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Abstract—Medical sensor networks have facilitated a wide
range of applications in healthcare. However, these systems are
in particular vulnerable to security attacks due to the fact
that they are often not physically secured and are used in
potentially hostile environments. We have proposed a theoretical
and statistical framework for creating attacks and also the
corresponding security defenses that include attack detection,
diagnosis, and impact removal. We use medical shoes to collect
data and demonstrate that low energy and low cost of medical
sensor networks increase the probabilities of successful attacks.
Our approach maps a semantic attack to an instance of an
optimization problem where medical damage is maximized under
the constraints of the probability of detection and root cause
tracing which may consequence in incorrect medical diagnosis
and treatment. Our results show that it is easy to attack several
essential medical metrics and to alter corresponding medical
diagnosis. Finally, we have developed several low energy and low
overhead defense procedures for detecting and analyzing semantic
security attacks.

I. INTRODUCTION

Healthcare applications are increasingly using Wireless sen-
sor networks(WSN) to extract important health information
from them. Through its remote sensing ability, WSN in health-
care has helped in creating numerous wireless health applica-
tions and has also extended the scope of medical diagnosis. For
example, medical experts can examine the day-to-day activities
of a patient or analyze the patients’ physiological data collected
from sensors on a regular basis. This also eliminates the need
to solely rely on in-person medical check-ups while improving
the quality of care.

Embedded medical sensor networks are becoming popular
as they are low-cost solutions to a variety of medical chal-
lenges. Having accurate information is critical in dealing with
these medical sensor networks. For example the medical expert
can carry out the right treatment only if he/she has accurate
information about the condition of the patient. Inaccurate
medical readings can produce irreversible damage which can
even lead to the death of a patient.

However, embedded medical sensor network enforces strict
constraints on energy and power consumption. Both of these
act as major obstacles in the application of traditional security
techniques to medical sensors. Security is extremely critical
in medical devices as even a small error due to tampering
can cause wrong diagnosis and can potentially endanger the
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life of a patient. Moreover, in making medical devices energy-
efficient by reducing the number of sensors used; makes them
more susceptible to semantic attacks. Traditional cryptography
can only guarantee the data to be safe through the wireless
channels. However, it cannot prevent malicious manufacturers
because of their special privileges in manufacturing. Crypto-
graphic techniques are not suitable for semantic attacks as the
medical devices are sometimes unattended which can lead to
their tampering and subsequent malfunctioning. Our focus is
that the medicalfexpent should be able to detect the attacks in
real time even though the data has been tampered.

Many papers have been written to address communication
based security issues of wireless sensor networks in healthcare
applications [1] [2]. However, we focus on semantic attacks.
A semantic attack is the one in which the attacker modifies
information in such a way that the result is incorrect, but
looks correct to the casual or perhaps even the attentive viewer.
We demonstrate that by implementing simple attacks; the
attacker can hamper the result drastically. In this experiment
we prove that by attacking several essential medical metrics,
the diagnosis can be changed considerably yet generating
acceptable results. We also propose defenses against these
semantic security attacks that can detect the respective attacks.
We evaluate both attacks and defenses under two different sce-
narios with respect to the number of sensors used to generate
the results for comparing and analyzing our techniques.

Our proposed semantic attacks are possible in real scenarios.
For example, if a malicious attacker is able to break into the
computer of a medical expert or a malicious party can even be
the manufacturer of medical shoes who can create back doors
into the embedded sensors such that he/she can easily access
and tamper the sensor data. However, from the perspective of
attacker, he/she cannot be too aggressive as too much deviation
from the original data will easily make the medical expert
suspicious about the data being tampered.

We evaluate our attacks and defenses on the Hermes shoe
platform, which_lis designed to assess balance and instability
in patients [3].It consists of 99 pressure sensors distributed
in each insole and integrated with a common computing
platform. The special features of a person’s gait which are
highly correlated to his/her risk of falling as shown by Maki
[4] are used for the attack and defense evaluation.

This paper presents the following research contributions: 1)
One of the first to analyze the impact of semantic attacks
on the security of wireless medical devices; 2) Propose two
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novel semantic attacks that can impact the resulf i1} a great
manner and also corresponding defenses to identify the same;
3) Detailed analysjS]showmg] that using more sensors are
potentially more reggent toSemantic attacks.

The remainder of this paper is organized as follows: In Sec-
tion II any we present the related work and the preliminary
knowled quired for the experiment. Section IV gives a
short overview of the metrics considered and our formulation
of the result. Sections V and VI provide the implementation
details of our proposed attacks and defenses on the specified
metrics and their evaluation. Finally we conclude the paper
with Section VII summarizing our findings and stating our
conclusions.

