
Software Evolution

Miryung Kim, Na Meng, Tianyi Zhang

Abstract. Software evolution plays an ever-increasing role in software
development. Programmers rarely build software from scratch but often
spend more time in modifying existing software to provide new features
to customers and fix defects in existing software. Evolving software sys-
tems is often a time-consuming and error-prone process. This chapter
overviews key concepts and principles in the area of software evolution
and presents the fundamentals of state-of-the art methods, tools, and
techniques for evolving software. The chapter first classifies the types of
software changes into four types: perfective changes to expand the ex-
isting requirements of a system, corrective changes for resolving defects,
adaptive changes to accommodate any modifications to the environments,
and finally preventive changes to improve the maintainability of software.
For each type of changes, the chapter overviews software evolution tech-
niques from the perspective of three kinds of activities: (1) applying
changes, (2) inspecting changes, and (3) validating changes. The chapter
concludes with the discussion of open problems and research challenges
for the future.

1 Introduction

Software evolution plays an ever-increasing role in software development. Pro-
grammers rarely build software from scratch but often spend more time in mod-
ifying existing software to provide new features to customers and fix defects
in existing software. Evolving software systems is often a time-consuming and
error-prone process. In fact, it is reported that 90% of the cost of a typical
software system is incurred during the maintenance phase [119] and a primary
focus in software engineering involves issues relating to upgrading, migrating,
and evolving existing software systems.

The term, software evolution dates back to 1976 when Belady and Lehman
first coined this term. Software evolution refers to the dynamic behavior of soft-
ware systems, as they are maintained and enhanced over their lifetimes [23].
Software evolution is particularly important as systems in organizations become
longer-lived. A key notion behind this seminal work by Belady and Lehman is
the concept of software system entropy. The term entropy, with a formal defi-
nition in physics relating to the amount of energy in a closed thermodynamic
system is used to broadly represent a measure of the cost required to change
a system or correct its natural disorder. As such, this term has had significant
appeal to software engineering researchers, since it suggests a set of reasons for
software maintenance. Their original work in the 1970s involved studying 20
user-oriented releases of the IBM OS/360 operating systems software, and it

2 Miryung Kim, Na Meng, Tianyi Zhang

was the first empirical research to focus on the dynamic behavior of a relatively
large and mature system (12 years old) at the time. Starting with the available
data, they attempted to deduce the nature of consecutive releases of OS/360
and to postulate five laws of software evolution: (1) continuing change, (2) in-
creasing complexity, (3) fundamental law of program evolution, (4) conservation
of organizational stability, and (5) conservation of familiarity.

Later, many researchers have systematically studied software evolution by
measuring concrete metrics about software over time. Notably, Eick et al. [49]
quantified the symptoms of code decay—software is harder to change than it
should be by measuring the extent to which each risk factor matters using a
rich data set of 5ESS telephone switching system. For example, they measured
the number of files changed in each modification request to monitor code decay
progress over time. This empirical study has influenced a variety of research
projects on mining software repositories.

Now that we accept the fact that software systems go through a continuing
life cycle of evolution after the initial phase of requirement engineering, design,
analysis, testing and validation, we describe an important aspect of software
evolution—software changes in this chapter. To that end, we first introduce the
categorization of software changes into four types in Section 2. We then discuss
the techniques of evolving software from the perspectives of three kinds of activ-
ities: (1) change application, (2) change inspection, and (3) change validation.
In the following three sections, we provide an organized tour of seminal papers
focusing on the above-mentioned topics.

In Section 3, we first discuss empirical studies to summarize the character-
istics of each change type and then overview tool support for applying software
changes. For example, for the type of corrective changes, we present several stud-
ies on the nature and extent of bug fixes. We then discuss automated techniques
for fixing bugs such as automated repair. Similarly, for the type of preventative
changes, we present empirical studies on refactoring practices and then discuss
automated techniques for applying refactorings. Regardless of change types, var-
ious approaches could reduce the manual effort of updating software through
automation, including source-to-source program transformation, Programming
by Demonstration (PbD), simultaneous editing, and systematic editing.

In Section 4, we overview research topics for inspecting software changes.
Software engineers other than the change author often perform peer reviews
by inspecting program changes, and provide feedback if they discover any sus-
picious software modifications. Therefore, we summarize modern code review
processes and discuss techniques for comprehending code changes. This section
also overviews a variety of program differencing techniques, refactoring recon-
struction techniques, and code change search techniques that developers can use
to investigate code changes.

In Section 5, we overview research techniques for validating software changes.
After software modification is made, developers and testers may create new tests
or reuse existing tests, run the modified software against the tests, and check
whether the software executes as expected. Therefore, the activity of checking

Lecture Notes in Computer Science: Authors’ Instructions 3

the correctness of software changes involves failure-inducing change isolation,
regression testing, and change impact analysis.

2 Concepts and Principles

Swanson initially identified three categories of software changes: corrective, adap-
tive, and perfective [179]. These categories were updated later and ISO/IEC
14764 instead presents four types of changes: corrective, adaptive, perfective,
and preventive [11].

2.1 Corrective Change

Corrective change refers software modifications initiated by software defects. A
defect can result from design errors, logic errors, and coding errors [9].

– Design errors: software design does not fully align with the requirements
specification. The faulty design leads to a software system that either incom-
pletely or incorrectly implements the requested computational functionality.

– Logic errors: a program behaves abnormally by terminating unexpectedly or
producing wrong outputs. The abnormal behaviors are mainly due to flaws
in software functionality implementations.

– Coding errors: although a program can function well, it takes excessively
high runtime or memory overhead before responding to user requests. Such
failures may be caused by loose coding, or the absence of reasonable checks
on computations performed.

2.2 Adaptive Change

Adaptive change is a change introduced to accommodate any modifications in
the environment of a software product. The term environment here refers to
the totality of all conditions that influence the software product, including busi-
ness rules, government policies, and software and hardware operating systems.
For example, when a library or platform developer may evolve its APIs, the
corresponding adaptation may be required for client applications to handle such
environment change. As another example, when porting a mobile application
from Android to iOS, mobile developers need to apply adaptive changes to
translate the code from Java to Swift, so that the software is still compilable
and executable on the new platform.

2.3 Perfective Change

Perfective change is the change undertaken to expand the existing requirements
of a system [168]. When a software product becomes useful, users always expect
to use it in new scenarios beyond the scope for which it was initially devel-
oped. Such requirement expansion causes changes to either enhance existing

4 Miryung Kim, Na Meng, Tianyi Zhang

system functionality or to add new features. For instance, an image processing
system is originally developed to process JPEG files, and later goes through a
series of perfective changes to handle other formats, such as PNG and SVG.
The nature and characteristics of new feature additions is not necessarily easy
to define and in fact understudied for that reason. In Section 3.3, we discuss a
rather well-understood type of perfective changes, called crosscutting concerns
and then present tool and language support for adding crosscutting concerns.
Crosscutting concerns refer to the secondary design decisions such as logging,
performance, error handling, and synchronization. Adding these secondary con-
cerns often involves non-localized changes throughout the system, due to the
tyranny of dominant design decisions already implemented in the system. Con-
cerns that are added later may end up being scattered across many modules and
thus tangled with one another.

2.4 Preventive Change

Preventive change is the change applied to prevent malfunctions or to improve
the maintainability of software. According to Lehman’s laws of software evolu-
tion [113], the long-term effect of corrective, adaptive, and perfective changes is
deteriorating the software structure, while increasing entropy. Preventive changes
are usually applied to address the problems. For instance, after developers fix
some bugs and implement new features in an existing software product, the
complexity of source code can increase to an unmanageable level. Through code
refactoring—a series of behavior-preserving changes, developers can reduce code
complexity, and increase the readability, reusability, and maintainability of soft-
ware.

Fig. 1. Potential relation between software changes [168]

Figure 1 presents the potential relationships between different types of changes [168].
Specifically, both adaptive changes and perfective changes may lead to the other
two types of changes, because developers may introduce bugs or worsen code

Lecture Notes in Computer Science: Authors’ Instructions 5

structures when adapting software to new environments or implementing new
features.

3 An Organized Tour of Seminal Papers: I. Applying
Changes

We discuss the characteristics of corrective, adaptive, perfective, and preventa-
tive changes using empirical studies and the process and techniques for updating
software, respectively in Sections 3.1, 3.2, 3.3, and 3.4. Next, regardless of change
types, automation could reduce the manual effort of updating software. There-
fore, we discuss the topic of automated program transformation and interactive
editing techniques for reducing repetitive edits in Section 3.5.

Sec$3.$Applying$ Changes

Adaptive$Change Perfective$ChangeCorrective$Change

StudiesonAPI$Evolution

[DigandJohnson$ 2005]

Cross$Language$Migration

[Yasumatsu et$al.$1995]

Refactoring$Definition

[Opdyke 1992

Griswold$1992]

Automated$Refactoring

[Komondoor 2000

Meng et$al.$2015]

Refactoring$Practices

[MurphyOHilletal.$2009]

[Kimetal.$2012]

Empirical$Studies$on$

Refactoring

[Kimetal.$2010]

ToolsforAPI$Evolution$&$

Client$Adaptation.

