
New	Frontiers	of	Mining	Software	Repositories	
Usability and	Information	Delivery

Miryung Kim
University	of	California,	Los	Angeles

Why	software	specification inference?

0 74 0 - 74 5 9 / 0 9 / $ 2 6 . 0 0 © 2 0 0 9 I E E E November/December 2009 I E E E S O F T W A R E 27

focus

An API is the interface to implemented func-
tionality that developers can access to perform
various tasks. APIs support code reuse, provide
high-level abstractions that facilitate program-
ming tasks, and help unify the programming ex-
perience (for example, by providing a uniform
way to interact with list structures). However,
APIs have grown very large and diverse, which
has prompted some to question their usability.1
It would be a pity if the difficulty of using APIs
would nullify the productivity gains they offer. To
ensure that this doesn’t happen, we need to know
what makes APIs hard to learn.

Common sense indicates that an API’s struc-
ture can impact its usability (see the “API Usabil-
ity” sidebar).2 This intuition is reflected by efforts
to flesh out sound design principles for APIs and
empirical studies on the impact of design structure
on API usability.3–5 However, APIs don’t exist in
isolation, and other factors can also affect how de-
velopers experience them. So, what exactly does
make an API hard to learn?

To answer this question, I investigated the ob-
stacles professional developers at Microsoft faced
when learning how to use APIs. As opposed to
previous API usability studies that focused on spe-
cific design aspects, I used an approach completely
grounded in developers’ experience. By surveying

and interviewing developers about the obstacles
they faced learning APIs, I discovered many is-
sues that complement those mentioned in API de-
sign textbooks and articles. In particular, I found
that API learning resources are critically impor-
tant when considering obstacles to learning the
API, and as worthy of attention as the structural
aspects of the API. I also elicited specific relation-
ships between resources and API usage that API
designers and documentation writers shouldn’t
overlook when designing API documentation.
First, information about the high-level design of
the API is necessary to help developers choose
among alternative ways to use the API, to struc-
ture their code accordingly, and to use the API as
efficiently as possible. Second, code examples can
become more of a hindrance than a benefit when
there’s a mismatch between the tacit purpose of
the example and the goal of the example user.
Finally, some design decisions can influence the
behavior of the API in subtle ways that confuse
developers.

Survey Design
In February and March 2009, I conducted a sur-
vey to gather information about developers’ ex-
periences learning APIs. Specifically, I sought
to identify areas of concern and themes worthy

M ost software projects reuse components exposed through APIs. In fact,
current-day software development technologies are becoming inseparable
from the large APIs they provide. To name two prominent examples, both
the Java Software Development Kit and the .NET framework ship with

APIs comprising thousands of classes supporting tasks that range from reading files to
managing complex process workflows.

A study of obstacles
that professional
Microsoft developers
faced when learning
to use APIs uncovered
challenges and
resulting implications
for API users
and designers.

Martin P. Robillard, McGill University

What Makes APIs
Hard to Learn?
Answers from Developers

c o op er a t iv e and hum an a sp e c t s o f S E

30 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

under “Structure” in Table 1). These subcatego-
ries confirm the generally held view that an API’s
basic design does impact its users. However, the
responses also bring to light that an API’s testabil-
ity and the ease of reasoning about its runtime be-
havior also have an important impact. For exam-
ple, a respondent indicated being hindered due to
a “subtle difference in behavior of APIs depending
on context.”

Hearing from Respondents
To understand more deeply how developers deal
with new APIs in their daily work, I conducted a
series of 12 interviews with Microsoft software
developers recruited from survey respondents and
personal contacts. The goal was to get a detailed
picture of important obstacles developers faced
when learning new APIs, the context in which
these obstacles occurred, and infer possible causes
for these obstacles. For this reason, I again chose an
open-ended, loosely structured style of qualitative
interview,8 which consisted of asking participants
to summarize their work with the API and explain
the obstacles they faced. Interviews lasted between
15 and 45 minutes and were audio-recorded.

Although I conducted this study with Micro-
soft developers who might not be representative
of all API users, the results should be usable by
others working with APIs. Indeed, the main les-

sons derived from the survey and interviews don’t
concern the frequency or predominance of spe-
cific trends, but a detailed interpretation of how
different situations played out in practice and the
lessons we can derive from them.

Emerging Questions
From considering the aggregated survey results,
reading the individual responses, and study-
ing the interview transcripts, several important
themes emerged. In choosing material for this
article, I favored themes that went beyond well-
known issues, as opposed to a systematic cover-
age of the concerns mentioned by respondents
(survey) and participants (interviews). In doing
so, I left out interactions that described valid but
well-known issues. For example, one participant
described the difficulty of choosing the right
function among alternatives in the Win32 API.
The participant referred to the practice of adding
functionality to an API without breaking back-
ward compatibility by introducing “extension
methods” with the “Ex” suffix:

There is a function CreateWindow, and a
function CreateWindowEx. Ex creates some
new types of windows, which weren’t created
in the earlier functions of the API. So they are
growing the [set of] functions, but sometimes

Table 1
Response categories for API learning obstacles

Main category Subcategories/descriptions
Associated
respondents

Resources Obstacles caused by inadequate or absent resources for learning the API (for example, documentation) 50

Examples Insufficient or inadequate examples 20

General Unspecified issues with the documentation 14

Content A specific piece of content is missing or inadequately presented in the
documentation (for example, information about all exceptions raised)

12

Task No reference on how to use the API to accomplish a specific task 9

Format Resources aren’t available in the desired format 8

Design Insufficient or inadequate documentation on the high-level aspects of
the API such as design or rationale

8

Structure Obstacles related to the structure or design of the API 36

Design Issues with the API’s structural design 20

Testing and debugging Issues related to the API’s testing, debugging, and runtime behavior 10

Background Obstacles caused by the respondent’s background and prior experience 17

Technical
environment

Obstacles caused by the technical environment in which the API is used (for example, heterogeneous system,
hardware)

15

Process Obstacles related to process issues (for example, time, interruptions) 13

What Makes APIs Hard to Learn? Answers from Developers, Robillard 2009

Learning	Barriers	for	Developers

Six Learning Barriers in End-User Programming Systems

Andrew J. Ko, Brad A. Myers, and Htet Htet Aung
Human-Computer Interaction Institute

Carnegie Mellon University, Pittsburgh, PA 15213 USA
ajko@cmu.edu, bam+@cs.cmu.edu, hha@cs.cmu.edu

Abstract

As programming skills increase in demand and
utility, the learnability of end-user programming
systems is of utmost importance. However, research on
learning barriers in programming systems has
primarily focused on languages, overlooking potential
barriers in the environment and accompanying
libraries. To address this, a study of beginning
programmers learning Visual Basic.NET was
performed. This identified six types of barriers: design,
selection, coordination, use, understanding, and
information. These barriers inspire a new metaphor of
computation, which provides a more learner-centric
view of programming system design.

1. Introduction

According to the U.S. Department of Labor, by
2012 30% of new jobs and nearly 8% of all U.S. jobs
could require programming skills [1]. This is a
dramatic shift for a skill that less than a million people
had 10 years ago. Now, an increasing number of end-
user programmers control manufacturing robots, create
spreadsheets, and design interactive prototypes.

Yet, for such growth to occur, millions of aspiring
end-user programmers must overcome substantial
learning barriers in programming systems. Do we
know enough about these barriers to design systems
that help these individuals? We know much about the
learning barriers in programming languages [11], but
little about the rest of a programming system, which
includes its environment (the editor, debugger, help,
etc.) and accompanying libraries. What barriers do
these parts of a programming system pose, if any?