II. RELATED WORK

In the last decade, wireless medical devices and correspond-
ing techniques have attracted a great deal of research and
development interest. More recently a significant emphasis has
been made on security issues. For example several research
groups at different universities including University of Michi-
gan, University of Massachusefts Amherst, Massachusetts
Institute of Technology, Rice and Princeton have reported
techniques that enabled security compromise of so popular and
important devices such as pacemaker [5], implantable-eardiac
defibrillator[6] and insulin pumps [7] [8].

In addition, actual medical community has been Tapidly
becoming more aware of power and energy limitations of
security techniques used for medical devices [9] [10] . In
addition to security, other issues such as privacy [11] and
trust [12] [13] have received significant attention. As a matter
of fact many other aspects related to security in medical
applications such as systems that integrate wireless d¢vices [and
cloud computing have been addressed [14] [15]. We conclude
out brief survey in wireless medical devices by pointing to
two comprehensive reviews inm this reseasch field [16] [17].
Meanwhile, hardware based technologyirds been proposed to
secure the sensor network [18][19]. Protocols to protect the
integrity of sensor data are proposed in [20].

While all previous efforts in this field emphasized vulnera-
bilities of used wireless security protocols and their potential
fixes, we focus on actual alteration of collected sensor data
in such a way that semantic conclusion of medical experts
is altered. This alteration leads to incorrect treatments which
might compromise the medical well being of a subject.

III. PRELIMINARIES

A. Medical Shoe

Medical sensor networks are inherently semantics-driven
systems. The medical expert is generally not concerned with
the actual sensor readings but rather more concerned with the
semantic information like the gait characteristics mentioned
below. Hence we try to attack this semantic information so
that maximum harm can be caused.

We evaluate our attacks and defenses on our medical shoe
which consists of 99 sensors distributed about the sole of the
foot, a processing unit, flash memory, a radio, and an ADC.
The sensor placement is according to the Pedar plantar pressure
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Fig. 1:@he 99 sensor mapping of Hermes shoe platform.

mapping system [21] as shown in Figure 1. The numbering
of the sensors according to their position is also depicted in
Figure 1.

B. Data Set

Our dataset includes pressure readings over all the 99
sensors for each shoe sampled at 50hz for four persons respec-
tively using a 16-bit analog-to-digital converter. The resulting
time-dependent pressure mappings are used to calculate the
below mentioned gait characteristics from the full dataset. The
dataset includes hundreds of steps of all the subjects which also
incorporates data for each foot of a person separately.

The pressure readings are collected for seven different
scenarios namely walk, jump, lean, run, stand, limp, slow-
walk. In our paper we focus on the walk readings and calculate
the impact of our attacks and defense mechanisms.

IV. METRICS AND FORMULATION

Maki [4] has observed that stride-to-stride variability in
speed has a strong correlation with the risk of falling. The
spatial gait parameters related to this variability like stride
period, double support, stride length, stride width and stride
velocity help in predicting the danger of falling. We take
into consideration the two important metrics namely stride
period and double support to simulate our attacks and defenses
respectively.

Stride-to-stride consistency is taken into account by comput-
ing the average of differences between two consecutive values
of a specific feature. Moreover if the patient is not able to walk
with consistency; they are normally at higher risk of falling.
Hence higher the variation; higher is the instability. Thus in
general, variation in a metric signifies increased instability.

In order to calculate the stride period with the help of our
dataset, we generated the walk waveform of each subject’s left
and right foot separately. The left fdof walk waveform of the
first subject is shown in Figure 2. The peaks with the highest
pressure in this waveform represent the moment of highest
pressure and hence it symbolizes the contact of foot with the
ground. We measure the difference between two successive
peaks to determine the required stride period. Then variation is
calculated by taking the average of all the absolute differences
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Fig. 2: The waveform of the stride period metric.
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Fig. 3: The waveform of the double support metric.

of stride periods. SP(i) represents stride period at i’ step and
n reprgsents the total number of steps.

Simmilarly to calculate double support, we superimpose the
walk waveforms of each person’s left and right foot as shown
in Figure 3. We measure the overlap time between peaks of
the two waveforms at the same time slot giving us the duration
for which both the feet are in contact with the ground simulta-
neously. Variation is determined by taking the average of these
absolute differences. ds(i) represents the double support time
at i step in both feet and min(SP(i)) represe the minimum
of left and right stride period at i step. The dotted horizontal
line passing through the waveform in Figure 3 indicates the
level above which we assume that both the feet of the person
are on the ground simultaneously.

Varsp =1/nY |SP(i+ 1) — SP(i)|

i=1

Varps =1/n Z|
i=1

(¢Y)

ds(i+1)
min(SP(i+1))

_ ds(i) |

min(SP(i))

(@)

Thus instabilfty can[he calculated from these variations
based on equat 1 amd 2. The coefficients vsp and vpg
indicate the significance of a particular metric. The coefficients
can be adjusted by the medical specialists.

