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Abstract

Human motion is the composite consequence of multiple
elements—the action performed, an expressive cadence,
and a motion signature that captures the distinctive pat-
tern of movement of a particular individual. We develop
a new algorithm that is capable of extracting these motion
elements and recombining them in novel ways. The algo-
rithm is based on the numerical statistical analysis of mo-
tion data spanning multiple subjects performing different
types of motions. In particular, we demonstrate that, after
our algorithm analyzes a corpus of walking, stair ascend-
ing, and stair descending data collected over a group of
subjects, it can then observe a sample of walking motion
for a new subject and recognize never before seen ascend-
ing and descending motions for this new individual. Our
approach also yields a generative motion model that can
synthesize unseen motions in the distinctive style of this in-
dividual. We validate our algorithm using a standard pat-
tern classifier.

1. Introduction and Background

In analogy with handwritten signatures, do people have
characteristic motion signatures that individualize their
movements? If so, can these signatures be extracted from
example motions? Can extracted signatures be used to rec-
ognize, say, a particular individual’s walk subsequent to ob-
serving examples of other movements produced by this in-
dividual?

Our ability to perceive motion signatures seems well-
grounded from an evolutionary perspective, since it is
clearly conducive to survival to be able to recognize the mo-
tions of predator or prey, or of friend or foe, especially at a
distance and in the absence of other details. In the 1960s,
the psychologist Gunnar Johansson performed a series of
famous experiments in which he attached reflectors to peo-
ple and recorded videos of them performing different activ-
ities, such as walking, running, dancing, and so on [5]. Ob-
servers of these videos, in which only the reflective dots are
visible, were asked to classify the activity performed and to
note certain characteristics of the motion, such as a limp or
an energetic/tired walk. Observers can usually perform this

task with ease and they could even recognize specific indi-
viduals in this way. This may corroborate the hypothesis
that the signature of a motion is a tangible quantity that can
be separated from the actual motion type.

Our research in progress has three goals. The first is to
develop a new algorithm that can analyze everyday human
motions to separate out distinctive motion signatures. The
second is to recognize specific individuals performing mo-
tions not included in our database, using extracted motion
signatures associated with these individuals. The third goal
is to synthesize novel motions that are in accord with ex-
tracted motion signatures. The mathematical basis of our
approach is a statistical numerical technique known asn-
mode analysis, a multi-linear singular value decomposition
(SVD) applicable to higher-order data arrays.

Our algorithm exploits corpora of motion data which are
now reasonably easy to acquire through a variety of modern
motion capture technologies developed for use in the enter-
tainment industry [3]. Motion synthesis through the analy-
sis of motion capture data is currently attracting a great deal
of attention within the computer graphics community as a
means of animating graphical characters. Several authors
have introduced generative motion models for this purpose.
Several recent papers report the use of hidden Markov mod-
els [1]. Howeet al. [4] analyzes motion from video using
a mixture-of-Gaussians model. Grzeszczuk et al. develop
neural network learning models to emulate physically sim-
ulated motions [2].

We address the motion analysis/synthesis problem using
techniques from numerical statistics. The n-mode analysis
algorithm that we adapt to our purposes was described for
scalar observations by Kapteyenet al. [7, 8]. Marimont
and Wandell [9] extended it to 2-mode vector observations
in the context of characterizing color surface and illuminant
spectra. Freeman and Tenenbaum [10] used this extension,
their so-called bilinear model, in three different perceptual
domains, including the translation of faces to novel illumi-
nations.

2. Motion Data Acquisition
Human limb motion was recorded using a VICON system
that employs four video cameras. The cameras detect infra-
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Figure 1: The motion capture facility

red light reflected from markers placed on the limbs of a
human subject. The system computes the 3D position of
the markers,~mi, relative to a fixed lab coordinate frame,
FL. The video cameras are positioned on one side of a 12
meter long walkway such that each marker can be observed
by at least two cameras during motion.