[ChowandNotkin 1996,$

HenkelandDiwan 2005]

StudiesonBugs

[Lietal.2006

S.Kim et$al.$2006]$

Bug$Detection$and$Fix

[Engler 2001]

Automated$Repair

[Weimeretal.$2009

Weietal.$2010]

Code$Smells$Detection

[Moha et$al.$2009

Wongetal.$2010]

Preventive$Change

Crosscutting$Changes

[Tarr et$al.$1999]

Techniques$ for$Locating$

Crosscutting$Concerns

[Robillard et$al.$2003]

Cross$System$Porting

[RayandKim$2012]

Language$Support$ for$

Crosscutting$Concerns

[Kiczales et$al.$2001$

Batory 1992]

Refactoring$Impact$

Assessment

[Kimetal.$2014]

Fig. 2. Applying Changes Categorized by Change Type and Related Research Topics

3.1 Corrective Change

Corrective changes such as bug fixes are frequently applied by developers to elim-
inate defects in software. There are mainly two lines of research conducted: (1)
empirical studies to characterize bugs and corresponding fixes, and (2) automatic
approaches to detect and fix such bugs. There is no clear boundary between the
two lines of research, because some prior projects first make observations about

6 Miryung Kim, Na Meng, Tianyi Zhang

particular kinds of bug fixes empirically and then subsequently leverage their
observed characteristics to find more bugs and fix them. Below, we discuss a few
representative examples of empirical studies with such flavor of characterizing
and fixing bugs.

3.1.1 Empirical Studies of Bug Fixes. In this section, we discuss two rep-
resentative studies on bug fixes. These studies are not the earliest, seminal works
in this domain. Rather, the flavor and style of their studies are representative. Li
et al. conducted is a large scale characterization of bugs by digging through bug
reports in the wild and by quantifying the extent of each bug type [116]. S. Kim
et al.’s memory of bug fixes [101] uses fine-grained bug fix histories to measure
the extent of recurring, similar bug fixes and to assess the potential benefit of
automating similar fixes based on change history.

Li et al. conducted an empirical study of bugs from two popular open source
projects: Mozilla and Apache HTTP Server [116]. By manually examining 264
bug reports from the Mozilla Bugzilla database, and 209 bug reports from the
Apache Bugzilla database, they investigated the root cause, impact, and software
components of each software error that exhibited abnormal runtime behaviors.
They observed three major root causes: memory, concurrency, and semantics.
The memory bugs accounted for 16.3% in Mozilla and 12.2% in Apache. Among
memory bugs, NULL pointer dereference was observed as a major cause, ac-
counting for 37.2% in Mozilla and 41.7% in Apache. More importantly, semantic
bugs were observed to be dominant, accounting for 81.1% in Mozilla and 86.7%
in Apache. One possible reason is that most semantic bugs are specific to appli-
cations. A developer could easily introduce semantic bugs while coding, due to a
lack of thorough understanding of software and its requirements. It is challenging
to automatically detect or fix such semantic bugs, because diagnosing and re-
solving them may require a lot of domain-specific knowledge and such knowledge
is inherently not generalizable across different systems and applications.

To understand the characteristics and frequency of project-specific bug fixes,
Kim et al. conducted an empirical study on the bug fix history of five open source
projects: ArgoUML, Columba, Eclipse, jEdit, and Scarab [101]. With keywords
like “Fixed” or “Bugs”, they retrieved code commits in software version history
that are relevant to bug fixes, chopped each commit into contiguous code change
blocks (i.e., hunks), and then clustered similar code changes. They observed that
19.3 to 40.3% bugs appeared repeatedly in version history, while 7.9 to 15.5%
of bug-and-fix pairs appeared more than once. The results demonstrated that
project-specific bug fix patterns occur frequently enough and for each bug-and-
fix pair, it is possible to both detect similar bugs and provide fix suggestions.
Their study also showed history-based bug detection could be complementary
to static analysis-based bug detection—the bugs that can be detected by past
bug fix histories do not overlap with the bugs that can be detected by a static
bug finding tool, PMD [6].

Lecture Notes in Computer Science: Authors’ Instructions 7

3.1.2 Rule-based Bug Detection and Fixing Approaches. Rule-based
bug detection approaches detect and fix bugs based on the assumption that
bugs are deviant program behaviors that violate implicit programming rules.
Then one may ask, where those implicit rules are coming from? Such rules can
be written by the developers of bug-finding tools or can be refined based on
empirical observation in the wild. For example, Engler et al. define a meta-
language for users to easily specify temporal system rules such as “release locks
after acquiring them” [52]. They also extend a compiler to interpret the rules
and dynamically generate additional checks in the compiler. If any code snippet
violates the specified rule(s), the approach reports the snippet as a software bug.
Table 1 presents some exemplar system rule templates and instances. With this
approach, developers can flexibly define their own rules to avoid some project-
specific bugs, without worrying about how to implement checkers to enforce the
rules. Engler et al.’s later work enables tool developers to tailor rule templates
to a specific system and to check for contradictions and violations [53].

Table 1. Sample system rule templates and examples from [52]

Rule template Example

“Never/always do X” “Do not use floating point in the kernel”

“Do X rather than Y” “Use memory mapped I/O rather than copying”

“Always do X before/after Y” “Check user pointers before using them in the kernel”

As another example of rule-based bug detection is CP-Miner, an automatic
approach to find copy-paste bugs in large-scale software [115]. CP-Miner is moti-
vated by Chou et al.’s finding that, under the Linux drivers/i2o directory, 34 out
of 35 errors were caused by copy-paste [33] and based on the insight that when
developers copy and paste, they may forget to consistently rename identifiers.
CP-Miner first identifies copy-paste code in a scalable way, and then detects
bugs by checking for a specific rule, e.g., consistent renaming of identifiers.

3.1.3 Automated Repair. Automatic program repair generates candidate
patches and checks correctness using compilation, testing, and/or specification.

One set of techniques uses search-based repair [66] or predefined repair tem-
plates to generate many candidate repairs for a bug, and then validates them
using indicative workloads or test suites. For example, GenProg generates can-
didate patches by replicating, mutating, or deleting code randomly from the
existing program [112, 197]. GenProg uses genetic programming (GP) to search
for a program variant that retains required functionality but is not vulnerable
to the defect in question. GP is a stochastic search method inspired by biolog-
ical evolution that discovers computer programs tailored to a particular task.
GP uses computational analogs of biological mutation and crossover to generate
new program variations, in other words, program variants. A user-defined fitness
function evaluates each variant. GenProg uses the input test cases to evaluate

8 Miryung Kim, Na Meng, Tianyi Zhang

the fitness, and individuals with high fitness are selected for continued evolution.
This GP process is successful, when it produces a variant that passes all tests
encoding the required behavior and does not fail those encoding the bug.

Another class of strategies in automatic software repair relies on specifications
or contracts to guide sound patch generation. This provides confidence that
the output is correct. For example, AutoFix-E generates simple bug fixes from
manually prescribed contracts [196]. The key insights behind this approach are
to rely on contracts present in the software to ensure that the proposed fixes are
semantically sound. AutoFix-E takes an Eiffel class and generates test cases with
some automated testing engine first. From the test runs, it extracts object states
using boolean queries. By comparing the states of passing and failing runs, it
then generates a fault profile—an indication of what went wrong in terms of an
abstract object state. From the state transitions in passing runs, it generates a
finite-state behavioral model, capturing the normal behavior in terms of control.
Both control and state guide the generation of fix candidates, and only those
fixes passing the regression test suite remain.

Some approaches are specialized for particular types of bugs only. For exam-
ple, FixMeUp inserts missing security checks using inter-procedural analysis, but
these additions are very specific and stylized for access-control related security
bugs [176]. As another example, PAR [92] encodes ten common bug fix patterns
from Eclipse JDT’s version history to improve GenProg. However, the patterns
are created manually.

3.2 Adaptive Change

Adaptive changes are applied to software, when its environment changes. In this
section, we focus on three scenarios of adaptive changes: cross-system software
porting, cross-language software migration, and software library upgrade (i.e.,
API evolution).

Consider an example of cross-system porting. When a software system is in-
stalled on a computer, the installation can depend on the configurations of the
hardware, the software, and the device drivers for particular devices. To make
the software to run on a different processor or an operating system, and to make
it compatible with different drivers, we may need adaptive changes to adjust the
software to the new environment. Consider another example of cross-language
migration where you have software in Java that must be translated to C. Devel-
opers need to rewrite software and must also update language-specific libraries.
Finally consider the example of API evolution. When the APIs of a library and
a platform evolves, corresponding adaptations are often required for client appli-
cations to handle such API update. In extreme cases, e.g., when porting a Java
desktop application to the iOS platform, developers need to rewrite everything
from scratch, because both the programming language (i.e., Swift) and software
libraries are different.

3.2.1 Cross-System Porting. Software forking—creating a variant product
by copying and modifying an existing product—is often considered an ad hoc,

Lecture Notes in Computer Science: Authors’ Instructions 9

low cost alternative to principled product line development. To maintain such
forked products, developers often need to port an existing feature or bug-fix from
one product variant to another.