3

Instability = yspVarsp + vypsVarps
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We attack these two important metrics under two different
scenarios namely using the summation of 99 sensors and the
summation of just twenty fixed sensors for medical diagnosis.
Furthermore, we develop two defense procedures against these
semantic attacks under the same scenarios.

V. SECURITY ATTACKS
A. Goals and Challenges

Various types of attacks can be introduced in wireless sensor
networks. The starting point in our creation of semantic attacks
is to mislead the medical diagnosis as far as possible which can
be done by altering the original Varsp and Varps to some
large extent. However, the main challenge for the attacker is
to maintain a balance between the outcome of the attack and
the risk of the attack being detected. For example, suppose in
one attack, the attacker changes the pressure value of many
sensors or changes some amount of sensors by a large amount
of pressure then that attack will be easily detected if the
medical expert looks into the statistical properties of the data
and compares it with the historical data. As a result, the criteria
in designing semantic attacks is to assume limited access to
the sensors for the attacker and also of not being suspicious
at the same time. In other words, the attacker must follow the
constraints.

In principle, we propose two attacks on the pressure data.
In the first type of attack, we assume that the attacker can
change n sensors by k percent. In the second type of attack,
the attacker postpones the pressure data of some sensors for
certain time slots. And we claim that a type of attack is “good”
when the attacker only changes a small number of sensors
but changes the variation to a certain degree and yet remains
unsuspicious. The intuition behind the calibration attack is that
when some sensors with high pressure are being changed, the
waveform of the pressure is influenced significantly and thus
the variation is modified. This type of attack only requires the
attacker to change the calibration of the sensor value which
can be achieved at either software or hardware level and
thus it is easy and feasible. However, if some sensor shows
extraordinary high or low value, it can be easily detected by
the medical expert. Hence we put constrains on the percentage
upto which the pressure of each sensor can be altered. Our
second type of attack is from the perspective of timing. The
attacker intentionally introduces delay on some sensor readings
so that part of the original waveform of pressure is shifted
by some time slots. This type of attack is simple, low cost
and the only need is to introduce delay to some sensors. But
the main problem here is to decide the number of time slots
the attacker should delay while still being unsuspicious to the
medical experts. One of the simplest defense technique is to
look into the sensor correlations and thus to get an idea of it we
analyzed the correlation between each pair of the 99 sensors
when ten sensors are postponed to respectively five, ten,
twenty-time slots. The results are shown in Figure 4a, 4b,4c,
and 44— is obviously seen that when the number of postponed
time slots increase, the correlation between the sensors changes
dramatically which is easily detectable. Therefore, the attacker
needs to seek for a balance between the number of time slots to
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Fig. 4: Correlation between each pair of the 99 sensors, tested on P1. (a) Original Correlation without attack. (b) Correlation
when postponing 10 sensors by 5 time slots. (c¢) Correlation when postponing 10 sensors by 10 time slots. (d) Correlation when

postponing 10 sensors by 20 time slots.

postpone and the effect of the attack. Similarly in calibration
attack, the attacker needs to vary the sensor readings by an
appropriate percentage to generate acceptable results.

B. Scenarios

We consider two scenarios which the medical expert uses to
diagnose patients. In the first scenario, the medical expert uses
the summation of all the 99 sensors to generate the waveform
of each metric and then calculates the corresponding variation.
However, when we look at the pressure data closely, many
sensors have very low value across all the time slots. Most
probably these sensors are ones in the middle of the shoe
who have high potential of not having any influence on the
diagnosis. Keeping the power and the cost of medical shoe
in consideration, many designs [10] use much fewer number
of sensors rather than all the 99 sensors. Therefore, in the
second scenario, the medical expert only uses twenty important
sensors to fetch the data and further makes the diagnosis based
on that.

C. Attack Modeling

The modeling of attacks revolves around tuning and setting
the parameters of the attacks as random attacks will be
easily detectable. Two types of attacks and their modeling are
proposed in this part.

1) Calibration Attack: In this attack, the attacker has the
access to change n sensors by k percent. We convert the
attack problem into an optimization problem. The following
is the objective function and the constrains which work for
both metrics. The goal of optimization is to change the
original variation as much as possible under the following three
constraints, the first one is to change only a limited number of
sensors and the second one is to change the pressure values
by only a limited percentage. The third one is that the number
of steps of an individual patient cannot be changed beyond a
certain percentage after an attack. As we explained, the first
constraint is based on the assumption that the attacker has
limited access to the pressure data he/she can change. While
the second and the third constraints are applied to prevent the
attacks from appearing suspicious to the medical expert.
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Minimize |Var — Varg|
Subject to

K<k

N<n

|S —Sol/So <o

“

where

Var is the variation after attack.

Varg is the variation before attack.