In this paper, we answer this question both
empirically and metaphorically. We begin by
describing a study of Visual Basic.NET (VB), which
identified six types of learning barriers. We then
discuss several implications and describe a new
metaphor of computation that facilitates a more
learner-centric view of programming system design.

2. Prior Research on Learning Barriers

One way to understand learning barriers is to study
the learner. For example, imagine Jill, a user interface
designer who just began learning VB. Shortly after
starting, she realizes that she must learn about event
handlers to proceed. This poses a potential learning
barrier. From an attention-investment perspective [2],
she will weigh the cost, risk, and reward of overcoming
the barrier, and if the risk of failure outweighs the
reward, she may abandon VB for other tools.

Jill may also decide that progress is worth the risk
of failure. We have proposed a framework that
suggests she will make several simplifying assumptions
about VB’s language, environment, and libraries in
trying to acquire the necessary knowledge [8]. If her
assumptions are valid with respect to the programming
system, she will make progress. If her assumptions are
invalid—what we call knowledge breakdowns—she is
likely to make an error. Within this framework, we
define learning barriers as aspects of a programming
system or problem that are prone to such invalid
assumptions. These concepts are depicted in Figure 1.

Given these definitions, what aspects of
programming systems might pose learning barriers?
Research has explicitly identified several aspects of
programming languages that are prone to invalid
assumptions, including conditionals, Boolean
operators, loops and data structures [12, 15]. Others
have found that the task-specificity of language
constructs influences learner’s assumptions [4].

Figure 1. In overcoming barriers, learners risk
making invalid assumptions that often lead to error.

Proceedings of the 2004 IEEE Symposium on Visual Languages and Human Centric Computing (VLHCC’04)
0-7803-8696-5/04 $ 20.00 IEEE

Six	Learning	Barriers	for	Developers
Barrier Type

Design I don’t know what I want the computer to do…

Selection I think I know what I want the computer to do but I
don’t know what to use

Coordination I think I know what things to use but I don’t know
how to make them work together…

Use I think I know what to use, but I don’t know how to
use it...

Understanding I thought I knew how to use this but it didn’t do
what I expected…

Information I think I know why it didn’t do what I expected but I
don’t know how to check

Six Learning Barriers in End-User Programming Systems, Ko et al. 2004

Six	Learning	Barriers	for	Developers
Barrier Type

Design I don’t know what I want the computer to do…

Selection I think I know what I want the computer to do but I
don’t know what to use

Coordination I think I know what things to use but I don’t know
how to make them work together…

Use I think I know what to use, but I don’t know how to
use it...

Understanding I thought I knew how to use this but it didn’t do
what I expected…

Information I think I know why it didn’t do what I expected but I
don’t know how to check

Six Learning Barriers in End-User Programming Systems, Ko et al. 2004

Rise	of	Mining	Big	Code

Information	Delivery	and	Usability

1.	Comprehension

2.	Interactive Navigation 3.	Fit	Developer	Workflow

Information	Delivery	and	Usability

1.	Comprehension

StringBuffer.<init>

FileReader.<init>

BufferedReader.<init>

WHILE

BufferedReader.readLine

StringBuffer.append

StringBuffer.length

IF

StringBuffer.toString

BufferedReader.close

a) temporary groum b) final groum

StringBuffer.<init>

FileReader.<init>

BufferedReader.<init>

WHILE

BufferedReader.readLine

StringBuffer.append

StringBuffer.length

IF

StringBuffer.toString

BufferedReader.close

strbuf strbuf

in in

in in

strbuf strbuf

strbuf strbuf

strbuf strbuf

in in

str

str

Figure 2: Groum: Graph-based Object Usage Model

2.2 Represent Control Flow Structures
To represent how developers use the objects within the

control flow structures such as conditions, branches, or loop
statements, GrouMiner uses control nodes in a groum. To
conform to the use of edges for representing temporal orders,
such control nodes are placed at the branching points (i.e.
where the program selects an execution flow), rather than
at the starting points of the corresponding statements. The
edges between control nodes and the others including action
nodes represent the usage orders as well.

For example, in Figure 2b), the control node labeled WHILE

represents the while statement in the code in Figure 1, and
the edge from the node BufferedReader.readLine to WHILE

indicates that the invocation of readLine is generated before
the branching point of that while loop.

To represent the scope of a control flow structure (e.g.
the invocation of readLine is within the while loop), the
list of all action nodes and control nodes within a control
flow structure is stored as an attribute of its corresponding
control node. In the Figure 2b), such scope information is
illustrated as the dashed rectangles.

Note that there is no backward edge for a loop structure
in a groum since it is a DAG. However, without backward
edges, scope information is still sufficient to show that the
actions in a loop could be invoked repeatedly.

2.3 Represent Multiple Interplaying Objects
To represent the usage of multiple interacting objects, a

groum contains action nodes of not only one object, but also
those of multiple objects. The edges connecting action nodes
of multiple objects represent the usage orders as well. More-
over, to make a groum have more semantic information, such
edges connect only the nodes that have data dependencies,
e.g. the ones involving the same object(s) (Section 2.4.2).

In Figure 2, action nodes of different objects are filled with
different backgrounds. Let us describe how groums are built.

2.4 Extract Groum from Source Code

Definition 1 (Groum). A groum is a DAG such that:
1. Each node is an action node or a control node. An

action node represents an invocation of a constructor or a
method, or an access to a field of one object. A control node
represents the branching point of a control structure. Label
of an action node is “C.m” with C is its class name and m
is the method (or field) name. Label of a control node is the
name of its corresponding control structure.

2. A groum could involve multiple objects.
3. Each edge represents a (temporal) usage order and a

data dependency. An edge from node A to node B means
that A is used before B, i.e. A is generated before B in ex-
ecutable code, and A and B have a data dependency. Edges
have no label.

Definition 2. Two groums are (semantically) equiva-
lent if they are label-isomorphic [24].

Compared to existing representations for object usages [1,
4], groums are able to handle multiple interplaying objects,
with usage orders, control structures, and data re-
lations among objects’ actions. Groum is more compact
and specialized toward usage patterns than Program De-
pendence Graph (PDG) and Control Flow Graph (CFG).

Our algorithm extracts groum from a portion of code of
interest in the following steps: 1) Parse it into an AST,
2) Extract the action and control nodes with their partial
usage orders from the AST into a temporary groum, and 3)
Identify data dependencies and total usage orders between
the nodes to build the final groum for the usage of all objects
in the code portion. Step 1 is provided by the AST API from
Eclipse. The other steps are discussed next.

2.4.1 Extract Temporary Groum
In this step, a temporary groum is extracted from the

AST for each method. The extraction is processed bottom-
up, building-up the groum of each structure from the groums
of its sub-structures. For a simple structure such as a single
method invocation or a field access, a groum with only one
action node is created. For more complex structures such as
expressions or statements, the groum is merged using two
operations: sequential merge (denoted by ⇒) and parallel
merge (denoted by ∨). Of course, for a program structure
having neither action nor control node, its groum is empty.

The merge operations are defined as follows. Let X and Y
be two groums. X∨Y is a groum that contains all nodes and
edges of X and Y and there is no edge between any nodes of
X and Y . X ⇒ Y is also a groum containing all nodes and
edges of X and Y . However, there will be an edge from each
sink node (i.e. node having no outgoing edge) of X to each
source node (i.e. node having no incoming edge) of Y . Those
edges represent the temporal usage order, i.e. all nodes of
X are used before all nodes of Y . It could be checked that
those two operations are associated; and parallel merge ∨is
symmetric but sequential merge ⇒ is not.