Empirical Studies on Cross-System Porting. OpenBSD, NetBSD, and FreeBSD
have evolved from the same origin but have been maintained independently
from one another. Many have studied the BSD family to investigate the extent
and nature of cross-system porting. The studies found that (1) the information
flow among the forked BSD family is decreasing according to change commit
messages [55]; (2) 40% of lines of code were shared among the BSD family [206];
(3) in some modules such as device driver modules, there is a significant amount
of adopted code [36]; and (4) contributors who port changes from other projects
are highly active contributors according to textual analysis of change commit
logs and mailing list communication logs [30].

More recently, Ray et al. comprehensively characterized the temporal, spa-
tial, and developer dimensions of cross-system porting in the BSD family [156].
Their work computed the amount of edits that are ported from other projects as
opposed to the amount of code duplication across projects, because not all code
clones across different projects undergo similar changes during evolution, and
similar changes are not confined to code clones. To identify ported edits, they
first built a tool named as Repertoire that takes diff patches as input and com-
pares the content and edit operations of the program patches. Repertoire was
applied to total 18 years of NetBSD, OpenBSD and FreeBSD version history.
Their study found that maintaining forked projects involves significant effort of
porting patches from other projects—10% to 15% of patch content was ported
from another project’s patches. Cross-system porting is periodic and its rate
does not necessarily decrease over time. A significant portion of active develop-
ers participate in porting changes from peer projects. Ported changes are less
defect-prone than non-ported changes. A significant portion (26% to 59%) of ac-
tive committers port changes but some do more porting work than others. While
most ported changes migrate to peer projects in a relatively short amount of
time, some changes take a very long time to propagate to other projects. Ported
changes are localized within less than 20% of the modified files per release on
average in all three BSD projects, indicating that porting is concentrated on a
few sub systems.

3.2.2 Cross-Language Migration. When maintaining a legacy system that
was written in an old programming language (e.g., Fortran) decades ago, pro-
grammers may migrate the system to a mainstream general-purpose language,
such as Java, to facilitate the maintenance of existing codebase and to leverage
new programming language features.

Cross-Language Program Translation. To translate code implementation from
one language to another, researchers have built tools by hard coding the trans-
lation rules and implementing any missing functionality between languages. Ya-
sumatsu et al. map compiled methods and contexts in Smalltalk to machine

10 Miryung Kim, Na Meng, Tianyi Zhang

code and stack frames respectively, and implement runtime replacement classes
in correspondence with the Smalltalk execution model and runtime system [209].
Mossienko [132] and Sneed [174] automate COBOL-to-Java code migration by
defining and implementing rules to generate Java classes, methods, and pack-
ages from COBOL programs. mppSMT automatically infers and applies Java-
to-C# migration rules using a phrase-based statistical machine translation ap-
proach [139]. It encodes both Java and C# source files into sequences of syntactic
symbols, called syntaxemes, and then relies on the syntaxemes to align code and
to train sequence-to-sequence translation.

Mining Cross-Language API Rules. When migrating software to a different tar-
get language, API conversion poses a challenge for developers, because the di-
verse usage of API libraries induces an endless process of specifying API trans-
lation rules or identifying API mappings across different languages. Zhong et
al. [216] and Nguyen et al. [138, 141] automatically mine API usage mappings
between Java and C#. Zhong et al. align code based on similar names, and
then construct the API transformation graphs for each pair of aligned state-
ments [216]. StaMiner [138] mines API usage sequence mappings by conducting
program dependency analysis [133] and representing API usage as a graph-based
model [142].

3.2.3 Library Upgrade and API Evolution. Instead of building soft-
ware from scratch, developers often use existing frameworks or third-party li-
braries to reuse well-implemented and tested functionality. Ideally, the APIs
of libraries must remain stable such that library upgrades do not incur corre-
sponding changes in client applications. In reality, however, APIs change their
input and output signatures, change semantics, or are even deprecated, forcing
client application developers to make corresponding adaptive changes in their
applications.

Empirical Studies of API Evolution. Dig and Johnson manually investigated API
changes using the change logs and release notes to study the types of library-
side updates that break compatibility with existing client code, and discovered
that 80% of such changes are refactorings [45]. Xing and Stroulia used UMLD-
iff to study API evolution and found that about 70% of structural changes are
refactorings [204]. Yokomori et al. investigated the impact of library evolution on
client code applications using component ranking measurements [211]. Padioleau
et al. found that API changes in the Linux kernel led to subsequent changes on
dependent drivers, and such collateral evolution could introduce bugs into pre-
viously mature code [149]. McDonelle et al. examined the relationship between
API stability and the degree of adoption measured in propagation and lagging
time in the Android Ecosystem [122]. Hou and Yao studied the Java API doc-
umentation and found that a stable architecture played an important role in
supporting the smooth evolution of the AWT/Swing API [75]. In a large scale
study of the Smalltalk development communities, Robbes et al. found that only

Lecture Notes in Computer Science: Authors’ Instructions 11

14% of deprecated methods produce non-trivial API change effects in at least
one client-side project; however, these effects vary greatly in magnitude. On av-
erage, a single API deprecation resulted in 5 broken projects, while the largest
caused 79 projects and 132 packages to break [162].

Tool Support for API Evolution and Client Adaptation. Several existing ap-
proaches semi-automate or automate client adaptations to cope with evolving
libraries. Chow and Notkin [34] propose a method for changing client applications
in response to library changes—a library maintainer annotates changed functions
with rules that are used to generate tools that update client applications. Henkel
and Diwan’s CatchUp records and stores refactorings in an XML file that can
be replayed to update client code [69]. However, its update support is limited to
three refactorings: renaming operations (e.g. types, methods, fields), moving op-
erations (e.g. classes to different packages, static members), or change operations
(e.g. types, signatures). The key idea of CatchUp, record-and-replay, assumes
that the adaptation changes in client code are exact or similar to the changes in
the library side. Thus, it works well for replaying rename or move refactorings
or supporting API usage adaptations via inheritance. However, CatchUp cannot
suggest programmers how to manipulate the context of API usages in client code
such as the surrounding control structure or the ordering between method-calls.
Furthermore, CatchUp requires that library and client application developers use
the same development environment to record API-level refactorings, limiting its
adoption in practice. Xing and Stroulia’s Diff-CatchU automatically recognizes
API changes of the reused framework and suggests plausible replacements to the
obsolete APIs based on the working examples of the framework codebase [205].
Dig et al.’s MolhadoRef uses recorded API-level refactorings to resolve merge
conflicts that stem from refactorings; this technique can be used for adapting
client applications in case of simple rename and move refactorings occurred in a
library [46].

SemDiff [42] mines API usage changes from other client applications or the
library itself. It defines an adaptation pattern as a frequent replacement of a
method invocation. That is, if a method call to A.m is changed to B.n in several
adaptations, B.n is likely to be a correct replacement for the calls to A.m.
As SemDiff models API usages in terms of method calls, it cannot support
complex adaptations involving multiple objects and method calls that require
the knowledge of the surrounding context of those calls. LibSync helps client
applications migrate library API usages by learning migration patterns [140]
with respect to a partial AST with containment and data dependences. Though
it suggests what code locations to examine and shows example API updates,
it is unable to transform code automatically. Cossette and Walker found that,
while most broken code may be mended using one or more of these techniques,
each is ineffective when used in isolation [38].

12 Miryung Kim, Na Meng, Tianyi Zhang

3.3 Perfective Change

Perfective change is the change undertaken to expand the existing requirements
of a system. Not much research is done to characterize feature enhancement or
addition. One possible reason is that the implementation logic is always domain
and project-specific and that it is challenging for any automatic tool to pre-
dict what new feature to add and how that new feature must be implemented.
Therefore, the nature and characteristics of feature additions are under-studied.

In this section, we discuss a rather well-understood type of perfective changes,
called crosscutting concerns and techniques for implementing and managing
crosscutting concerns. As programs evolve over time, they may suffer from the
the tyranny of dominant decomposition [183]. They can be modularized in only
one way at a time. Concerns that are added later may end up being scattered
across many modules and tangled with one another. Logging, performance, error
handling, and synchronization are canonical examples of such secondary design
decisions that lead to non-localized changes.

Aspect-oriented programming languages provide language constructs to al-
low concerns to be updated in a modular fashion [91]. Other approaches instead
leave the crosscutting concerns in a program, while providing mechanisms to
document and manage related but dispersed code fragments. For example, Gris-
wold’s information transparency technique uses naming conventions, formatting
styles, and ordering of code in a file to provide indications about crosscutting
concern code that should change together [60].

3.3.1 Techniques for Locating Crosscutting Concerns. Several tools
allow programmers to automatically or semi-automatically locate crosscutting
concerns. Robillard et al. allow programmers to manually document crosscutting
concerns using structural dependencies in code [163]. Similarly, the Concern Ma-
nipulation Environment allows programmers to locate and document different
types of concerns [67]. Van Engelen et al. use clone detectors to locate cross-
cutting concerns [193]. Shepherd et al. locate concerns using natural language
program analysis [170]. Breu et al. mine aspects from version history by group-
ing method-calls that are added together [28]. Dagenais et al. automatically infer
and represent structural patterns among the participants of the same concern
as rules in order to trace the concerns over program versions [41].