K is the percentage of pressure variation.
N is the number of sensors attacked.

S is the number of steps after attack.

Sp is the number of steps before attack.
n, k, and o are constants.

2) Timing Synchronization Attack: In this type of attack,
the attacker has the access to some sensors and causes delay
between their pressure measurement and pressure reading.
Therefore, some sensors would be postponed for some time
slots before they are read. For example, when the attacker
decides to postpone the pressure value of sensor 1 by three time
slots, then every time when the medical expert receives the
pressure of sensor 1 in time slot 7', it is actually the pressure
value in time slot 7'—3. The following is the objective function
and the constrains.

Minimize |Var — Varg|
Subject to

T<t

N<n

IS —So|/So <o

where

)

Var is the variation after attack.

Varg is the variation before attack.

T is the number of time slots to postpone.
N is the number of sensors attacked.

S is the number of steps after attack.

Sp is the number of steps before attack.
n, t, and o are constants.



3) Algorithm for Attacks: We use dynamic programming
(DP.) to implement the optimization problem. The pseudocode
is shown in Algorithm 1. Theoretically, it is possible to try
all the combination of N sensors out of 99 sensors such
that the change in pressure of each sensor is withip K
percentage. However, the exponential search space omthis
problem combined with the large number of sensor-samples
makes it impossible to solve this problem in a reasonable
amount of time, especially in the real-time wireless network
scenario. In order to reduce the running time, we do the N-
sensor selection step by step. As described in Algorithm 1, the
first step is to iteratively choose each sensor to attack which
is followed by varying its pressure in every time slot by K
percent. Then the variation is calculated after attack and the
sensor is put into the set of attacked sensors to create a new
attack situation. Then we sort the situations according to the
difference in variation before and after the attack. We take
the top M best attack situations from all the possibilities and
use those situations for next iteration. We repeat the above
procedure for another N — 1 steps, thus to choose N sensors
which cause the maximum damage. In this way, we reduce
the exponential time complexity to O(|sensors|M N), where
|sensors| is the number of sensors in the system.

Algorithm 1 Dynamic Programming for Sensor Selection

Input: P - original sensor pressure at each time slot.
Input: K - percentage of the pressure change in attack.

Input: N - number of sensors to attack.
Input: o - error rate of the number of steps.
Input: M - number of optimal values to preserve in previous

DP. step.
vec is a vector that contains the attacked sensors set, their
corresponding data, and the difference of variation.

1: vec.append (<attacksensor=2, P, diff. = 0>)
2: for 1 <= ¢ <= N do
3:  for all sensors s; do
4: for 0 <= t <= M do
5 if s; is not in wec]t].P then
6: P'= Attack (vec[t].P, K, 0, ;)
7: vec.append (<veclt].attacksensor+s;, P’
8: ,abs (Var. (P)-var. (P'))>
9: end if
10: end for
11:  end for
122 vec = SortByDifferenceTopM (vec)
13: end for
14: Output: wvec
D. Experiment ults

able I to Table VIII show the effect of calibration attack
and timing synchronization attack in different scenarios on
different metrics. We assume that the attack can happen on
left foot or right foot for stride period metric, and left foot
or both feet for double support metric. The readings in the

)
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tables indicate the percentage of pressure variation after attack
compared to the original variation. We test each attack on
both the metrics for the four persons P1, P2, P3, and P4
respectively. The average change in the percentage of new
variation is then calculated across the 4 persons as shown
in the last row of each table. In order not to change the
correlation between the sensors drastically, we change the
pressure values to a maximum of 20% in calibration attack

and postpone the readings to a maximum of 7 time slotsnn

t]@@'ﬁ synchroniﬁtion attack.
[

E. Evaluation

We plot the the average percentage of new variation across
the four persons for each attack according to Table I to Table
VIII in Figure 5 and Figure 6 respectively. Through these tables
and figures, we can see that more the change in pressure, the
more effective is the attack. However, in Table I, it can be
seen that the average change in the percentage of variation
when K is 10% is higher than both when K is 15% and 20%
respectively. This abnormal phenomenon occurs due to two
reasons. One is that the metric formulations that transform
the raw pressure data to variation is not a linear function.
Although changing by more percentage could easily disturb the
original pressure waveform but it does not mean that higher the
disturbance; higher the variation. The third constraint that the
number of steps of an individual patient cannot be changed
beyond a certain percentage after an attack is the second
reason for this phenomenon. Changing the pressure readings
by 20 percent might have disturbed the pressure waveform too
much such that the number of steps changed beyond o. So in
order to satisfy the third constraint, it will choose some less
effective sensors to attack which will lead to lower change in
the percentage of variation.