To extract the three angles spanned by a human joint,
we must define a plane for each limb whose motion can
be measured relative to the sagittal, frontal and transverse
planes through the body. A total of 18 markers were used, 9
to measure the motion of each leg. In general, we must de-
fine a plane for each limb, using three markers. We placed
a marker at each end of the limb (at the joints) and we at-
tached a third marker to a 15 cm long stick strapped half
way down the limb extending away from the body, such
that the plane formed with the other markers are parallel to
the frontal plane. For the foot plane, markers were placed
on the ankle joint (at the base of the fifth metatarsal), lat-
erally on the heel and on the lateral malleolus (right before
the toes). The pelvis was defined by markers placed on the
iliac crest, anterior superior spine and greater trochanter.

Each subject was asked to perform three types of
motions—walking, ascending and descending stairs. Each
motion was repeated 10 times. A motion cycle was seg-
mented from each motion sequence. To suppress noise, the
collected motion data were low-pass filtered by a fourth-
order Butterworth filter at a cut off frequency of 6 Hz and
missing data were interpolated with a cubic spline.

After the marker positions were measured, filtered, and
interpolated, the time-varying rotations of each of the limbs
were calculated with respect to the lab frame,FL. These
transformations are used to compute intermediate transfor-
mations between the limb segments from which joint angles
can be computed. Pelvic rotation is the rotation with respect
to lab frame,FL. The rotation of the thigh is the rotation
with respect to the pelvis through which the hip angles are
obtained. The knee angles are defined as the rotations of the
shank with respect to the thigh. The ankle angles are defined
as the rotations of the foot with respect to the shank.

Therefore, we first calculate the frame coordinate trans-
formation for each limb with respect to the lab, next we cal-
culate the relative orientation of each limb in the kinematic
chain, and finally we solve for inverse kinematic equations

to compute the joint angles.

3. Motion Analysis
Given motion sequences of several people walking on level
ground, as well as ascending and descending stairs, we de-
fine a data setD which takes the form of ant�m matrix,
wheren is the number of people,t is the number of joint an-
gle time samples, andm is the number of motion classes.1

The first column ofD stacks the mean walk of every per-
son, the second column stacks the mean ascending motion
and the third stacks the mean stair descent, as follows:

D =

2
6666664

D1

...
Di

...
Dn

3
7777775

(1)

Di =
h
�!

walki

�!

ascendi

�!

descendi

i
; (2)

The columns of matrixDi are the average walk, ascend and
descend of stairs of theith person. Each motion is defined
as the angles by every joint over time.

Motivated by themulti-mode component analysisor n-
mode component analysisfrom the numerical statistics lit-
erature [7, 8], we decompose the complete data set into the
“product” of a core matrixZ, a people parameter matrixP ,
and an action parameter matrixA, as follows:

D = (ZV T P T )V T AT (3)

= SAT ; (4)

where theV T -operator is a matrix transposeT followed
by a “vec” operator that creates a vector by stacking the
columns of the matrix. The signature matrix

S = (ZV T P T )V T = [S1 : : : Si : : : Sn]
T (5)

is composed of person-specific signaturesSi. The people
matrix

P = [~p1 : : : ~pi : : : ~pn]
T ; (6)

whose row vectors~pi are person specific, encodes the in-
variances across actions for each person. The action matrix

A =

2
4 � � �

� � �
� � �

3
5
T

|{z}
~awalk

|{z}
~aascend

|{z}
~adescend

(7)

1Note that the natural structure of our acquired motion data is a 3-
dimensionaln � m � t array — i.e., a rank-3 tensor — as opposed to
the “flattened” data matrix formD. De Lathauweret al. present a direct,
tensor reformulation of n-mode analysis that they call higher-order singular
value decomposition (HOSVD). Their formalism is suitable in our appli-
cation. It is straightforward to specify our algorithm in their formalism and
we will do so in a subsequent paper.
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whose row vectors~ac, contain the coefficients for the differ-
ent action classesc, encodes the invariances across people
for each action. The core matrix

Z = [Z1 : : : Zi : : : Zn]
T (8)

represents the basis motions which are independent of peo-
ple and of actions. It governs howP andA interact to pro-
duce the observed motions.