3.3.2 Language Support for Crosscutting Concerns. Aspect-Oriented
Programming (AOP) is a programming paradigm that aims to increase modu-
larity by allowing the separation of crosscutting concerns [7]. Suppose developers
want to add a new feature such as logging to log all executed functions. The log-
ging logic is straightforward: printing the function’s name at each function’s
entry. However, manually inserting the same implementation to each function
body is tedious and error-prone. With AOP, developers only need to first define
the logging logic as an advice, and then specify the place where to insert the ad-
vice (i.e., pointcut), such as the entry point of each function. An aspect weaver

Lecture Notes in Computer Science: Authors’ Instructions 13

will read the aspect-oriented code, and generate appropriate object-oriented code
with the aspects integrated. In this way, AOP facilitates developers to efficiently
introduce new program behaviors without cluttering the core implementation in
the existing codebase. Many Java bytecode manipulation frameworks implement
the AOP paradigm, like ASM [2], Javassist [5], and AspectJ [7], so that develop-
ers can easily modify program runtime behaviors without touching source code.
The benefit of AOP during software evolution is that crosscutting concerns can
be contained as a separate module such as an aspect with its pointcut and
advice description, and thus reduces the developer effort in locating and updat-
ing all code fragments relevant to a particular secondary design decision such as
logging, synchronization, database transaction, etc.

Feature Oriented Programming (FOP) is another paradigm for program gen-
eration in software product lines and for incremental development of programs [22].
FOP is closely related to AOP. Both deal with modules that encapsulate cross-
cuts of classes, and both express program extensions. In FOP, every software
is considered as a composition of multiple features or layers. Each feature im-
plements a certain program functionality, while features may interact with each
other to collaboratively provide a larger functionality. A software product line
(SPL) is a family of programs where each program is defined by a unique com-
position of features. Formally, FOP considers programs as values and program
extensions as functions [108]. The benefit of FOP is similar to AOP in that sec-
ondary design decisions can be encapsulated as a separate feature and can be
composed later with other features using program synthesis, making it easier to
add a new feature at a later time during software evolution. Further discussion of
program generation techniques for software product lines is described elsewhere
in Chapter cross reference a chapter on the product line.

3.4 Preventive Change

As a software system is enhanced, modified, and adapted to new requirements,
the code becomes more complex and drifts away from its original design, thereby
lowering the quality of the software. Refactoring [10, 61, 127,145] copes with in-
creasing software complexity by transforming a program from one representation
to another while preserving the program’s external behavior (functionality and
semantics). Mens et al. present a survey of refactoring research and describe a
refactoring process, consisting of the following activities [127]:

1. Identifying where to apply what refactoring(s).
2. Checking that the refactoring to apply preserves program behaviors.
3. Refactoring the code.
4. Assessing the effect of applied refactoring on software quality (e.g., complex-

ity and readability).
5. Maintaining the consistency between refactored code and other related soft-

ware artifacts, like documentation, tests, and issue tracking records.

Section 3.4.1 describes the definition of refactoring and example transfor-
mations. Section 3.4.2 describes empirical studies on refactoring. Section 3.4.3

14 Miryung Kim, Na Meng, Tianyi Zhang

describes tool support for automated refactoring. Section 3.4.4 describes sev-
eral studies of modern refactoring practices and the limitations of current refac-
toring support. Section 3.4.5 describes techniques for assessing the impact of
refactoring. Section 3.4.6 describes techniques for identifying opportunities for
refactoring.

3.4.1 Definition of Refactoring Operations. Griswold’s dissertation [61]
discusses one of the first refactoring operations that automate repetitive, error-
prone, non-local transformations. Griswold supports a number of restructuring
operations: replacing an expression with a variable that has its value, swapping
the formal parameters in a procedure’s interface and the respective arguments in
its calls, etc. It is important to note that many of these refactoring operations are
systematic in the sense that they involve repetitive non-local transformations.

Opdyke’s dissertation [145] distinguishes the notion of low-level refactorings
from high-level refactorings. High-level refactorings (i.e., composite refactorings)
reflect more complex behavior-preserving transformations while low-level refac-
torings are primitive operations such as creating, deleting, or changing a program
entity or moving a member variable. Opdyke describes three kinds of complex
refactorings in detail: (1) creating an abstract superclass, (2) subclassing and
simplifying conditionals, and (3) capturing aggregations and components. All
three refactorings are systematic in the sense that they contain multiple similar
transformations at a code level. For example, creating an abstract superclass
involves moving multiple variables and functions common to more than one
sibling classes to their common superclass. Subclassing and simplifying condi-
tionals consists of creating several classes, each of which is in charge of evaluating
a different conditional. Capturing aggregations and components usually involves
moving multiple members from a component to an aggregate object.

While refactoring is defined as behavior-preserving code transformations in
the academic literature [127], the de-facto definition of refactoring in practice
seems to be very different from such rigorous definition. Fowler catalogs 72 types
of structural changes in object oriented programs but these transformations do
not necessarily guarantee behavior preservation [10]. In fact, Fowler recommends
developers to write test code first, since these refactorings may change a pro-
gram’s behavior. Murphy-Hill et al. analyzed refactoring logs and found that
developers often interleave refactorings with other behavior-modifying trans-
formations [135], indicating that pure refactoring revisions are rare. Johnson’s
refactoring definition is aligned with these findings—refactoring improves behav-
ior in some aspects but does not necessarily preserve behavior in all aspects [84].

3.4.2 Empirical Studies of Refactoring. There are contradicting beliefs
on refactoring benefits. On one hand, some believe that refactoring improves
software quality and maintainability and a lack of refactoring incurs technical
debt to be repaid in the future in terms of increased maintenance cost [29]. On
the other hand, some believe that refactoring do not provide immediate benefits
unlike bug fixes and new features during software evolution.

Lecture Notes in Computer Science: Authors’ Instructions 15

Supporting the view that refactoring provides benefits during software evo-
lution, researchers found empirical evidence that bug fix time decreases after
refactoring and defect density decreases after refactoring. More specifically, Car-
riere et al. found that the productivity measure manifested by the average time
taken to resolve tickets decreases after re-architecting the system [31]. Ratzinger
et al. developed defect prediction models based on software evolution attributes
and found that refactoring related features and defects have an inverse correla-
tion [155]—if the number of refactorings increases in the preceding time period,
the number of defects decreases.

Supporting the opposite view that refactoring may even incur additional
bugs, researchers found that code churns are correlated with defect density and
that refactorings are correlated with bugs. More specifically, Purushothaman and
Perry found that nearly 10% of changes involved only a single line of code, which
has less than a 4% chance to result in error, while a change of 500 lines or more
has nearly a 50% chance of causing at least one defect [152]. This result may
indicate that large commits, which tend to include refactorings, have a higher
chance of inducing bugs. Weißgerber and Diehl found that refactorings often
occur together with other types of changes and that refactorings are followed
by an increasing number of bugs [198]. Kim et al. investigated the spatial and
temporal relationship between API refactorings and bug fixes using a K-revision
sliding window and by reasoning about the method-level location of refactorings
and bug fixes. They found that the number of bug fixes increases after API
refactorings [93].

One reason why refactoring could be potentially error-prone is that refac-
toring often requires coordinated edits across different parts of a system, which
could be difficult for programmers to locate all relevant locations and apply co-
ordinated edits consistently. Several researchers found such evidence from open
source project histories—Kim et.al. found the exceptions to systematic change
patterns, which often arise from the failure to complete coordinated refactor-
ings [95, 96] cause bugs. Görg and Weißgerber detect errors caused by incom-
plete refactorings by relating API-level refactorings to the corresponding class
hierarchy [59]. Nagappan and Ball found that code churn—the number of added,
deleted, and modified lines of code—is correlated with defect density [136]—since
refactoring often introduces a large amount of structural changes to the system,
some question the benefit of refactoring.

3.4.3 Automated Refactoring. The Eclipse IDE provides automatic sup-
port for a variety of refactorings, including rename, move, and extract method.
With such support, developers do not need to worry about how to check for
preconditions or postconditions before manually applying a certain refactoring.
Instead, they can simply select the refactoring command from a menu (e.g., ex-
tract method), and provide necessary information to accomplish the refactoring
(e.g., the name of a new method). The Eclipse refactoring engine takes care of
the precondition check, program transformation, and post-condition check.

16 Miryung Kim, Na Meng, Tianyi Zhang

During refactoring automation, Opdyke suggests to ensure behavior preserva-
tion by specifying refactoring preconditions [145]. For instance, when conducting
a create method function refactoring, before inserting a member function F to
a class C, developers should specify and check for five preconditions: (1) the
function is not already defined locally. (2) The signature matches that of any
inherited function with the same name. (3) The signature of corresponding func-
tions in subclasses match it. (4) If there is an inherited function with the same
name, either the inherited function is not referenced on instances of C and its
subclasses, or the new function is semantically equivalent to the function it re-
places. (5) F will compile as a member of C. If any precondition is not satisfied,
the refactoring should not be applied to the program. These five conditions in
Opdyke’s dissertation is represented using first order logic.