In general, a few conclusions can be drawn from the results.
(i) Both attacks can dramatically change the variation for both
stride period metric and double support metric. (ii) Within
certain scope, when the pressure of the sensors change by more
percentage, the attack is more effective. (iii) Within certain
scope, when the pressure of the sensors is postponed for more
time slots, the attack is more effective. However, note that in
our test, we assume that the number of time slots to postpone is
fixed. As part of the future work, one possible improvement is
to postpone the pressure of some sensors by a random number
of time slots. (iv) the scenario with 99 sensors is more resilient
against attacks compared to the scenario with 20 sensors.

VI. DEFENSE

We propose some corresponding technology to possibly
detect and analyze semantic security attacks in this section.
We first explain the technique in detail and then study their
effect when an attack happens through experimental results.
Finally we evaluate the different technologies.

A. Goals and Challenges

Two essential goals are addressed for the defense technol-
ogy. The first one is to detect, diagnose, and also to remove



Test Cases | Original Var. | K=5% K=10% K=15% K=20% T=1 T=3 T=5 T=7
Pl 5.619 -023% | +55.37% | +10.45% | +48.02% | +138.81% | +147.27% | +171.62% | +172.78%
P2 10.432 -6.48% | +13.71% | +8.98% | +16.08% | +47.02% -62.22% -66.24% -66.38%
P3 6.067 -31.72% | -35.31% | -3542% | -35.87% | +107.74% | +77.54% -42.18% +81.06%
P4 6.447 -17.16% | -17.16% | -1739% | -17.62% | +81.44% | +70.14 % | +115.70 % | +86.74%
Average change % (abs) 13.90% | 30.39% 18.06% 29.4% 93.75% 89.29% 98.94% 101.74%

TABLE I: Effect of the attacks on stride period metric, left foot, 99 sensors scenario. P1, P2, P3, and P4 are 4 tested persons.
The change of k corresponds to calibration attack, and the change of T corresponds to Timing synchronization attack. The last
row is the average change percentage of variation across the 4 persons tested.

Test Cases | Original Var. K=5% K=10% | K=15% K=20% T=1 T=3 T=5 T=7
P1 7.328 -26.15% | -28.32% | -29.16% | +32.61% | +139.04% | +106.99% | +187.30% | +263.99%
P2 24.709 -59.61% | -59.78% | -59.44% | -61.55% -70.79% -61.66% -63.48% -66.74%
P3 7.05223 -13.13% | -13.13% | -13.15% | +35.41% | +115.00% | +185.86% | +194.16% | +201.18%
P4 10.939 -48.55% | -48.83% | -48.96% | -51.87% | -44.39% +47.48% | +104.33% | +104.95%

Average change % (abs) 36.86% | 37.52% | 37.68% 45.36% 92.30% 100.50% 137.32% 159.22%

TABLE II: Effect of the attacks on stride period metric, left foot, 20 sensors scenario.

Test Cases | Original Var. | K=5% K=10% | K=15% | K=20% T=1 T=3 T=5 T=7
P1 7.921 -32.94% | -32.93% | -33.72% | -3837% | +82.33% | +91.50% | +90.49% | +126.32%
P2 10.971 -20.07% | -22.74% | -22.37% | -23.62% | +51.19% | -66.06% | -66.08% -71.97%
P3 7.015 -14.26% | -14.26% | -1534% | +22.81% | +77.47% | +52.42% | +47.82% | +52.39%
P4 8.887 -30.12% | -30.29% | -31.98% | -36.96% | -43.99% | -46.21% | -45.79% -51.41%

Average change % (abs) | 24.35% | 25.06% | 25.85% | 30.44% | 63.50% | 64.05% | 62.55% | 75.52%
TABLE III: Effect of the attacks on stride period metric, right foot, 99 sensors scenario.

Test Cases | Original Var. K=5% K=10% | K=15% | K=20% T=1 T=3 T=5 T=7
P1 5.508 -45.53% | -54.61% | -55.74% | -53.20% | +152.18% | +160.89% | +185.00% | +228.76%
P2 15.958 -49.02% | -52.21% | -56.27% | -59.49% | -51.98% | -72.544% | -56.94% -73.75%
P3 10.724 -65.15% | -65.71% | -66.13% | -66.13% | -59.42% +98.05% | +129.12% | +132.70%
P4 10.527 -41.79% | -52.58% | -53.07% | -54.09% -43.00% +92.18% +99.56% | +118.65%

Average change % (abs) 50.37% | 56.28% 57.8% 58.23% 76.65% 105.92% 117.66% 138.47%
TABLE 1V: Effect of the attacks on stride period metric, right foot, 20 sensors scenario.
Test Cases | Original Var. K=5% K=10% K=15% K=20% T=1 T=3 T=5 T=7
P1 0.832 +1.92% +1.92% +5.77% | +33.65% | +46.51% | +65.02% | +58.05% | +65.75%
P2 3.280 +12.53% | +13.45% | +22.62% | +25.37% | -52.59% | -53.08% | -55.24% | -41.16%
P3 2.168 +1.38% +1.38% +1.38% -14.11% | -32.24% | -63.88% | -71.54% | -75.88%
P4 1.254 -0.08% -2.47% +1.20% -6.20% -16.51% | -20.89% | -20.89% | -20.26%
Average change % (abs) 3.98% 4.81% 7.74% 19.83% 36.96% 50.71% 51.43% 50.76%
TABLE V: Effect of the attacks on double support metric, left foot, 99 sensors scenario.

