signal, the congestion indication bit. The goal 
of DECbit design is congestion prevention. The performance 
of the network is measured by “power,” which is defined as 
the ratio of throughput over delay, which achieves its maxi- 
mum value when the link stays busy all the  time and the 
queue size is kept to one. Therefore, in DECbit the switches 
measure the average queue length, and set the congestion 
indication bit upon a packet arrival whenever the average 
queue length exceeds one. Switches along the path may set 
the bit, but can never clear the bit once it is set. 

The receiving end sends the bit in each data packet back to 
the sender in the acknowledgment packet for that data pack- 
et. The sender then examines the bit in the last W packets, 
and reduces the flow control window size if at least 50 percent 
of the packets have the bit set; otherwise, the sender increases 
the window. The window size adaptation uses a multiplicative- 
decrease with additive-increase scheme, aiming at fast adapta- 
tion to congestion and incremental speedup in the absence of 
congestion. However, because the multiplicative factor used in 
the decrease is large (0.875), the actual adaptation speed is 
rather slow as compared to the radical reduction taken by 
Slow-Start upon a packet loss. 

As one can see, DECbit is very similar to Slow-Start. In our 
categorization, DECbit has no scheduling control and a 
shared buffer pool management strategy (i.e., keeping the 
average queue from exceeding one). The most noticeable dif- 
ference is its explicit congestion bit, as opposed to implicit 
feedback in Slow-Start or RED. Through simulation the 
DECbit designers noticed unfair service due to the stateless 
control even when all end hosts obey the control rules. A bit-set- 
ting scheme based on per-flow measurement has been pro- 
posed as a fix to this unfairness [29]; but even with that fix, the 
entire control scheme relies on cooperation from all end hosts. 

The Hop-by-Uop Credit Scheme 
Hop-by-hop credit [7,  8, 301 differs from the three examples 
above in three important ways. First, hop-by-hop credit bases 
its controls and feedback on the amount of space left in 

switch buffers. Feedback is explicit and mul- 
tivalued: the number of unused units worth 
of buffering. Second, hop-by-hop credit 
always attempts to utilize all available unused 
units of buffering. Hop-by-hop attempts to 
keep the buffers completely full instead of 
mostly empty. Third, it segments the control 
loop at  each switch instead of running an 
end-to-end control algorithm. This segmen- 
tation is forced because the control algo- 
rithm attempts to keep the buffers full; if an 
end-to-end control algorithm tried to keep 
buffers full, buffer overflow would inevitably 
happen. However, hop-by-hop credit 
schemes tend to get very good network uti- 
lization, even in the face of widely varying 
traffic loads, because there is usually always 
data in the switch buffers which can be sent 
when an opportunity arises. 

Hop-by-hop credit schemes require per- 
flow queuing to avoid both head-of-line 
blocking and deadlock. Once per-flow queu- 
ing is in place, a method of scheduling is 
required; the algorithms in [7 ,  8, 301 use 

round-robin scheduling. A side effect of this scheduling is that 
flows are given fair service. 

Hop-by-hop credit schemes must do explicit buffer manage- 
ment since the feedback is in terms of the space left in the 
buffer. Reference [30] describes a scheme in which each flow 
is given a static allocation of buffer memory. Unfortunately, 
such a static allocation, while simple, leads to large memory 
requirements in the wide area. Subsequent schemes have been 
developed [lS, 161 that do dynamic allocation of buffer space. 
Dynamic allocation seems to require knowledge of the rate at 
which a connection is being serviced. It also introduces statis- 
tical sharing of buffers, and therefore the possibility of loss. 

There are  two potential issues with hop-by-hop credit 
schemes. The first is that in order to achieve good throughput, 
buffers a re  kept  full, with the concurrent possibility of 
increased transmission delay within the network. The other 
potential issue is that the switch-by-switch control loops 
embed control policy within the hardware of the network. In 
case of multicast data delivery, for example, it enforces a poli- 
cy of everyone adjusting to the slowest receiver, leaving no 
option for the application to decide on a different policy. 

A Strawman Proposal 

In a contribution to American National Standards Institute 
(ANSI) Committee TlS1, one of the authors of this article 
describes a mechanism that  was built using the insights 
described in this article [31]. This mechanism uses WFQ as 
the scheduling mechanism, buffer allocation based on the 
user’s allocated bandwidth, forward explicit feedback of the 
bottleneck rate and buffer utilization, and an end-system 
adjustment that tracks the bottleneck rate but allows for over- 
ly full buffers to drain. 

Effectively, the mechanism takes the packet pair protocol 
of Keshav [24], which uses implicit feedback (dispersion of 
packets, packets in transit) to allow the destination to calcu- 
late the bottleneck rate and the buffer occupancy in the net- 
work, and makes what had been implicit explicit. This explicit 
data is carried by special ATM cells called “resource manage- 
ment (RM)” cells. The values contained in the RM cells are 
modified as the cells traverse the network. 

The combination of bottleneck rate and bottleneck buffer 
occupancy allows the end adjustment to carefully control the 
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bottleneck queue length, thus ensuring that 
packets are not lost due to queue overflows 
and that the user does not lose throughput 
by letting the bottleneck queue go empty. 
Because [24] did not address buffer manage- 
ment (although it was clearly understood to 
be an issue), it was not possible to  show 
robustness and stability in the presence of 
ill-behaved users. 

While the scheme in [31] is not known to 
be optimal in any sense of the word, it does 
provide near 100 percent link utilization 
without packet loss for the configurations 
and loads for which it has been simulated. 
The intent of the contribution to T l S l  was 
to demonstrate to the ATM community the 
potential performance of a carefully 
designed end-to-end rate-based feedback 
scheme which also had substantial theoreti- 
cal grounding. For the purposes of this arti- 
cle it demonstrates how explicitly thinking 
about the service model and mechanism 
"knobs" of our best-effort service gives us 
insight into mechanism design. 

Summary 

he current congestion control paradigm 7- assumes that end users will use a single 
mandated algorithm. While the work done 
in this area has proven to be of great value, 
and is extremely interesting, we need to rec- 
ognize as a community that this paradigm is 
clearly inappropriate for future public net- 
works. There are many reasons for this. First, we cannot count 
on user cooperation in such public networks. Second, given 
that there are many uses of best-effort traffic with very differ- 
ent delay and drop sensitivities, it makes little sense to man- 
date a single algorithm. Third, in a commercial network users 
will not accept a service so dependent on the detailed behav- 
ior of other users. 

Thus, we must turn towards a paradigm that is not built on 
the assumption of homogeneity. One principle underlying this 
new paradigm is that the network should enable users to 
achieve good service. This requires that the network provide 
sufficient feedback so end users can use the available band- 
width effectively. This, in turn, requires that there be a well- 
defined service model which describes the nature of the 
service provided. Another fundamental principle is that the 
network, in delivering service to a particular user, must not 
count on cooperation from other users. This requires that the 
network protect flows from each other by enforcing restric- 
tions on resource usage. We believe packet scheduling is the 
most effective tool for this enforcement. 

It is through the consideration of both network evolution 
and the types of mechanism available to support best-effort 
traffic that we may derive a very general design principle: the 
network should provide isolation of flows and give the best 
explicit feedback possible, while the end-systems should 
implement the control function. 

These points are very simple, but they reflect a fundamen- 
tal change from the current discussions of congestion control. 
Our purpose in this article is not to design the details of 
future algorithms, but to change the nature of the debate 
about those algorithms. 
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