Clone removal refactorings factorizes the common parts of similar code by
parameterizing their differences using a strategy design pattern or a form tem-
plate method refactoring [18,74,87,106,181]. These tools insert customized calls
in each original location to use newly created methods. Juillerat et al. automate
introduce exit label and introduce return object refactorings [87]. However, for
variable and expression variations, they define extra methods to mask the dif-
ferences [18]. Hotta et al. use program dependence analysis to handle gapped
clones—trivial differences inside code clones that are safe to factor out such that
they can apply the form template method refactoring to the code [74]. Krish-
nan et al. use PDGs of two programs to identify a maximum common subgraph
so that the differences between the two programs are minimized and fewer pa-
rameters are introduced [106]. RASE is an advanced clone removal refactoring
technique that (1) extracts common code; (2) creates new types and methods
as needed; (3) parameterizes differences in types, methods, variables, and ex-
pressions; and (4) inserts return objects and exit labels based on control and
data flow by combining multiple kinds of clone removal transformations [123].
Such clone removal refactoring could lead to an increase in the total size of code
because it creates numerous simple methods.

Komondoor et al. extract methods based on the user-selected or tool-selected
statements in one method [103, 104]. The extract method refactoring in the
Eclipse IDE requires contiguous statements, whereas their approach handles
non-contiguous statements. Program dependence analysis identifies the relation
between selected and unselected statements and determines whether the non-
contiguous code can be moved together to form extractable contiguous code.
Komondoor et al. apply introduce exit label refactoring to handle exiting jumps
in selected statements [104]. Tsantalis et al. extend the techniques by requiring
developers to specify a variable of interest at a specific point only [190]. They use
a block-based slicing technique to suggest a program slice to isolate the compu-
tation of the given variable. These automated procedure extraction approaches
are focused on extracting code from a single method only. Therefore, they do
not handle extracting common code from multiple methods and resolving the
differences between them.

Lecture Notes in Computer Science: Authors’ Instructions 17

3.4.4 Real-World Refactoring Practices. Several studies investigated refac-
toring practices in industry and also examined the current challenges and risks
associated with refactoring. Kim et al. conducted a survey with professional de-
velopers at Microsoft [98, 99]. They sent a survey invitation to 1290 engineers
whose commit messages include a keyword “refactoring” in the version histories
of five MS products. 328 of them responded to the survey. More than half of the
participants said they carry out refactorings in the context of bug fixes or fea-
ture additions, and these changes are generally not semantics-preserving. When
they asked about their own definition of refactoring, 46% of participants did not
mention preservation of semantics, behavior, or functionality at all. 53% reported
that refactorings that they perform do not match the types and capability of
transformations supported by existing refactoring engines.

!"#$%&'

()#!%&' (*#+%&' ()#!%&'

"%#$%&'

(,#"%&' (!#-%&' (!#-%&'
,$#$%&'

(,#*%&'
,$#$%&'

!"
#$

%
"&

'(
)*
$+
)&,

")
-.

/&

'#
+$
01
23
$)
"&

45
"3
/&

'(
)*
$+
)&6
#)
"*
7$
+"
&

!"
%
.8
"&

9$
*$
%
")
"*
1&

6#
35#

"&
,
")
-.

/&

92
33&
,
"%

:"
*1
&

;
0&

92
1-
&,

"%
:"

*1
&

<
.=

#&

!"
03
$+
"&

>.
#1
)*
2+
).
*&
=
5)
-&

4$
+)
.*
?&
,
")
-.

/&
;
1"
&@
$1
"&
A?
0"

&
B
-"

*"
8"
*&

9.
11
5:
3"
&

!"
.*
/"

*&
9$
*$
%
")
"*
1&

Fig. 3. The percentage of survey participants who know individual refactoring types
but do those refactorings manually. [99]

In the same study, when developers are asked “what percentage of your refac-
toring is done manually as opposed to using automated refactoring tools?”, de-
velopers answered they do 86% of refactoring manually on average. Figure 3
shows the percentages of developers who usually apply individual refactoring
types manually despite the awareness of automated refactoring tool support.
Vakilian et al. [192] and Murphy et al. [134] also find that programmers do not
use automated refactoring despite their awareness of the availability of auto-
mated refactorings. Murphy-Hill manually inspected source code produced by
12 developers and found that developers only used refactoring tools for 10% of
refactorings for which tools were available [135]. For the question, “based on your
experience, what are the risks involved in refactorings?”, developers reported re-
gression bugs, code churn, merge conflicts, time taken from other tasks, the dif-
ficulty of doing code reviews after refactoring, and the risk of over-engineering.
77% think that refactoring comes with a risk of introducing subtle bugs and
functionality regression [98].

18 Miryung Kim, Na Meng, Tianyi Zhang

In a separate study of refactoring tool use, Murphy-Hill et al. gave developers
specific examples of when they did not use refactoring tools, but could have [135]
and asked why. One reason was that developers started a refactoring manually,
but only partway through realized that the change was a refactoring that the
IDE offered—by then, it was too late. Another complaint was that refactoring
tools disrupted their workflow, forcing them to use a tool when they wanted to
focus on code.

3.4.5 Quantitative Assessment of Refactoring Impact. While several
prior research efforts have conceptually advanced the benefit of refactoring through
metaphors, few empirical studies assessed refactoring impact quantitatively. Sul-
livan et al. first linked software modularity with option theories [178]. A module
provides an option to substitute it with a better one without symmetric obliga-
tions, and investing in refactoring activities can be seen as purchasing options
for future adaptability, which will produce benefits when changes happen and
the module can be replaced easily. Baldwin and Clark argued that the modu-
larization of a system can generate tremendous value in an industry, given that
this strategy creates valuable options for module improvement [20]. Ward Cun-
ningham drew the comparison between debt and a lack of refactoring: a quick
and dirty implementation leaves technical debt that incur penalties in terms
of increased maintenance costs [40]. While these projects advanced conceptual
understanding of refactoring impact, they did not quantify the benefits of refac-
toring.

Kim et al. studied how refactoring impacts inter-module dependencies and
defects using the quantitative analysis of Windows 7 version history [99]. Their
study finds the top 5% of preferentially refactored modules experience higher
reduction in the number of inter-module dependencies and several complexity
measures but increase size more than the bottom 95%. Based on the hypothesis
that measuring the impact of refactoring requires multi-dimensional assessment,
they investigated the impact of refactoring on various metrics: churn, complexity,
organization and people, cohesiveness of ownership, test coverage and defects.

MacCormack et al. defined modularity metrics and used these metrics to
study evolution of Mozilla and Linux. They found that the redesign of Mozilla
resulted in an architecture that was significantly more modular than that of its
predecessor. Their study monitored design structure changes in terms of mod-
ularity metrics without identifying the modules where refactoring changes are
made [118]. Kataoka et al. proposed a refactoring evaluation method that com-
pares software before and after refactoring in terms of coupling metrics [88].
Kolb et al. performed a case study on the design and implementation of existing
software and found that refactoring improves software with respect to maintain-
ability and reusability [102]. Moser et al. conducted a case study in an industrial,
agile environment and found that refactoring enhances quality and reusability
related metrics [131]. Tahvildari et al. suggested using a catalogue of object-
oriented metrics to estimate refactoring impact, including complexity metrics,
coupling metrics, and cohesion metrics [180].

Lecture Notes in Computer Science: Authors’ Instructions 19

3.4.6 Code Smells Detection. Fowler describes the concept of bad smell as
a heuristic for identifying redesign and refactoring opportunities [10]. Example
bad smells include code clone and feature envy. Several techniques automatically
identify bad smells that indicate needs of refactorings [187–189].

Garcia et al. propose several architecture-level bad smells [57]. Moha et
al. present the Decor tool and domain specific language (DSL) to automate
the construction of design defect detection algorithms [130].

Tsantalis and Chatzigeorgiou’s technique identifies extract method refactor-
ing opportunities using static slicing [188]. Detection of some specific bad smells
such as code duplication has also been extensively researched. Higo et al. propose
the Aries tool to identify possible refactoring candidates based on the number
of assigned variables, the number of referred variables, and dispersion in the
class hierarchy [71]. A refactoring can be suggested if the metrics for the clones
satisfy certain predefined values. Koni-N’Sapu provides refactoring suggestions
based on the location of clones with respect to a class hierarchy [105]. Balazinska
et al. suggest clone refactoring opportunities based on the differences between
the cloned methods and the context of attributes, methods, and classes contain-
ing clones [19]. Kataoka et al. use Daikon to infer program invariants at run-
time, and suggest candidate refactorings using inferred invariants [89]. If Daikon
observes that one parameter of a method is always constant, it then suggests a
remove parameter refactoring. Breakaway automatically identifies detailed struc-
tural correspondences between two abstract syntax trees to help programmers
generalize two pieces of similar code [39].

Gueheneuc et al. detect inter-class design defects [63] and Marinescu identifies
design flaws using software metrics [121]. Izurieta and Bieman detect accumu-
lation of non design-pattern related code [77]. Guo et al. define domain-specific
code smells [65] and investigate the consequence of technical debt [64]. Tsantalis
et al. rank clones that have been repetitively or simultaneously changed in the
past to suggest refactorings [191]. Wang et al. extract features from code to re-
flect program context, code smell, and evolution history, and then use a machine
learning technique to rank clones for refactorings [195].