Test Cases | Original Var. | K=5% K=10% K=15% K=20% T=1 T=3 T=5 T=7
P1 1.024 -5.57% -18.16% | -16.60% +34.96% +84.92% +46.43% +89.54% | +172.18%
P2 4.345 -14.88% | -1592% | -16.21% -18.91% -26.32% -38.56% -24.50% +31.77%
P3 1.617 2.10% | +34.94% | +31.91% | +142.24% | +114.68% | +245.23% | +276.42% | +221.76%
P4 1.170 +9.49% | +12.22% | +13.33% | +14.78% +19.06% +39.67% +88.81% | +129.31%

Average change % (abs) 8.01% 20.31% 19.51% 52.72% 61.25% 92.47% 119.82% 138.76%

TABLE VI: Effect of the attacks on double support metric, left foot, 20 sensors scenario.
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Test Cases | Original Var. K=5% K=10% K=15% K=20% T=1 T=3 T=5 T=7
P1 0.832 +130.77% | +130.77% | +135.58% | +140.38% | +158.26% | +170.93% | +178.81% | +232.01%
P2 3.280 +18.96% | +28.54% | +23.54% | +34.09% | +46.95% -81.52% -83.80% -86.59%
P3 2.168 +1.38% +7.15% +15.68% -27.81% -52.80% -81.62% -82.20% -80.90%
P4 1.254 -45.37% -45.37% -45.37% -50.00% -58.25% -61.05% -61.36% -61.05%
Average change % (abs) 49.12% 52.96% 55.04% 63.07% 79.07% 98.78% 101.54% 115.14%

TABLE VII: Effect of the attacks on double support metric, both feet, 99 sensors scenario.

Test Cases | Original Var. K=5% K=10% K=15% K=20% T=1 T=3 T=5 T=7
P1 1.024 +123.44% | +125.00% | +125.78% | +131.84% | +134.29% | +175.78% | +229.56% | +228.35%
P2 4.345 -42.28% -57.38% -58.92% -61.15% -76.40% -83.80% -82.08% -85.25%
P3 1.617 +46.07% +46.26% -75.26% | +108.23% | +148.56% | +243.52% | +315.97% | +261.71%
P4 1.170 -44.62% -47.26% -48.63% -52.65% -62.71% -62.80% | +110.78% | +110.07%

Average change % (abs) 64.10% 68.98% 77.15% 88.47% 105.49% 141.48% 184.60% 171.35%

TABLE VIII: Effect of the attacks on double support metric, both feet, 20 sensors scenario.
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Fig. 5: Average change percentage in the following conditions. (a) Calibration attack on stride period metric, left foot. (b) Timing
synchronization attack on stride period metric, left foot. (c) Calibration attack on stride period metric, right foot. (d) Timing
synchronization attack on stride period metric, right foot.
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Fig. 6: Average change percentage in the following conditions. (a) Calibration attack on double support metric, left foot. (b)
Timing synchronization attack on double support metric, left foot. (c) Calibration attack on double support metric, both feet. (d)
Timing synchronization attack on double support metric, both feet.
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the impact of attacks as much as possible. The second one
is to design the defense to be low-cost, low-energy and real-
time which is due to the unique properties of the wireless
sensor networks, especially for medical devices. Most wireless
medical devices have high limitations regarding cost and
energy consumption.

The main challenge in defense technology is to find out
whether the data abnormality is because of an attack or due
to the sickness of the person. Suppose the medical expert
simply checks the pressure distribution of sensors at each time
slot. When an attack happens, it is possible that this pressure
distribution might be abnormal. However, if a person is sick,
this particular distribution also has high likelihood to show
similar abnormality. In this case, the data abnormality found
by the medical expert cannot be used to successfully detect
and distinguish attacks. The above challenge is taken into
consideration in our suggested defenses.

We propose two technologies for defense. The first technol-
ogy targets at using several subgroups of the sensors to verify
the difference in variation. It is simple as the medical expert
only needs to repeat the calculation of variation on different
groups of sensors. The second one is a new concept but it is
even more straightforward, the basic idea is to attack again
on the received data to detect previous attacks, thus, only re-
attacks are required. We explain their technical details in the
following section.