Sequential merge is used where the code has an explicit
generation order such as between statements within a block.
Parallel merge is used where there is no explicit generation
order such as between the branches of an if-else or a switch

385

Graph-based Mining of Multiple Object Usage Patterns, Nguyen et al. 2009

API
Usage
Graph

Not	Easy	to	Comprehend

A Graph-based Approach to API Usage Adaptation, Nguyen et al. 2010

API
Usage
Graph

Not	Easy	to	Comprehend

XYSeriesString

boolean

DefaultTableXYDataset

XYSeries.<init>

XYSeries.add

FOR

Integer.<init> Number.<cast>

DefaultTableXYDataset.<init>

int

ArrayListArrayList.size

ArrayList.get

XYSeriesString

boolean

DefaultTableXYDataset

XYSeries.<init>

XYSeries.add

FOR

Integer.<init> Number.<cast>

DefaultTableXYDataset.<init>

int

ArrayListArrayList.size

ArrayList.get

boolean

DefaultTableXYDataset.addSeries

boolean

x s x'

y y'

s'

z'

b1

b2

a) b)

Figure 7. API i-Usage models in JBoss before and after migration to a new JFreeChart library version

Figure 7 shows two graph-based API usage models ex-
tracted from the code in Figure 1. The usage changes be-
tween two models are illustrated by the gray nodes with bold
edges. For simplicity, in the figure, a label is displayed with
only class and method names, even though our model actu-
ally retains the fully qualified class name and the signature
of a method. In Figure 7b, an edge from the action node
y′=DefaultTableXYDataset.<init> to the action node z′=DefaultTable-

XYDataset.addSeries represents that y′ is used before z′. An edge
from the action node x=XYSeries.<init> to the data node s=XY-

Series shows that s is used to store the output of x. An edge
coming out of s changes its target from y to z′. That means,
s′ is now used as an input to z′ instead of y′. Note that x
and x′ represent different API elements—x is a deprecated
constructor with two parameters while x′ is a new construc-
tor with three parameters. The figure also shows a for loop
related to the invocation of method XYSeries.add.

4.1.2 i-Usage Extraction
CUE extends our prior work (Nguyen et al.’s graph-based
object usage model [25]) to build API usage models from
each method in client code. It parses the source code into
Abstract Syntax Trees (AST), traverses the trees to analyze
the AST nodes of interest within a method such as method
invocations, object declarations and initializations, and con-
trol statements (e.g. if, while, for), and builds the corresponding
action, data, and control nodes along with control and data
dependencies between them. Static methods, type casting,
and type checking operations of a class are considered as
special invocations of the corresponding objects. After ex-
traction, CUE removes all action and data nodes and the
edges that do not represent the usages of API elements or
have no dependencies with those API elements. In other
words, CUE determines a sub-graph of the original object
usage model that is relevant to the usage of API elements by
performing program slicing from the API usage nodes via
control and data dependency edges. Moreover, since a par-
ticular API could be used by multiple methods in client, CUE
uses a set of iGROUM models to represent API i-usages.

While building an iGROUM, CUE also takes into account
subtyping information, which is described in details in Sec-
tion 4.2. CUE uses the inheritance information of the system
to create nodes and labels more precisely. For example, if a
method C.m is called in an iGROUM, CUE checks whether
C.m is inherited from a method A.m, i.e., C.m is not ex-
plicitly declared in the body of the class C. If that is the
case, the action node corresponding to the call would be a
node with the label built from A.m, rather than from C.m.
If C.m overrides A.m, the label is built from C.m.

Furthermore, CUE also performs an intra-procedural
analysis on object instantiation, assignment, and type cast-
ing statements to keep track of the types of variables used
within a method. For example, if it encounters a method call
o.m with o being an object declared with type C, and later
finds that o is casted into an object of class C ′, then the label
of action node for o.m is built from C ′.m, rather than C.m.

4.2 API Usage via Inheritance
This section presents our graph-based representation for API
usages via inheritance and the corresponding extraction.

4.2.1 Method Overriding and Inheritance
Assume that class C in a client code directly inherits from
an API class A. Method C.m overrides a non-static method
A.m if C.m is declared in class C and has the same signature
with A.m. In Object-Oriented Programming, method A.m is
not considered to be overridden in C when the method C.m
with the same signature as A.m is not explicitly declared in
C. However, because C.m could still be invoked, CUE still
considers that C.m exists and inherits from A.m. If A.m
and C.m are static, CUE does not consider that C.m over-
rides A.m because they are called based on the declaring
types. If A.m is static and C.m is not explicitly declared in
C, CUE does not consider the existence of C.m.

1. If C.m inherits A.m, a call to C.m will be a call to A.m.
Thus, if A.m is changed, not only the calls to A.m need
to be adapted in response to the change of A.m, but also
all the calls to C.m need to be considered for adaptation.

Synthesizing API Usage Examples, Buse and Weimer 2012

• “It	shouldn’t	model	something	
extremely	specific”	

• “It	must	be	able	to	show	multiple	
uses.”

• “a	good	example	is	easy	to	
understand and	read.”

• “less	irrelevant,	unrelated	stuff	in	
the	example	is	better”

• “clear	naming of	variables”

What	Makes	a	Good	Code	Example?

Synthesizing API Usage Examples, Buse and Weimer 2012

if(eventIterator.hasNext()) {
Event e = eventIterator.nextEvent();
//do something with e

}

We hypothesize that both behaviors are useful: the former
constructs generic library API documentation while the later
crafts specific documentation for internal APIs.

B. Patterns
Our algorithm finds and preserves common usage pat-

terns: frequently occurring sequences of statements. How-
ever, there are many classes, such as the generic Throwable,
for which there is no truly common pattern. The example our
algorithms generates for Throwable shows that an instance
might be queried for its Class, Cause, or StackTrace.
PrintWriter p; //initialized previously
Throwable e = SOMETHING.getThrown();
e.getClass();
e.getCause();
e.printStackTrace(p);

For classes such as this, more traditional API documen-
tation which lists all the methods of a class and their
functionality is clearly important. Furthermore, there are
some patterns that cannot be captured by our algorithm.
Interactions such as message passing patterns between mul-
tiple threads or client-server systems could not be discovered
without additional analyses.

C. Exceptions
Ideally, examples should contain complete and correct

exception handing. However, our tool learns actual exception
handling from real code, which may not be fully correct.
The example below of java.io.ObjectInputStream is
one of a small number of classes for which our top-ranked
example uses exception handling.
BufferedInputStream b;//initialized previously
ObjectInputStream stream =

new ObjectInputStream(b);
try {

Object o = stream.readObject();
//Do something with o

} catch(IOException e) {
} finally {

stream.close();
}

We view the correct use of exceptions and the correct
handling of resources in the presence of exceptions as an
orthogonal problem [23], [24], [25].

VI. EMPIRICAL EVALUATION

In this section we begin the evaluation of our proposed
algorithm and prototype implementation with two quantita-
tive metrics: size and readability. Both of these features are
considered very important by users of documentation (see
Section III-B). Running our prototype tool on 1,361k lines
of code to produce example documentation for 35 classes

Figure 4. Size comparison (in lines of code) of examples generated
by our tool using the corpus from Table I, written by humans, and
mined by EXOADOC. The dataset is described in Section VI.

took 73 minutes (about 2 minutes per class). About 95% of
this time is spent filtering the corpus and enumerating paths.

Throughout our evaluation we compare the output of our
tool to both human-written examples from the Java SDK
and also the EXOADOC tool of Kim et al. [13]. EXOADOC
works by leveraging an existing code search engine to find
examples of a class. Kim et al. then employ slicing to extract
“semantically relevant” lines. These examples are then clus-
tered and ranked based on Representativeness, Conciseness
and Correctness properties. EXOADOC has been shown to
increase productivity by as much as 67% in a small study.