Among the above tools, we briefly present a few concrete examples of four
design smells from Decor [130]. In XERCES, method handleIncludeElement

(XMLAttributes) of the org.apache.xerces.xinclude.XIncludeHandler class
is a typical example of Spaghetti Code—classes without structure that declare
long methods without parameters. A good example of Blob (a large controller
class that depends on data stored in surrounding data classes) is class com.-

aelitis.azureus.core.dht.control.impl. DHTControlImpl in AZUREUS. This
class declares 54 fields and 80 methods for 2,965 lines of code. Functional decom-
position may occur if developers with little knowledge of object-orientation im-
plement an object-oriented system. An interesting example of Functional Decom-
position is class org.argouml.uml.cognitive.critics.Init in ARGOUML, in
particular because the name of the class includes a suspicious term, init that sug-
gests a functional programming. The Swiss Army Knife code smell is a complex
class that offers a high number of services, (i.e., interfaces). Class org.apache.-

20 Miryung Kim, Na Meng, Tianyi Zhang

xerces.impl.dtd.DTDGrammar is a striking example of Swiss Army Knife in
XERCES, implementing four different sets of services with 71 fields and 93 meth-
ods for 1,146 lines of code.

Clio detects modularity violations based on the assumptions that multiple
types of bad smells are instances of modularity violations that can be uniformly
detected by reasoning about modularity hierarchy in conjunction with change
locations [201]. They define modularity violations as recurring discrepancies be-
tween which modules should change together and which modules actually change
together according to version histories. For example, when code clones change
frequently together, Clio will detect this problem because the co-change pattern
deviates from the designed modular structure. Second, by taking version histo-
ries as input, Clio detects violations that happened most recently and frequently,
instead of bad smells detected in a single version without regard to the program’s
evolution context. Ratzinger et al. also detect bad smells by examining change
couplings but their approach leaves it to developers to identify design violations
from visualization of change coupling [154].

3.5 Automatic Change Application

Source'to'Source'
Transformation
[Cordy 2006

Boshernitsan et'al.'2007]

Simultaneous'Editing
[Miller'and'Myers'2001]

Systematic'Editing
[Meng et'al.'2013]

Automated'Change'Application

Programming' by'
Demonstration
[Lau'et'al.'2001]

Fig. 4. Automated Change Application and Related Research Topics

Regardless of change types, various approaches are proposed to automatically
suggest program changes or reduce the manual effort of updating software. In this
section, we discuss automated change application techniques including source-
to-source program transformation, Programming by Demonstration (PbD), si-
multaneous editing, and systematic editing.

3.5.1 Source Transformation and Languages and Tools. Source trans-
formation tools allow programmers to author their change intent in a formal
syntax and automatically update a program using the change script. Most source
transformation tools automate repetitive and error-prone program updates. The
most ubiquitous and the least sophisticated approach to program transformation
is text substitution. More sophisticated systems use program structure informa-
tion. For example, A* [107] and TAWK [62] expose syntax trees and primitive

Lecture Notes in Computer Science: Authors’ Instructions 21

data structures. Stratego/XT is based on algebraic data types and term pat-
tern matching [194]. These tools are difficult to use as they require programmers
to understand low-level program representations. TXL attempts to hide these
low-level details by using an extended syntax of the underlying programming
language [35]. Boshernitsan et al.’s iXJ enables programmers to perform sys-
tematic code transformations easily by providing a visual language and a tool
for describing and prototyping source transformations. Their user study shows
that iXj’s visual language is aligned with programmers’ mental model of code
changing tasks [26]. Coccinelle [148] allows programmers to safely apply cross-
cutting updates to Linux device drivers. We describe two seminal approaches
with more details.

Example: TXL TXL is a programming language and rapid prototyping sys-
tem specifically designed to support structural source transformation. TXL’s
source transformation paradigm consists of parsing the input text into a struc-
ture tree, transforming the tree to create a new structure tree, and unparsing
the new tree to a new output text. Source text structures to be transformed are
described using an unrestricted ambiguous context free grammar in extended
Backus-Nauer (BNF) form. Source transformations are described by example,
using a set of context sensitive structural transformation rules from which an
application strategy is automatically inferred.

Each transformation rule specifies a target type to be transformed, a pattern
(an example of the particular instance of the type that we are interested in replac-
ing), and a replacement (an example of the result we want when we find such an
instance). In particular, the pattern is an actual source text example expressed
in terms of tokens (terminal symbols) and variables (non-terminal types). When
the pattern is matched, variable names are bound to the corresponding instances
of their types in the match. Transformation rules can be composed like function
compositions.

TXL programs normally consist of three parts, a context-free base grammar
for the language to be manipulated, a set of context-free grammatical overrides
(extensions or changes) to the base grammar, and a rooted set of source transfor-
mation rules to implement transformation of the extensions to the base language,
as shown in Figure 5. This TXL program overrides the grammar of statements
to allow a new statement form. The transformation rule main transforms the
new form of a statement V+=E to an old statement V:= V+(E). In other words,
if there are two statements foo+=bar and baz+=boo they will be transformed to
foo:= foo+(bar) and baz:=baz+(boo) at the source code level.

Example: iXj. iXj’s pattern language consists of a selection pattern and a
transformation action. iXj’s transformation language allows grouping of code
elements using a wild-card symbol *. Figure 6 shows an example selection pattern
and a transformation pattern.

To reduce the burden of learning the iXj pattern language syntax, iXj’s visual
editor scaffolds this process through from-example construction and iterative
refinement; When a programmer selects an example code fragment to change, iXj

22 Miryung Kim, Na Meng, Tianyi Zhang

J.R. Cordy / Science of Computer Programming 61 (2006) 190–210 191

Fig. 1. An example TXL program.

2. How TXL came to be

This paper considers the TXL language from an historical perspective, tracing from its roots in the rapid prototyping
of language dialects to its present use as a generalized source transformation system. It is not intended to explore the
formal semantic properties of the language, to comprehensively catalogue its paradigms of use, or to demonstrate its
application to real problem domains. These issues are addressed in many other papers [35,25,21,24,23,36,58].

TXL has a different heritage than most other language manipulation and transformation tools, and its goals are
different. TXL does not originate with parsing, term rewriting or attribute grammar technology—rather its heritage is
rapid prototyping and first order functional programming. It was born in the early 1980s, in a time when the study of
programming language design was an active and productive area. Experimentation with new programming languages
and features was the order of the day, and many languages, including C++, Modula 3, Eiffel, Ada, Perl, Prolog and
Miranda have their roots in that time. One such language was Turing [29].

2.1. The Turing language project

The goal of the Turing project was to design a general purpose language with excellent ease of use, lightweight
syntax and formal axiomatic semantics that was also very accessible and easy to learn. The design of Turing was
heavily influenced by the “programming as a human activity” philosophy of Gerald Weinberg’s Psychology of
Computer Programming [57]. As a result the Turing project adopted a “design by use” philosophy—when users
made errors by writing what they thought “ought to work”, we would study these errors to look for opportunities to
make the language more like what the users expected.

An example of this was the design of the substring features of the string type in Turing. Original syntax to choose
a character out of a string was simple subscripting—so for example if the string variable s has value "hello", then
s(1) chooses the character "h". Because Turing has the notion of a subrange of integers, for example 1..10, users
naturally fell into writing s(1..4) to get longer substrings, and this was the feature added to the language.

Turing uses an asterisk (*) to denote the upper bound of a parameter array (as in array 1..* of int). Users
therefore began to write s(3..*) to mean the substring from position 3 to the end of the string, s(1..*-1) to mean
the substring from the first position to the second last, s(*-1..*) to mean the substring consisting of the last two
characters, and so on. As these forms evolved, the language was modified to adapt to the users’ expectations.

This experimental style of language design proved very successful—the features of the Turing language seemed
“natural” because the users helped to design them. Users would explain what they meant by showing an equivalence—
for example, when asked what s(2..*) meant to them, they would say s(2..length(s)). This led to an example-
based understanding of meaning—a this-means-that style. Turing language proposals therefore most often consisted
of a pair drawn on the board—the syntax of an example use of the new feature on one side, and its corresponding
meaning in the syntax of the current language on the other (Fig. 2).

Fig. 5. A simple exemplar TXL file based on [8]

Selection pattern:

* expression instance of java.util.Vector (:obj).removeElement(:method)(*

expressions(:args))

Match calls to the removeElement() method where the obj expression is a
subtype of java.util.Vector.
Transformation action:
obj.remove(obj.indexOf($args$))

Replace these calls with with calls to the remove() method whose argument is
the index of an element to remove.

Fig. 6. Example iXj transformation

Lecture Notes in Computer Science: Authors’ Instructions 23

automatically generates an initial pattern from the code selection and visualizes
all code fragments matched by the initial pattern. The initial pattern is presented
in a pattern editor, and a programmer can modify it interactively and see the
corresponding matches in the editor. A programmer may edit the transformation
action and see the preview of program updates interactively.

3.5.2 Programming by Demonstration. Programming by Demonstration
is also called Programming by Example (PbE). It is an end-user development
technique for teaching a computer or a robot new behaviors by demonstrating the
task to transfer directly instead of manually programming the task. Approaches
were built to generate programs based on the text-editing actions demonstrated
or text change examples provided by users [109,111,143,200]. For instance, TELS
records editing actions such as search-and-replace, and generalizes them into a
program that transforms input to output [200]. It leverages heuristics to match
actions against each other to detect any loop in the user-demonstrated program.