B. Defense Procedure

We demonstrate two types of defense and their modeling in
this part. We assume that the defense technology is applied
after the attack, which means that the goal of defense is to
detect the attack rather than preventing it.

1) Multi-group Verification: The basic idea of this defense
is to divide the original sensors into several subgroups. We
claim that the variation calculated for each subgroup should
be close enough if the subgroups'are properly divided. Since
the sensors with numbers next to each other are usually present
near each other as shown in Figure 1, the pressure values of the
two neighboring sensors are highly correlated. Therefore, if the
sensors are divided into two randomly selected groups, e.g.,
odd group and even group according to their sensor number,
the two groups should have similar waveforms, which will lead
to similar variation. Note that in this defense, even though a
person is sick, because of the neighboring correlation, his/her
variation between odd/even group will be similar. However,
when an attack happens, due to the fact that the effect of an
attack can be very different in each individual subgroup, the
variation for each of them may vary a lot. In the following
experiment, we divide the original sensors into odd and even
groups and then we compare « as defined below. If a becomes
extraordinary large as compared to the « of history data or
some other threshold, the medichl]expert can conclude that the
sensors were attacked. Algorithm 2 describes the multi-group
verification defense algorithm.

| Varodd - V(I/Teven |

6

min (V{l?"(,dd ) Vare'ue'n, )

307

Algorithm 2 multi-group verification defense

Input: P - original sensor pressure at each time slot.

(R)d{ir Peven) = SplitOddEven (P)
: Varygq = Var. (Pygq)

s Vareyen = Var. (Peyen)

‘VaTadd - VaTe’ue'n,'

min(Vareqa, Vareyen)
. if a>threshold then
Attack Detected
else
Attack Not Detected
. end if

R

|
-

2) Repeated Attack based Defense: This defense targets at
reversing the original attacks. When the attacker performs
either attack as mentioned in section V, the change of variation
can be in two directions, either increasing or decreasing. We
suppose that the variation of the data before attack is Varg
and the variation after attack is Var;. Our proposed way
to defend is to perform the same attack again on the data,
but for two times. For the first time, we perform the attack
only in the direction to increase Var; (the medical expert
only has the data after attack, which has the variation of
Vary) and for the second time, we perform the attack only
in the direction to decrease Var;. So our intuition is that only
one of the directions (because the 2 directions are opposite)
will reverse Var; back to Varg. However, it would be much
harder to change Var; in the opposite direction of Varg due
to the difficulty in changing the variation in one direction
continuously. But for a piece of data that has not been attacked
before, both directions can cause similar effects (the absolute
value of the change) to the original variation. We further use
B defined below to compare the effect of performing attack
in two opposite directions. If the data has not been attacked
before, 5 will be approaching 1, otherwise it would be a large
value. Therefore, the medical expert will be able to deduce
whether the data has been attacked or not and also that in
which direction the variation has been modified.

min(|Varag1 — Varil, |Vargre — Var|)

(O]

maz(|Vargi1 — Vary|, |Varg2 — Vary])

C. Experil Results E]

Table IX and Table X show the effect of multi-group
verification on calibration and timing synchronization attack.
In each table, we consider 2 metric and 2 scenarios. We further
assume that the attacks happen on left foot. The read@s in
the tables indicate the value of « (defined in Eq. 6) before and
after the attack. Both tables show the average test results on
P1, P2, P3, and P4 which are used to illustrate the average

performance e defense methodology. Similarly, Table XI
and Table X onstrate the effect of repeated attaek based
defense and use value of 3 (defined in Eq. 7) to kake the

decision.



Test Situation Original a | K=5% | K=10% | K=15% | K=20%

Stride Period, left foot, 99 sensors 0.0589 0.2466 | 0.2568 0.2796 0.2901
Stride Period, left foot, 20 sensors 0.2032 0.3992 | 0.3653 0.4695 0.7624
Double Support, left foot, 99 sensors 0.2695 0.2707 | 0.2996 | 0.4194 | 0.3299
Double Support, left foot, 20 sensors 0.2971 0.2794 | 0.5888 0.4381 0.4572

TABLE IX: Multi-group verification to calibration attack, tested on P1, P2, P3, P4. The value in the table is the average « across
the 4 tested persons under different conditions.

Test Situation Original « T=1 T=3 T=5 T=7
Stride Period, left foot, 99 sensors 0.0589 0.2636 | 0.4487 | 0.3588 | 0.4526
Stride Period, left foot, 20 sensors 0.2032 0.5907 | 0.4134 | 0.5753 | 0.4764

Double Support, left foot, 99 sensors 0.2695 0.4340 | 0.3583 | 0.4621 | 0.6184
Double Support, left foot, 20 sensors 0.2971 0.5659 | 0.3331 | 0.6842 | 0.4351

TABLE X: Multi-group verification to timing synchronization attack.