We solve forZ, P andA by applying the 2-mode vector
analysis algorithm, which minimizes

E = kD � (ZV TP T )V TAT k (9)

+ �1(kP
TP � Ik+ �2(kA

TA� Ik;

whereI is the identity matrix. The algorithm computesP
as follows:

D = (ZV TP T )V TAT ; (10)

(DA)V T = ZV TP T (11)

USV T = ZV TP T Compute SVD of LHS (12)

V = P SetP to firstr-columns ofV (13)

andA as follows:

DV T = (ZAT )V TP T (14)

(DV TP )V T = ZAT (15)

USV T = ZAT Compute SVD of LHS (16)

V = A SetA to firstr-columns ofV .(17)

Note that we compute the singular value decompositions
(SVD) of the left hand sides (LHS) of (11) and (15). The
matrixZ is computed as follows:

Z = (DV TP )V TA; (18)

whereP andA are orthogonal matrices.

4. Generative Motion Model
We define the new signature model for a new person

Dnew

� �
? j j

�
=

�
?

�
| {z }
Snew

AT (19)

for whom we have examples of only some of the motion
classes, as the linear optimal combination of known signa-
tures:

Snew =
�
W1 � � � Wi � � � Wn

�
| {z }

W

2
66664

S1

...
Si

...
Sn

3
77775

| {z }
S

(20)

whereW is a weight matrix.
We solve for the weight matrixW using iterative gradi-

ent descent of the error function

E = kDnew �WSAT

inck; (21)

whereAT
inc has only the columns corresponding to the mo-

tion examples available inDnew.
The gradient update of the signature matrix,Snew for the

new person is given as follows:

Q = SAT

inc (22)

W (t+ 1) = W (t) + 
(Dnew �WQ)QT (23)

Snew(t+ 1) = W (t+ 1)S (24)

For example, to synthesize new data for walking, we multi-
ply the newly extracted motion signatureSnew from equa-
tion (24) and the action parameters for walking,~awalk , as
follows:

�!
walknew = Snew~awalk (25)

5. Results
A corpus of motion data was collected from 6 subjects.
Three motions were collected for each person: walk,
ascend-stairs, descend stairs. Given a sufficient quan-
tity of motion data, our human motion signature extrac-
tion algorithm can consistently produce walks and stair as-
cend/descend motions in the styles of individuals.

In a “leave-one-out” validation study, we verified that
our algorithm was able to compute motion signatures suf-
ficiently well to synthesize all three types of motions in
the distinctive style of each individual compared against
ground-truth motion capture data of that individual. If the
motion signatureSnew captures the distinctive pattern of
movement, the synthesized walk would best match the ac-
tual walk of the new person. Using a nearest neighbor clas-
sifier, the synthesized walk was indeed recognized against a
complete database that includes the actual walk data for the
new person.

Fig. 2(a) shows, in frontal view, the synthesis of three
different styles of walking motion given only examples of
descending stairs in those corresponding styles. Note that
the walking styles differ subtly: The woman on the left
walks in a pigeon-toed style, the clown struts, and the skele-
ton on the right walks with knocked knees. Fig. 2(b) shows
a side view of the motions; the figures animated using syn-
thesized motions are in the foreground. Fig. 3 shows a stair
ascending motion synthesized for one of the individuals.
Our algorithm extracted the motion signature from a sample
walk from this individual. We then used the extracted mo-
tion signature to synthesize the stair-ascending motion for
this individual. The motion signature was combined with
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(a) (b)

Figure 2: Synthesizing 3 styles of walking motions from example motions of ascending stairs in those corresponding styles.
(a) Comparing synthesized walking motion data against ground truth (the synthesized data is depicted by the characters
without hair), our method captures stylistic differences in motion such as pigeon-toed walking, knocked-knees or strutting.
(a) The synthesized motions are depicted by the characters in the foreground and, for comparison, the captured walking
motions are depicted by the characters in the background.

Figure 3: A synthesized stair-ascending motion.

general stair ascending parameters which were extracted a
priori from our database.

In [11] we presented an animation short that was cre-
ated using motion data synthesized by our algorithm. The
graphical characters shown are modeled and rendered by
theMetaCreations Posersystem.

6. Conclusion
We have introduced the notion of decomposing motion data
into primitives such as action parameters, temporal (ca-
dence) parameters, and most importantly a motion signa-
ture. To achieve such a decomposition, we have proposed
an algorithm which is based on a numerical statistical anal-
ysis technique called multi-mode analysis. Our algorithm
robustly extracts signature parameters from a corpus of mo-
tion data spanning multiple subjects performing different
types of motions. We have shown that the extracted sig-
natures are useful in the recognition and synthesis of novel
motions for animating articulated characters.
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