SMARTedit is a representative early effort of applying PbD to text editing.
It automates repetitive text-editing tasks by learning programs to perform them
using techniques drawn from machine learning [111]. SMARTedit represents a
text-editing program as a series of functions that alter the state of the text
editor (i.e., the contents of the file, or the cursor position). Like macro recording
systems, SMARTedit learns the program by observing a user performing her task.
However, unlike macro recorders, SMARTedit examines the context in which the
user’s actions are performed and learns programs that work correctly in new
contexts. Below, we describe two seminal PBD approaches applied to software
engineering to automate repetitive program changes.

Aold to&Anew
public IActionBars getActionBars(){

+ IActionBars actionBars =
fContainer.getActionBars();

- if (fContainer == null) {
+ if (actionBars == null && !
fContainerProvided){

return
Utilities.findActionBars(fComposite
);

}
- return fContainer.getActionBars();
+ return actionBars;

Bold&to&Bnew
public IServiceLocator
getServiceLocator(){

+ IServiceLocator serviceLocator =
fContainer.getServiceLocator();

- if (fContainer == null) {
+ if (serviceLocator == null && !
fContainerProvided){

return
Utilities.findSite(fComposite);
}

- return fContainer.getServiceLocator();
+ return serviceLocator;

Fig. 7. An example of non-contiguous, abstract edits that can be applied using
LASE [125]

24 Miryung Kim, Na Meng, Tianyi Zhang

Simultaneous Editing. Simultaneous editing repetitively applies source code
changes that are interactively demonstrated by users [129]. When users apply
their edits in one program context, the tool replicates the exact lexical edits to
other code fragments, or transforms code accordingly. Linked Editing requires
users to first specify the similar code snippets which they want to modify in the
same way [185]. As users interactively edit one of these snippets, Linked Editing
simultaneously applies the identical edits to other snippets.

Systematic Editing. Systematic editing is the process of applying similar, but
not necessarily identical, program changes to multiple code locations. High-level
changes are often systematic—consisting of related transformations at a code
level. In particular, crosscutting concerns, refactoring, and API update men-
tioned in Sections 3.3, 3.2, and 3.4 are common kinds of systematic changes,
because making these changes during software evolution involves tedious effort
of locating individual change locations and applying similar but not identical
changes. Several approaches have been proposed to infer the general program
transformation from one or more code change examples provided by develop-
ers [124, 125, 164], and apply the transformation to other program contexts in
need of similar changes. Specifically, LASE requires developers to provide mul-
tiple similarly changed code examples in Java (at least two) [125]. By extracting
the commonality between demonstrated changes and abstracting the changes in
terms of identifier usage and control- or data-dependency constraints in edit con-
texts, LASE creates a general program transformation, which can both detect
code locations that should be changed similarly, and suggest customized code
changes for each candidate location. For example, in Figure 7, LASE can take
the change example on from Aold to Anew as input and apply to the code on
Bold to generate Bnew. Such change is similar but customized to the code on the
right.

4 An Organized Tour of Seminal Papers: II. Inspecting
Changes

Section 4.1 presents the brief history of software inspection and discusses emerg-
ing themes from modern code review practices. Sections 4.1.1 to 4.1.5 discuss
various methods that help developers better comprehend software changes, in-
cluding change decomposition, refactoring reconstruction, conflict and interfer-
ence detection, related change search, and inconsistent change detection. Sec-
tion 4.2 describes various program differencing techniques that serve as a basis
for analyzing software changes. Section 4.3 describes complementary techniques
that record software changes during programming sessions.

4.1 Software Inspection and Modern Code Review Practices

To improve software quality during software evolution, developers often perform
code reviews to manually examine software changes. Michael Fagan from IBM

Lecture Notes in Computer Science: Authors’ Instructions 25

AST$Diff
[Yangetal.$1991]

Program$Differencing Lexical$Diff
[Hunt$1997,$Tichy 1984]

Code$Review$Practices
[Rigbyetal.$2013

Bacchelli and$Bird$2013]

CFG$Diff
[Apiwattanapong et$al.$

2004]

PDG$Diff
[Binkleyetal.$1995]

Commercial$Review$Tools
[CodeFlow]

Conflict,$ Interferenceand
Relevance

[Perryetal.$2001]

Tool$Support$ for$Change$
Comprehension

Change$Decomposition
[Barnettetal.$2015]

Refactoring$Aware$Code$
Review

[Prete et$al.$2010]

Inconsistent$Change
[Zhangetal.$2015]

Record$Change:
CaptureandReplay

[Robbes and$Lanza 2008]

Sec$4.$Inspecting$Changes

Fig. 8. Change Inspection and Related Research Topics

first introduced “code inspections”, in a seminal paper in 1976 [54]. Code in-
spections are performed at the end of major software development phases, with
the aim of finding overlooked defects before moving to the next phase. Software
artifacts are circulated a few days in advance and then reviewed and discussed
in a series of meetings. The review meetings include the author of an artifact,
other developers to assess the artifact, and a meeting chair to moderate the
discussion, and a secretary to record the discussion. Over the years, code inspec-
tions have been proved a valuable method to improve software quality. However,
the cumbersome and time-consuming nature of this process hinders its universal
adoption in practice [83].

Fig. 9. Modern Code Review Process [24]

26 Miryung Kim, Na Meng, Tianyi Zhang

To avoid the inefficiencies in code inspections, most open-source and indus-
trial projects adopt a lightweight, flexible code review process, which we refer to
as modern code reviews. Figure 9 shows the workflow of modern code reviews.
The author first submits the original source code for review. The reviewers then
decide whether the submitted code meets the quality acceptance criteria. If not,
reviewers can annotate the source code with review comments and send back
the reviewed source code. The author then revises the code to address reviewers’
comments and send it back for further reviews. This process continues till all
reviewers accept the revised code.

In contrast to formal code inspections (Fagan style), modern code reviews
occur more regularly and informally on program changes. Rigby et al. conducted
the first case study about modern code review practices in an open-source soft-
ware (OSS), Apache HTTP server, using archived code review records in email
discussions and version control histories [160]. They described modern code re-
views as “early, frequent reviews of small, independent, complete contributions
conducted asynchronously by a potentially large, but actually small, group of
self-selected experts.” As code reviews are practiced in software projects with
different settings, cultures, and policies, Rigby and Bird further investigated code
review practices using a diverse set of open-source and industrial projects [159].
Despite differences among projects, they found that many characteristics of mod-
ern code reviews have converged to similar values, indicating general principles
of modern code review practices. We summarize these convergent code review
practices as the following.

– Modern code reviews occur early, quickly, and frequently. Traditional code
inspections happen after finishing a major software component and often last
for several weeks. In contrast, modern code reviews happen more frequently
and quickly when software changes are committed. For example, the Apache
project has review intervals between a few hours to a day. Most reviews are
picked up within a few hours among all projects, indicating that reviewers
are regularly watching and performing code reviews [159].

– Modern code reviews often examine small program changes. During code
reviews, the median size of software change varies from 11 to 32 changed
lines. The change size is larger in industrial projects, e.g, 44 lines in Android,
78 lines in Chrome, but still much smaller than code inspections, e.g., 263
lines in Lucent. Such small changes facilitate developers to constantly review
changes and thus keep up-to-date with the activities of their peers.

– Modern code reviews are conducted by a small group of self-selected review-
ers. In OSS projects, no reviews are assigned and developers can select the
changes of interest to review. Program changes and review discussions are
broadcast to a large group of stakeholders but only a small number of devel-
opers periodically participate in code reviews. In industrial projects, reviews
are assigned in a mixed manner—the author adds a group of reviewer can-
didates and individuals from the group then select changes based on their
interest and expertise. On average, two reviewers find an optimal number of
defects [159].

Lecture Notes in Computer Science: Authors’ Instructions 27

– Modern code reviews are often tool-based. There is a clear trend towards uti-
lizing review tools to support review tasks and communication. Back in 2008,
code reviews in OSS projects were often email-based due to a lack of tool sup-
port [160]. In 2013 study, some OSS projects and all industrial projects that
they studied used a review tool [159]. More recently, popular OSS hosting
services such as GitHub and BitBucket have integrated lightweight review
tools to assign reviewers, enter comments, and record discussions. Compared
with email-based reviews and traditional software inspections, tool-based re-
views provide the benefits of traceability.

– Although the initial purpose of code review is to find defects, recent studies
find that the practices and actual outcomes are less about finding defects
than expected. A study of code reviews at Microsoft found that only a small
portion of review comments were related to defects, which were mainly about
small, low-level logical issues [17]. Rather, code review provides a spectrum
of benefits to software teams, such as knowledge transfer, team awareness,
and improved solutions with better practices and readability.

4.1.1 Commercial Code Review Tools. There is a proliferation of review
tools, e.g., Phabricator,1 Gerrit,2 CodeFlow,3 Crucible,4 and Review Board.5

We illustrate CodeFlow, a collaborative code review tool at Microsoft. Other
review tools share similar functionality as CodeFlow.