Test Situation Original 5 | K=5% | K=10% | K=15% | K=20%
Stride Period, left foot, 99 sensors 2.21 21.87 37.78 20.78 29.91
Stride Period, left foot, 20 sensors 2.62 33.90 30.99 8.21 6.85
Double Support, left foot, 99 sensors 243 3.99 5.20 27.4 37.66
Double Support, left foot, 20 sensors 2.36 16.03 13.79 8.34 22.39

TABLE XI: Repeated attack based defense to calibration attack, tested on P1, P2, P3, P4. The value in the table is the average
B across the 4 tested persons under different conditions.

Test Situation Original 5 | T=1 T=3 T=5 T=7

Stride Period, left foot, 99 sensors 2.32 6.69 38.07 | 39.07 | 35.03
Stride Period, left foot, 20 sensors 3.28 23.12 | 13.45 | 15.29 4.47
Double Support, left foot, 99 sensors 2.50 5.52 7.16 21.62 | 13.65
Double Support, left foot, 20 sensors 6.77 6.46 1042 | 6.35 17.98

TABLE XII: Repeated attack based defense to timing synchronization attack.

Algorithm 3 Repeated Attack based Defense D. Evaluatim D

Input: P - original sensor pressure at each time slot. According to the Multi-group verification defense results
Input: K - percentage of the pressure change in attack. in Table IX and Table X, although the original « varies
Input: N - number of sensors to attack. from person to person, in most cases, it is relatively small.
Input: o - error rate of the number of steps. For both_calibration and timing synchronization attack, the

Input: M - number of optimal values to preserve in previous ¢ valud_bbcomes extrthordinarily large as compared to the

DP. step. original a. Similarly, Repeated attack based defense results in
AttackToIncrease() and AttackToDecrease() are the DP.  Table XI and Table XII demonstrate that the 3 value increases

algorithm in Algorithm 1. signific as compared to original 5. However, in some
cases the defenses are not fully dependable, as observed in
1: Vary = vVar. (P) Table XII with metric double support and 20 sensors scenario,

2: Vargy1 = Var. (AttackToIncrease (P, K,N,o,M))when T = 5, the value of 8 drops from 6.77 to 6.35
after timing synchronization attack which is adversary to the
3: Vargiyo = Var. (AttackToDecrease (P, K, N,o, M) ) purpose of the defense. Besides, there is no significant linear
relationship between « and different values of K or 7, so as

4 B = min(|Vardirl — Vary],|Varae — Vari) (. This is due to the metric formulations that transform the
’ mazx(|Vargm — Vary|, |Varges — Vari)) raw pressure data to variation which is not a linear function.

5. if f>threshold then We cannot conclude that higher K or T will result in higher
6: Attack Detected « and .

7: else For the practical application of these defenses, first we could

8: Attack Not Detected use history data to get the original « and 5. And then we can

9: end if set a threshold for original o and 3 based on a particular

individual. Once the new « or f3 is higher than the threshold,
the medical expert can conclude that the sensors are attacked.
In our experiment, we set the « threshold as double of original
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Fig. 7: Attack detection rate of the two defenses.

Timing Synchronization Attack

« and set the [ threshold as double of original /. This set
threshold is significant enough to detect the change in both «
and 8 and we get the following results. As shown in Figure
7, the multi-group verification defense could detect 51.78%
of calibration attack and 69.64% of timing synchronization
attack. The repeated attack based defense could detect 81.25%
of calibration attack and 72.22% of timing synchronization
attack.

In general, a few conclusions can be drawn from the results.
(i) The defense is subject to each individual separately. Hence
setting a universal threshold is not possible. (ii) Both defenses
are effective against the two types of attack. (iii) Considering
our assumed threshold, the repeated attack based defense is
more effective than the multi-group verification defense.

VII. CONCLUSION

We have discovered a new area of research by analyzing
the impact of semantic attacks on the security of wireless
medical devices. We explored the attacks on embedded medical
sensor network by way of optimizing the damage yet being
under the constraints of producing unsuspicious results. In our
experiment, we simulated two different types of attack under
two different scenarios to prove the susceptibility of medical
devices against these simple attacks. We also developed two
real-time defenses in order to detect these semantic attacks.
By virtue of comparing the results with respect to the two
scenarios, we concluded that energy efficient medical devices
are easier to attack as the redundant sensors are not available
for defending against these attacks. By attacking the medical
device using the calibration and timing synchronization attack;
on an average we are able to change the variation up to 88.47%
and 184.6% respectively. Variation is the change caused in the
medical metrics and hence in the medical diagnosis because of
these attacks. After the application of our proposed defenses
using our assumed threshold; the multi-group verification
defense can detect upto 69.64% of attacks and repeated attack
based defense can detect upto 81.25% of attacks.
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