Our dataset consists of examples from all 35 classes from
standard Java APIs for which we have one example of each
of the three types (see Section V). Because EXOADOCs are
associated with methods rather than classes, we chose the
top example for the most popular method (by static count of
concrete uses in our benchmark set). For our tool, we chose
the top (i.e., most representative) example for each class.

A. Size Evaluation
We compared the size (in lines of code) of each doc-

umentation type. The results are presented in Figure 4.
Examples produced by our tool are slightly longer on
average as compared to human written examples, but they
follow approximately the same long-tail distribution. Much
of the size difference can be attributed to our use of separate
lines for “previously initialized” variables, which are often
declared in-line by humans (see example in Section II).

Nonetheless, both human-written examples and our gener-
ated examples are shorter than EXOADOC examples, which
are often longer than 19 lines. This difference is largely due
to the less-relevant lines present in EXOADOC examples.

B. Readability Evaluation
Because readability was considered the most important

characteristic of examples, we chose to evaluate the read-
ability of the three documentation types directly. For this
purpose we used an automated software readability met-
ric [35]. This metric, which is based on and agrees with

Synthesized Code Example

What	Makes	a	Good	Code	Example?
• “It	shouldn’t	model	something	
extremely	specific”	

• “It	must	be	able	to	show	multiple	
uses.”

• “a	good	example	is	easy	to	
understand and	read.”

• “less	irrelevant,	unrelated	stuff	in	
the	example	is	better”

• “clear	naming of	variables”

Information	Delivery	and	Usability

2.	Interactive Navigation

Precision	and	Recall	are	Not	Enough

Mining Version Histories to Guide Software Changes, Zimmermann et
al. 2004

History (Training) Evaluation
Project, Description in CVS since # Txns # Txns/Day # Etys/Txn Period # Txns
ECLIPSE, integrated environment 2001-04-28 46,843 56.0 3.17 2003-03-01 to 03-31 2,965
GCC, compiler collection 1997-08-11 47,424 22.4 3.90 2003-04-01 to 04-30 1,083
GIMP, image manipulation tool 1997-01-01 9,796 4.1 4.54 2003-02-01 to 07-31 1,305
JBOSS, application server 2000-04-22 10,843 9.0 3.49 2003-04-01 to 07-31 1,320
JEDIT, text editor 2001-09-02 2,024 2.9 4.54 2003-02-01 to 07-31 577
KOFFICE, office suite 1998-04-18 20,903 11.2 4.25 2003-02-01 to 05-31 1,385
POSTGRESQL, database system 1996-07-09 13,477 5.4 3.27 2003-01-01 to 05-31 925
PYTHON, language + library 1990-08-09 29,588 6.2 2.62 2003-05-01 to 07-31 1,201

Table 1. Analyzed projects (Txn = Transaction; Ety = Entity)

by the user. The recall Rq indicates the percentage of ex-
pected entities that were returned.

Pq = |Aq \ Eq |
|Aq |

Rq = |Aq \ Eq |
|Eq |

In case no entities are returned (Aq is empty), we define the
precision as Pq = 1, and in case no entities are expected,
we define the recall as Rq = 1.
Our goal is to achieve high precision and high recall val-

ues (near 1)—that is to recommend all (recall of 1) and only
expected entities (precision of 1).
For each query qi , we get a precision-recall pair

(Pqi , Rqi). To get an overall measure for the entire history,
we summarize these pairs into a single pair using two dif-
ferent averaging techniques from information retrieval:

Macro-evaluation simply takes the mean value of the
precision-recall pairs:

PM = 1
N

NX

i=1
Pqi RM = 1

N

NX

i=1
Rqi

This approach uses the precision and recall which have
been computed for each query. As users usually think
in queries macro-evaluation is sometimes referred to as
a user-oriented approach—it determines the predictive
strength of individual queries.

Micro-evaluation in contrast builds an average precision-
recall pair based on entities. It does not use the preci-
sion and recall values of single queries, but the sums of
returned, matching and expected entities of all queries.

Pµ =
PN

i=1 |Aqi \ Eqi |PN
i=1 |Aqi |

Rµ =
PN

i=1 |Aqi \ Eqi |PN
i=1 |Eqi |

One can think of micro-evaluation as summarizing all
queries into one large query and then computing preci-
sion and recall for this large query. It therefore allows
statements summarizing all queries like “every nth

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Pr
ec

is
io

n

Recall

Eclipse (Navigation, Micro-evaluation)

0.1

0.1

0.1

0.6

0.8

0.9

1.0

1.0

1.0

Minimum Support 5
Minimum Support 3
Minimum Support 1

Figure 4. Varying support and confidence

suggestion is wrong/correct”. For example, the pre-
cision Pµ for PYTHON is 0.50: Every second sugges-
tion is correct, which means that the recommended en-
tity was actually changed later on. Micro-evaluation is
sometimes referred to as a system-oriented approach,
because it focuses on the overall performance of the
system and not on the average query performance.

Unless otherwise noted, all averages are given by micro-
evaluation.

6.2. Precision vs. Recall
A major application for ROSE is to guide users through
source code: The user changes some entity and ROSE au-
tomatically recommends possible future changes in a view
(Figure 1). We wanted to evaluate the predictive power of
ROSE in this situation. For each transaction 1, and each
entity e 2 entities(1), we queried Q = {e}, and checked
whether ROSE would predict E = entities(1) � {e}. For
each transaction, we thus tested

��entities(1)
�� queries, each

with one element.
Figure 4 shows a so-called precision-recall graph with

the results for the ECLIPSE project. For each combina-
tion of minimum support and minimum confidence the re-
sulting precision-recall pair is plotted. Additionally, sub-

6

Are Code Examples on an Online Q&A Forum Reliable? ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Figure 6: Chrome extension for augmenting Stack Over�ow
posts with mined API usage

desired functionality. Missing or incorrect order of such API calls
can lead to unexpected behavior. For example, developers must call
flip, rewind, or position to reset the internal cursor of ByteBuffer
back to the previous position to read the bu�ered data properly.
The following SO example could throw BufferUnderflowException,
if the internal cursor already reached the upper bound of the bu�er
after the put operation at line 2.15 Without resetting the internal
cursor, the next getInt operation at line 3 would start reading from
the upper bound, which is prohibited. We �nd 7,956 posts that
either misses a critical API call or calls APIs in an incorrect order.

1 ByteBuffer bb = ByteBuffer.allocate(4);
2 bb.put(newArgb);
3 int i =

::::::
bb.getInt();

Incorrect Guard Conditions.Many APIs should be invoked un-
der the correct guard condition to avoid runtime exceptions. For
instance, programmers should check whether a sorted map is empty
with a guard like map.size()>0 or !map.isEmpty() before calling
firstKey (API#9) on the map. However, the following calls firstKey
on an emptymapwithout a guard, leading to NoSuchElementExcepti-
on.16 Surprisingly, this example is accepted as the correct answer
and also upvoted by six other developers on Stack Over�ow. We
�nd 12,791 posts with incorrect guard conditions.

1 TreeMap map = new TreeMap();
2 //OR SortedMap map = new TreeMap()
3

::::::::
map.firstKey();

5 DISCUSSION
Augmentation of Stack Overflow. The study results from Sec-
tion 4 indicate that even highly voted and frequently viewed SO
posts do not necessarily follow desirable API usage. There is an
opportunity to help developers consider better or alternative API
usage that is mined from massive corpora and is supported by thou-
sands of GitHub snippets. Certainly, the goal of Stack Over�ow
is to provide ‘quick snippets’ and not to share complete details
of API usage or present compilable, runnable code. Rather, Stack
Over�ow often serves the purpose of providing a starting point
15http://stackover�ow.com/questions/12100651
16http://stackover�ow.com/questions/21983867

101 102 103 104 105

103

104

105

106

Num of GitHub Snippets

T
im

e
(m

s
)

k=1
k=2
k=3
k=1

No Slicing

Se�ing
Precision (%) Recall (%) Rank

Top 5 Top 5

k = 1 80 91 3

k = 2 79 92 4

k = 3 80 91 4

k =1 74 91 4

No Slicing 65 81 9

Figure 7: Mining time and accuracy with varying k bounds.

and helping the user to grasp the gist of how the API works by
omitting associated details such as which guard conditions to check
and which runtime exceptions to handle. Nevertheless, it would
be useful for a user to see related API usage along with concrete
examples substantiating the desirable API usage, when the user
is browsing the given SO post. Such information may reduce the
e�ort of integrating, adapting, and testing the given code example.

Figure 6 sketches a Chrome extension that we design to augment
a given SO post with mined API usage patterns. If there exists bet-
ter or alternative API usage such as enclosing FileChannel.write

within a try-catch block, the browser extension highlights the rele-
vant API call on the original post and provides a hovering menu
with the description “You may want to use . . . 1829 GitHub code snip-
pets also do this” along with concrete examples. While our proposed
browser extension follows a similar style to Codota,17 Codota does
not group related examples based on common API usage, does
not quantify how many GitHub code snippets support the com-
mon usage, and does not detect API misuse by contrasting the SO
post against the usage. We leverage the data set of GitHub snippets
mined by E������C���� and design novel interactive visualization
for exploring massive code examples simultaneously [12].
API Usage Mining Running Time and Accuracy.We brie�y de-
scribe the running time and accuracy of API usagemining employed
in Maple. Figure 7(a) shows the performance of E������C����
with di�erent k bounds. On average, the mining time is within
10 minutes for each API. We run each experiment �ve times and
compute the average execution time. Setting k to1 retains all de-
pendent API calls in a sliced call sequence, while setting k to 1
retains only immediately dependent calls. Setting k to 1 can achieve
3.3X speed up compared with setting k to1, since it creates shorter
call sequences by removing transitively dependent API calls. E��
�����C���� runs up to 4.6X slower without program slicing.

Figure 7(b) shows the pattern mining accuracy using di�erent
k bounds. The evaluation is done for the 30 APIs fromMUB����
using its ground truth [2]. E������C���� has 80% precision and
91% recall, when considering top 5 patterns for each API method.
Even though limiting dependency analysis with lower bounds may
lead to incomplete sequences with fewer API calls, varying k does
not a�ect accuracy much. However, compared with unbounded
analysis, �ltering out transitively dependent API calls can improve
precision and recall slightly. This is because long API call sequences
may introduce additional patterns of no interest.

17https://www.codota.com/code-browsing-assistant

Are Code Examples on an Online Q&A Forum
Reliable? Zhang et al. 2018

Mining Succinct and High-Coverage API Usage Patterns from Source Code, Wang et al. 2013

This research question evaluates the effectiveness of UP-
Miner in generating succinct and high-coverage API usage
patterns. To answer this question, we manually identified a
“golden set” of API usage patterns for each of these 20 API
methods, as described in Section II.C. After collecting the
golden set, we then ran queries for each API method against
both UP-Miner and MAPO, and compared the results. In
Section IV.B, we describe the metrics (used for the result
comparison) to reflect the succinctness and coverage of the
mined usage patterns.

RQ2: How much benefit can the two-step clustering
process bring?

In Section IV, we proposed a two-step clustering process
in the design of UP-Miner: one before the frequent closed
sequence mining and one after. This research question
evaluates how much benefit such a two-step clustering
process brings by comparing the performance of UP-Miner
(with such a process) and a BIDE-only approach (without
such a process).

RQ3: How much better is UP-Miner compared with
the one-clustering+BIDE approach?

Related to RQ2, this RQ further evaluates how much
benefit the second clustering brings, by comparing the API
usage patterns mined by UP-Miner and by the one-
clustering+BIDE approach (without the second clustering).

B. Metrics
For RQ1 and RQ3, we define a variant of the Purity and

Inverse Purity metrics [9] for evaluating the effectiveness of
the tools in producing succinct and high-covering patterns.

We denote C as the set of clusters to be evaluated. A
cluster represents a mined usage pattern. We denote L as the
set of patterns in the golden set. |𝐿 in 𝐶𝑖| represents the
number of the patterns defined in L and can be found in the
ith cluster 𝐶𝑖. |𝐿𝑖 𝑖𝑛 𝐶| represents the number of patterns in 𝐶

that contains the ith pattern 𝐿𝑖 in the golden set. We define the
Average Purity (AP) and Average Inverse Purity (AIP)
metrics as follows:

 AP = 1
|𝐶|

∑ (|L in Ci| == 0? 0: 1
|L in Ci|

)|C|
i=1

AIP = 1
|𝐿|

∑ (|𝐿𝑖 𝑖𝑛 𝐶| == 0? 0: 1
|𝐿𝑖 𝑖𝑛 𝐶|)

|𝐿|
𝑖=1

The values of the metrics range from 0 to 1, the higher the
better. Ideally, each pattern produced by an API usage miner
should represent only one pattern in the golden set (thus AP is
1), and each pattern in the golden set should be represented by
only one pattern produced by an API usage miner (thus AIP is
1). Higher AIP values indicate higher coverage and (or) lower
redundancies, since the AIP value of API pattern miner A
would be lower than that of B if a golden set pattern does not
appear in any patterns returned by A, but appears in one
returned by B; the AIP value of A could also be lower than
that of B if gold set patterns are represented by a fewer
number of mined patterns returned by A compared that
returned by B. Higher AP values mean that the mined usage
patterns are more succinct in terms of a fewer number of
golden set patterns appearing in one mined usage pattern. We
define F-measure to compute the weighted average of
Average Purity and Inverse Purity to get a robust and
balanced quality measurement. The value of F-measure is
from 0 to 1, the higher the better.

 𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2 × 𝐴𝑃 × 𝐴𝐼𝑃

𝐴𝑃 + 𝐴𝐼𝑃

To further directly measure the effectiveness of the tools
in producing succinct patterns, we design the metric
Duplication as follows:

Duplication = #Duplicated/#Total,

1

2

3

4

5

1. Search box;
2. Usage pattern 1 for
SqlConnection.Open: conducting a simple
reading operation after opening a Sql
connection;
3. Usage pattern 5: conducting a
transaction operation after opening a Sql
connection;
4. Sample code Tab: showed code snippets
associated with the selected usage pattern
shown in the left panel;
5. Graphical representation of usage
pattern: aggregated view of API calls that
appears before calling the searched API
and API calls that appear after calling the
searched API with probability of
invocation relationship.

Fig 6. Screenshot of UP-MINER prototype

324

Not	Easy	to	Navigate	and	Compare

1.	It’s	Not	Easy	to	Visualize

MAPO: Mining and Recommending API Usage Patterns, Zhong et al. 2009

API of interest

Pattern

Clicked sequence

Clicked sequenceContexts of methods

Pattern rank

Whether the API is
invoked in this sample

Clicked sequenceContexts of methods

Methods without the
clicked sequence

Methods with the clicked sequence
Highlighted with background color

Similarity to the current
programming context

C
lick

Fig. 5. MAPO recommender with annotations

This definition is adapted from the classical definition of frequent sequences that is
used by existing frequent subsequence miners. A frequent subsequence miner automat-
ically mines the frequent sequences whose support values are greater than a threshold.
After mining the frequent sequences, MAPO decodes each mined sequence into a fre-
quent API method call sequence.

4.3 API Usage Recommender

This section presents the mechanism of MAPO to recommend associated snippets us-
ing the mined patterns as an index. Figure 5 shows MAPO’s API usage recommender,
which is a plug-in that integrates with the Eclipse IDE.

Instead of requiring programmers to check the snippets one by one, the recom-
mender provides programmers with the capability to use the mined patterns as an in-
dex to locate snippets. For example, if a programmer wants to know the usages of
appendToGroup, the programmer needs to type in “appendToGroup” into the method
body under development. After that, the programmer selects “appendToGroup” and
clicks “Query API patterns” of the context menu for the usages of “appendToGroup”.
Figure 5 shows an annotated screen snapshot of the preceding query. The returned rel-
evant patterns with the pattern ranks are shown in the pattern view on the right side of
Figure 5. The rank of a pattern is the average similarity of the supporting snippets to
the current programming task. Here, we use the method names and the class names to
calculate the similarity. For example, supposing that the programmer is implementing a
method named m in class c, m and c will be compared with the method name and the
class name of each supporting snippet to calculate a similarity value. The similarity def-
inition is the same as the one in Section 4.2. From each pattern, MAPO lists its frequent

Why Don’t Software Developers Use Static
Analysis Tools to Find Bugs?

Brittany Johnson, Yoonki Song, and Emerson Murphy-Hill
North Carolina State University

Raleigh, NC, U.S.A.
bijohnso,ysong2@ncsu.edu,emerson@csc.ncsu.edu

Robert Bowdidge
Google

Mountain View, CA, U.S.A.
bowdidge@google.com

Abstract—Using static analysis tools for automating code

inspections can be beneficial for software engineers. Such tools

can make finding bugs, or software defects, faster and cheaper

than manual inspections. Despite the benefits of using static

analysis tools to find bugs, research suggests that these tools

are underused. In this paper, we investigate why developers

are not widely using static analysis tools and how current tools

could potentially be improved. We conducted interviews with 20

developers and found that although all of our participants felt

that use is beneficial, false positives and the way in which the

warnings are presented, among other things, are barriers to use.

We discuss several implications of these results, such as the need

for an interactive mechanism to help developers fix defects.

I. INTRODUCTION

Software quality is becoming more important with the
increasing reliance on software systems. There are different
ways to ensure quality in software, including code reviews and
rigorous testing. Software defects, or bugs, can cost companies
significant amounts of money, especially when they lead to
software failure [1], [2].

Static analysis tools provide a means for analyzing code
without having to run the code, helping ensure higher quality
software throughout the development process. There are a
variety of ways to perform automatic static analyses [3], in-
cluding at the developers request, continuously while creating
the software in a development environment, and just before
the software is committed to a version control system. The
tool may allow the developer to configure what kinds of
bugs it finds, and sometimes even define new bug patterns.
Some automated static analysis software, such as the software
integrated into IntelliJ IDEA [4], provide quick fixes. A quick
fix is a suggested solution for a defect that is automatically
applied to a developer’s code. To help explain the “state of the
art” of static analysis tools, let us look at FindBugs [5] as a
concrete example of how these tools work [6]. FindBugs runs
as a plug-in for the Eclipse [7] and NetBeans [8] integrated
development environments (IDEs). It can also be run from the
command line or as a separate tool on its own. When run in
the IDE, FindBugs has its own perspective where the defects
are listed and organized. Each defect is assigned a severity,
signifying how important the defect is; either high, medium or
low, each represented by red, yellow and green bug markers
respectively. FindBugs offers a select few quick fixes.

There are many situations where a developer may consider
using a static analysis tool to find defects in their code. Let
us consider a developer, Susie. Susie is a software developer
at a small company. She wants to make sure that she is
following the company’s standards while maintaining quality
code. She needs a way of checking her code in her IDE, before
submitting it to the general code repository, without worrying
about any outside dependencies that she has no control over.
Susie decides that her best bet is to install a static analysis
tool. She decides to install FindBugs because she likes the
quality of the results and the fact that bugs can be found as
she types; at first, she is very happy with her decision and
feels productive when using it.

The above scenario is an interpretation of an experience
one of our participants recalled during their interview. Static
analysis tools use well-defined programming rules to find
defects early in the development process, when they are cheap
to fix [6]. For example, there are static analysis tools that
can alert developers to synchronization issues which can lead
to unsafe thread interactions. Developers have been able to
eliminate many defects that were previously overlooked at
large companies [9] using the warnings produced by static
analysis tools.

Despite the benefits of using static analysis tools to find
bugs, consistent usage of these tools is not very frequent [6].
Remember Susie, who adopted a static analysis tool to im-
prove the quality of her code? After using the tool for a
while, dealing with the interface became a burden; finding the
warnings was not easy and when she did, she had a hard time
interpreting the feedback. Inspecting her code without using
the tool involved more work, but she prefered to do it this way
to avoid the time and confusion involved with using the tool.
There have been studies to investigate ways of improving static
analysis tools. However, none look at what the tools do or can
do for a developer, what features developers use, what could be
improved and why [10], [11]. Our research aims to understand
why software developers are not using static analysis tools and
how current tools could be improved to increase usage based
on developer feedback. For our study, we intend to focus on
static analysis tools used to finds bugs. This includes tools
like FindBugs, Lint [12] , IntelliJ [4] (which includes built-in
static analyzers), and PMD [13]. FindBugs will be referenced
the most as it is the tool we chose to use during our interviews.

978-1-4673-3076-3/13/$31.00 c� 2013 IEEE ICSE 2013, San Francisco, CA, USA672

• Large	volumes	of	false	positives	and	warnings outweigh	true	positives	
in	volumes

• Custom	Navigation	and	Filter Users	would	like	to	configure	the	ways	
that	you	see	and	filter	results

• Actionable	Understandability A	developer	not	being	able	to	understand	
what	the	tool	is	telling	her	is	a	barrier	to	use

• Quick	Fixes	“if	you	can	tell	me	it’s	an	error,	you	should	be	able	to	tell	
me	how	to	fix	it.”	

Why Don’t Software Developers Use Static Analysis Tools to Find Bugs? Johnson et al. 2013

Disuse	of	Static	Analysis	Tools

Information	Delivery	and	Usability

3.	Fit	Developer	Workflow

Must	Fit	Developer	Workflow
• Developers	opportunistically	interleave	web	foraging
of	online	resources,	learning,	and	writing	code.	

• Programmers	search	for	code	very	frequently,	
conducting	an	average	of	5	search	sessions	with	12	
queries	each	workday.	

• 7%	of	respondents	reused	or	modified	code	
examples	from	Stack	Overflow	daily,	40%	did	at	least	
weekly,	and	62%	did	at	least	monthly.

Two Studies of Opportunistic Programming: Interleaving Web Foraging, Learning, and Writing Code, Brandt et al. 2009
How Developers Search for Code: A Case Study, Sadowski et al. 2015
How do developers utilize source code from stack overflow? Wu et al. 2018

Information	Delivery	and	Usability

1.	Comprehension

2.	Interactive Navigation 3.	Fit	Developer	Workflow

1.	Comprehension

2.	Interactive Navigation

3.	Fit	Developer	Workflow

Visualization	of	Code	Examples	at	
Scale	[CHI	2018]

API	Usage	Mining	from	GitHub	
API	Misuse	Detection	in	Stack	
Overflow	[ICSE	2018]

Part	1	

Part	2	

“How	do	I	write	data	to	a	file	using	FileChannel?”

This	example	forgets	to	close	the	FileChannel object	properly.

“How	do	I	write	data	to	a	file	using	FileChannel?”

This	example	forgets	to	handle	potential	exceptions	such	as	
IOException and	FileNotFoundException.

“How	do	I	write	data	to	a	file	using	FileChannel?”

API	Usage	Mining	from	GitHub

• We	mine API	usage	patterns	from	380K	GitHub	projects.

Code	
Search

Program	
Slicing

Call	Sequence	
Extraction

Structured	API	
call	sequences	

Frequent	Sequence
Mining

SMT-based	Guard	
Condition	Mining

API	usage	
patterns380K	Java	Repositories	on	GitHub

1 2

3

Insight	1:	Mining	a	Large	Code	Corpus

•Our	code	corpus	includes	380K	GitHub projects	with	at	least	
100	revisions	and	2	contributors.

Dyer	et	al.	Boa:	A	language	and	infrastructure	for	analyzing	ultra-large-scale	software	
repositories.	ICSE	2013.

Code	
Search

Program	
Slicing

Call	Sequence	
Extraction

Structured	API	
call	sequences	

Frequent	Sequence
Mining

SMT-based	Guard	
Condition	Mining

API	usage	
patterns380K	Java	Repositories	on	GitHub

1 2

3

Insight	2:	Removing	Irrelevant	
Statements	via	Program	Slicing

•We	perform	backward	and	forward	slicing	to	identify	data-
and	control-dependent	statements	to	an	API	method	of	
interest.	

Code	
Search

Program	
Slicing

Call	Sequence	
Extraction

Structured	API	
call	sequences	

Frequent	Sequence
Mining

SMT-based	Guard	
Condition	Mining

API	usage	
patterns380K	Java	Repositories	on	GitHub

1 2

3

void initInterfaceProperties(String temp, File dDir) {
if(!temp.equals("props.txt")) {

log.error("Wrong Template.");
return;

}
// load default properties
FileInputStream in = new FileInputStream(temp);
Properties prop = new Properties();
prop.load(in);
... init properties ...
// write to the property file
String fPath=dDir.getAbsolutePath()+"/interface.prop";
File file = new File(fPath);
if(!file.exists()) {

file.createNewFile();
}
FileOutputStream out = new FileOutputStream(file);
prop.store(out, null);
in.close();

}

Data	dependency	up	to	one hop,	
i.e.,	direct	dependency

The	focal	API	
method

data

control

void initInterfaceProperties(String temp, File dDir) {
if(!temp.equals("props.txt")) {

log.error("Wrong Template.");
return;

}
// load default properties
FileInputStream in = new FileInputStream(temp);
Properties prop = new Properties();
prop.load(in);
... init properties ...
// write to the property file
String fPath=dDir.getAbsolutePath()+"/interface.prop";
File file = new File(fPath);
if(!file.exists()) {

file.createNewFile();
}
FileOutputStream out = new FileOutputStream(file);
prop.store(out, null);
in.close();

}

Data	dependency	up	to	
two	hops

The	focal	API	
method

data

control

Insight	3:	Capture	the	Semantics	of	API	
Usage

• It	is	important	to	capture	the	temporal	ordering,	enclosing	
control	structures,	and	appropriate	guard	conditions	of	API	
calls.	

Code	
Search

Program	
Slicing

Call	Sequence	
Extraction

Structured	API	
call	sequences	

Frequent	Sequence
Mining

SMT-based	Guard	
Condition	Mining

API	usage	
patterns380K	Java	Repositories	on	GitHub

1 2

3

new File (String); try { new FileInputStream(File)@arg0.exists(); }
catch (IOException); }

Insight	3:	Capture	the	Semantics	of	API	
Usage

• It	is	important	to	capture	the	temporal	ordering,	enclosing	
control	structures,	and	appropriate	guard	conditions	of	API	
calls.	

Code	
Search

Program	
Slicing

Call	Sequence	
Extraction

Structured	API	
call	sequences	

Frequent	Sequence
Mining

SMT-based	Guard	
Condition	Mining

API	usage	
patterns380K	Java	Repositories	on	GitHub

1 2

3

new File (String); try { new FileInputStream(File)@arg0.exists(); }
catch (IOException); }

Insight	3:	Capture	the	Semantics	of	API	
Usage

• It	is	important	to	capture	the	temporal	ordering,	enclosing	
control	structures,	and	appropriate	guard	conditions	of	API	
calls.	

Code	
Search

Program	
Slicing

Call	Sequence	
Extraction

Structured	API	
call	sequences	

Frequent	Sequence
Mining

SMT-based	Guard	
Condition	Mining

API	usage	
patterns380K	Java	Repositories	on	GitHub

1 2

3

new File (String); try { new FileInputStream(File)@arg0.exists(); }
catch (IOException); }

Insight	4:	Variations	in	Guard	Conditions

•GitHub developers	may	write	the	same	predicate	in	different	
ways.

Code	
Search

Program	
Slicing

Call	Sequence	
Extraction

Structured	API	
call	sequences	

Frequent	Sequence
Mining

SMT-based	Guard	
Condition	Mining

380K	Java	Repositories	on	GitHub

1 2

3

Two equivalent guard conditions for substring(int):
arg0>=0 && arg0<=rcv.length() ⇔ arg0>-1 && arg0<rcv.length()+1

Yet	Another	API	Usage	Mining	Tool?

API	Misuse	Detection	in	Stack	Overflow

•We	examine	220K	SO	posts	with	180	confirmed	patterns.
•=>	31%	of	SO	posts	contain	API	usage	violations!

39

java

Stack	Overflow	
snippets

Subsequence	
CheckCall	Sequence	

Extraction Guard	Condition	
CheckStructured	API	

call	sequences	

180	Valid	
Patterns

API	usage	violations

query

pattern(s)

Dataset:	http://web.cs.ucla.edu/~tianyi.zhang/examplecheck.html

•Highly-voted	posts	are	not	necessarily	more	reliable	in	terms	
of	correct	API	usage.	

40

41

ExampleCheck [FSE’18	Demo]

https://chrome.google.com/webstore/detail/examplecheck/amliempebc
kaiaklimcpopomlnklkioe

1.	Comprehension

2.	Interactive Navigation

3.	Fit	Developer	Workflow

Visualization	of	Code	Examples	at	
Scale	[CHI	2018]

API	Usage	Mining	from	GitHub	
API	Misuse	Detection	in	Stack	
Overflow	[ICSE	2018]

Part	1	

Part	2	

Examplore:	Visualizing	Examples	at	Scale

Focal API

new FileInputStream()

Many code examples
using this call

crawl

Interactive visualization
showing common usage

and frequency

label and
collate into

code skeleton

Demo: http://examplore.cs.ucla.edu:3000

380K
GitHub

repositories

Mining	API	Usage	from	a	Large	Corpus

if (file != null) {

return new FileInputStream(file);

} else {

return new ByteArrayInputStream(…

}
File file = new File(_basePath + "/" + path);

try {

return new FileInputStream(file);

} catch (FileNotFoundException e) {

throw new IllegalArgumentException(e);

}
File propertiesFile = getPropertiesFile();

try {

InputStream in = new FileInputStream(propertiesFile);

workspaceProperties.load(in);

} catch (IOException e) {

}

Program	Slicing	and	Labeling

Labeled Code Examples

<corpus with blue highlights>380K
Github

repositories

API Skeleton
if	(file	!=	null)	{
return	new	FileInputStream(file);

}	else	{
return	new	ByteArrayInputStream(…

}

if	(file	!=	null)	{
return	new	FileInputStream(file);

}	else	{
return	new	ByteArrayInputStream(…

}

File	file	=	new	File(_basePath	+	"/"	+	path);
try	{
return	new	FileInputStream(file);

}	catch	(FileNotFoundException	e)	{
throw	new	IllegalArgumentException(e);

}

File	file	=	new	File(_basePath	+	"/"	+	path);
try	{
return	new	FileInputStream(file);

}	catch	(FileNotFoundException	e)	{
throw	new	IllegalArgumentException(e);

}

File	propertiesFile	=	getPropertiesFile();
try	{
InputStream	in	=	new	FileInputStream(propertiesFile);
workspaceProperties.load(in);

}	catch	(IOException	e)	{
}

File	propertiesFile	=	getPropertiesFile();
try	{
InputStream	in	=	new	FileInputStream(propertiesFile);
workspaceProperties.load(in);

}	catch	(IOException	e)	{
}

private	void	getLatestVersion()	{
//	TODO	Auto-generated	method	stub
File	temp	=	new	File(Environment.getExternalStorageDirectory().toString()	+	"/pdTemp");
try	{
List<File>	listMain	=	IoUtils.extractZipResource(new	FileInputStream(pdzZipPath),	temp,	true);
if	(listMain.size()	!=	0)	{
for	(File	f	:	listMain)	{
if	(f.isDirectory())	folderName	=	f.getName();
if	(f.getAbsolutePath().toLowerCase().contains("droidparty_main.pd"))	{
foundmainPd	=	true;
dpMainfileName	=	f.getName();
InputStream	is	=	new	FileInputStream(f);
BufferedReader	reader	=	new	BufferedReader(new	InputStreamReader(is));
String	line;
while	((line	=	reader.readLine())	!=	null)	{
String	version;
if	(line.contains("	version:	"))	{
Log.d("LatestVersionLine",	line);
version	=	line.substring(line.lastIndexOf(":")	+	1,	line.length()	- 1);
this.latestVersion	=	Float.parseFloat(version);
break;
}	else	{
version	=	"0";
this.latestVersion	=	Float.parseFloat(version);
}
}
reader.close();
Log.d("LatestVersion",	latestVersion	+	"");
break;
}
}
if	(!foundmainPd)	{
closePd();
}
}	else	{
closePd();
}
}	catch	(Exception	e)	{
e.printStackTrace();
}
}

private	void	getLatestVersion()	{
//	TODO	Auto-generated	method	stub
File	temp	=	new	File(Environment.getExternalStorageDirectory().toString()	+	"/pdTemp");
try	{
List<File>	listMain	=	IoUtils.extractZipResource(new	FileInputStream(pdzZipPath),	temp,	true);
if	(listMain.size()	!=	0)	{
for	(File	f	:	listMain)	{
if	(f.isDirectory())	folderName	=	f.getName();
if	(f.getAbsolutePath().toLowerCase().contains("droidparty_main.pd"))	{
foundmainPd	=	true;
dpMainfileName	=	f.getName();
InputStream	is	=	new	FileInputStream(f);
BufferedReader	reader	=	new	BufferedReader(new	InputStreamReader(is));
String	line;
while	((line	=	reader.readLine())	!=	null)	{
String	version;
if	(line.contains("	version:	"))	{
Log.d("LatestVersionLine",	line);
version	=	line.substring(line.lastIndexOf(":")	+	1,	line.length()	- 1);
this.latestVersion	=	Float.parseFloat(version);
break;
}	else	{
version	=	"0";
this.latestVersion	=	Float.parseFloat(version);
}
}
reader.close();
Log.d("LatestVersion",	latestVersion	+	"");
break;
}
}
if	(!foundmainPd)	{
closePd();
}
}	else	{
closePd();
}
}	catch	(Exception	e)	{
e.printStackTrace();
}
}

[Ko et al. 2004, Duala-Ekoko & Robillard 2012]

Code	Canonicalization

Labeled Code Examples

<corpus with blue highlights>380K
Github

repositories

API Skeleton

if	(file	!=	null)	{
return	new	FileInputStream(file);

}	else	{
return	new	ByteArrayInputStream(…

}

File file = new File(_basePath + "/" + path);
try {

return new FileInputStream(file);
} catch (FileNotFoundException e) {

throw new IllegalArgumentException(e);
}

File propertiesFile = getPropertiesFile();
try {

InputStream in = new FileInputStream(propertiesFile);
workspaceProperties.load(in);

} catch (IOException e) {
}

stream
file

file

stream

String

Examplore Interface

if (file != null) {
return new FileInputStream(file);

} else {
return new ByteArrayInputStream(…

}

File file = new File(String);
try {

return new FileInputStream(file);
} catch (FileNotFoundException e) {

throw new IllegalArgumentException(e);
}

File file = getPropertiesFile();
try {

InputStream stream = new FileInputStream(file);
workspaceProperties.load(stream);

} catch (IOException e) {
}

Abstraction
API Skeleton

Mutual Alignment

stream = new FileInputStream(file);3

if (file != null) {
return new FileInputStream(file);

} else {
return new ByteArrayInputStream(…

}

File file = new File(String);
try {

return new FileInputStream(file);
} catch (FileNotFoundException e) {

throw new IllegalArgumentException(e
}

File file = getPropertiesFile();
try {

InputStream stream = new FileInputStream(file);
workspaceProperties.load(stream);

} catch (IOException e) {
}

Examplore	Interface
Abstraction
API Skeleton

File file = new File(String);
File file = getPropertiesFile();

1

Mutual Alignment

1

stream = new FileInputStream(file);3

Examplore	Interface

if (file != null) {
return new FileInputStream(file);

} else {
return new ByteArrayInputStream(…

}

File file = new File(String);
try {

return new FileInputStream(file);
} catch (FileNotFoundException e) {

throw new IllegalArgumentException(e);
}

File file = getPropertiesFile();
try {

InputStream stream = new FileInputStream(file);
workspaceProperties.load(stream);

} catch (IOException e) {
}

Abstraction
API Skeleton

Mutual Alignment

Examplore	Interface

Examplore	Interface

Tool is available at http://examplore.cs.ucla.edu:3000/

Lab	Study	Results
• Examplore	users	investigated	many	

relevant	examples.

• Baseline	users	often	answered	based	
on	one	example	or	by	guessing.

Average # of correct answers on Q1-7

Baseline Examplore
Mean difference is statistically significant
(paired t-test: t=3.02, df=15, p-value<0.01)

7/7

0/7

4.7

6

Lab	Study	Results
For	Q8,	88%	of	participants	gave	valid	
comments	about	the	StackOverflow	answer.

The	majority	of	participants’	critiques…

• (Using	the	baseline)	were	about	style	and	
the	mechanics	of	adaptation

• (Using	Examplore)	were	about	safety

• Q8. How might you modify this code
example on Stack Overflow if you were
going to copy and paste it into your own
solution to the original prompt?

Lab	Study	Results

Summary
It’s	time	to	go	beyondmeasuring	precision and	recall of	
software	specification	inference	techniques	

1.	Comprehension

3.	Fit	Developer	Workflow2.	Interactive Navigation

Collaborators:	Tianyi Zhang,	Elena	Glassman,	Bjoern Hartmann,	Ganesha
Upadhyaya,		Hridesh Rajan,	Anstasia Reinhart

ExampleCheck and	Examplore

Tool is available at
http://examplore.cs.ucla.edu:3000/