To create a review task, a developer uploads changed files with a short de-
scription to CodeFlow. Reviewers are then notified via email and they can ex-
amine the software change in CodeFlow. Figure 10 shows the desktop window
of CodeFlow. It includes a list of changed files under review (A), the reviewers
and their status (B), the highlighted diff in a changed file (C), a summary of
all review comments and their status (D), and the iterations of a review (E).
If a reviewer would like to provide feedback, she can select a change and enter
a comment which is overlayed with the selected change (F). The author and
other reviewers can follow up the discussion by entering comments in the same
thread. Typically, after receiving feedback, the author may revise the change
accordingly and submit the updated change for additional feedback, which con-
stitutes another review cycle and is termed as an iteration. In Figure 10-E, there
are five iterations. CodeFlow assigns a status label to each review comment to
keep track of the progress. The initial status is “Active” and can be changed to
“Pending”, “Resolved”, “Won’t Fix”, and “Closed” by anyone. Once a reviewer
is satisfied with the updated changes, she can indicate this by setting their sta-
tus to “Signed Off”. After enough reviewers signed off—sign-off policies vary by
team—the author can commit the changes to the source repository.

1 http://phabricator.org
2 http://code.google.com/p/gerrit/
3 http://visualstudioextensions.vlasovstudio.com/2012/01/06/

codeflow-code-review-tool-for-visual-studio/
4 https://www.atlassian.com/software/crucible
5 https://www.reviewboard.org/

28 Miryung Kim, Na Meng, Tianyi Zhang

• An empirically validated automatic model for classifying
the usefulness of review comments.

• An empirical study of factors influencing review comment
usefulness.

• A set of implications and recommendations for teams
using code review to achieve a high rate of useful
comments during review.

In this paper we start (Section II) by providing a brief
overview of the code review process at Microsoft. We then
(Section III) introduce the research questions that drive the
three stages of our study. Section IV, V, and VI describes the
methodology and results for the three stages. We then address
the threats to the validity of our findings (Section VII), discuss
the implications of the results (Section VIII), and position our
work relative to prior studies on code review (Section IX).

II. CODE REVIEW AT MICROSOFT

Most Microsoft developers practice code review using
CodeFlow, an internal tool for reviewing code, which is under
active development and regularly used by more than 50,000
developers. CodeFlow is a collaborative code review tool
similar to other popular review tools such as Gerrit [11],
Phabricator [12], and ReviewBoard [13].

The single desktop view of CodeFlow (shown in Figure 1)
features several panes to display important information about
the code review. Such information includes the list the files
involved in the change (A), the reviewers and their status (B),
diff-highlighted content of the file currently selected by the
user (C), a summary of all the comments made during the
review (D), and tabs for the individual iterations (explained
below) of the review (E). Bacchelli and Bird provide a more
detailed description of CodeFlow [6].

The workflow in CodeFlow is relatively straightforward. An
author submits a change for review and reviewers are notified
via email and can examine the change in the tool. If they
would like to provide feedback, they highlight a portion of
the code and type a comment which is then overlayed in the
user interface with a line to the highlighted code as shown in
Figure 1-F and seen by all involved in the review. For example,
the comment shown is for the highlighted portions of line 66.
These comments can start threads of discussion and are the
interaction points for the people involved in the review. Each
such thread has a status that participants can modify over the
course of the review. The status is initially ‘Active’, but can be
changed to ‘Pending’, ‘Resolved’, ‘Won’t Fix’, and ‘Closed’
by anyone. There is no proscribed universal definition for each
status label and no enforced policies to enforce resolving or
closing threads of discussion. Many teams find these useful for
tracking work status and decide which labels to use and how
to use them independently. The author may take feedback
in comments, update the change, and submit the updated
change for additional feedback. In CodeFlow parlance, each
updated change submitted for review is termed an iteration
and constitutes another review cycle. It is not unusual to see
two, three, or four iterations before a change is ready to check
into the source code repository. In the review shown, there
are five iterations (indicated by the tabs labeled “1”, “2”, etc.),
with the original change in iteration 1, an updated change in

Fig. 1: Example of Code Review using CodeFlow

iteration 2, and the final change in iteration five. Reviewers
can continue to provide feedback in the form of comments on
each iteration and this process repeats until the reviewers are
happy with the change. Once a reviewer is comfortable that
a change is of sufficient quality, he or she indicates this by
setting their status to “signed off”. After enough people sign
off (sign off policies differ by team), the author checks the
changes into the source code repository.

III. RESEARCH QUESTIONS

The goal of our study is to derive insight regarding what leads
to high quality reviews in an effort to help teams understand
the impact of and change (if needed) their code reviewing
practices and behaviors so that their reviews are most effective.

We accomplish this by identifying how characteristics of
reviewers performing the review, of changes under review,
and of temporal aspects of the review, influence usefulness of
review comments.

We decompose this high level objective into three concrete
research questions.

RQ1. What are the characteristics of code review comments
that are perceived as useful by change authors?

RQ2. What methods and features are needed to automat-
ically classify review comments into useful and not
useful?

RQ3. What factors have a relationship with the density of
useful code review comments?

Each of the following three sections focuses on one research
question. We describe the study methods and findings separately
for each. These three questions represent high level steps
in our study. We first aimed to understand what constitutes
usefulness from the developer perspective (RQ1), then we used
these insights as we set out to build an automatic classifier
to distinguish between useful and not useful code review
comments (RQ2). Finally we used this classifier to classify over
one million comments that we then investigated quantitatively
to help uncover the characteristics of reviewers and their team
and the code under review that influence the usefulness of code
review comments (RQ3). Figure 2 shows an overview of our
three-stage research methodology.

147

Fig. 10. Example of Code Review using CodeFlow [27]

Commercial code review tools facilitate management of code reviews but do
not provide deep support for change comprehension. According to Bachhelli et
al. [17], understanding program changes and their contexts remains a key chal-
lenge in modern code review. Many interviewees acknowledged that it is difficult
to understand the rationale behind specific changes. All commercial review tools
show the highlighted textual, line-level diff of a changed file. However, when the
code changes are distributed across multiple files, developers find it difficult to
inspect code changes [48]. This obliges reviewers to read changed lines file by
file, even when those cross-file changes are done systematically to address the
same issue.

4.1.2 Change Decomposition. Prior studies also observe that developers of-
ten package program changes of multiple tasks to a single code review [70,90,135].
Such large, unrelated changes often lead to difficulty in inspection, since re-
viewers have to mentally “untangle” them to figure out which subset addresses
which issue. Reviewers indicated that they can better understand small, cohe-
sive changes rather than large, tangled ones [160]. For example, a code reviewer
commented on Gson revision 1154 saying “I would have preferred to have two
different commits: one for adding the new getFieldNamingPolicy method, and an-
other for allowing overriding of primitives.”6 Among change decomposition tech-
niques [21,182], we discuss a representative technique called ClusterChanges.

6 https://code.google.com/p/google-gson/source/detail?r=1154

Lecture Notes in Computer Science: Authors’ Instructions 29

ClusterChanges is a lightweight static analysis technique for decomposing
large changes [21]. The insight is that program changes that address the same
issue can be related via implicit dependency such as def-use relationship. For
example, if a method definition is changed in one location and its call-sites are
changed in two other locations, these three changes are likely to be related and
should be reviewed together. Given a code review task, ClusterChanges first
collects the set of definitions for types, fields, methods, and local variables in the
corresponding project under review. Then ClusterChanges scans the project
for all uses (i.e., references to a definition) of the defined code elements. For
instance, any occurrence of a type, field, or method either inside a method or
a field initialization is considered to be a use. Based on the extracted def-use
information, ClusterChanges identifies three relationships between program
changes.

– Def-use relation. If the definition of a method or a field is changed, all
the uses should also be updated. The change in the definition and the cor-
responding changes in its references are considered related.

– Use-use relation. If two or more uses of a method or a field defined within
the change-set are changed, these changes are considered related.

– Enclosing relation. Program changes in the same method are considered
related, under the assumption that (1) program changes to the same method
are often related, and (2) reviewers often inspect methods atomically rather
than reviewing different changed regions in the same method separately.

Given these relations, ClusterChanges creates a partition over the set of
program changes by computing a transitive closure of related changes. On the
other hand, if a change is not related to any other changes, it will be put into a
specific partition of miscellaneous changes.

4.1.3 Refactoring Aware Code Review. Identifying which refactorings
happened between two program versions is an important research problem, be-
cause inferred refactorings can help developers understand software modifica-
tions made by other developers during peer code reviews. Reconstructed refac-
torings can be used to update client applications that are broken due to refac-
torings in library components. Furthermore, they can be used to study the effect
of refactorings on software quality empirically when the documentation about
past refactorings is unavailable in software project histories.

Refactoring reconstruction techniques compare the old and new program
versions and identify corresponding entities based on their name similarity and
structure similarity [43, 44, 120, 199, 217]. Then based on how basic entities and
relations changed from one version to the next, concrete refactoring type and
locations are inferred. For example, Xing et al.’s approach [202] UMLDiff ex-
tracts class models from two versions of a program, traverses the two models,
and identifies corresponding entities based on their name similarity and struc-
ture similarity (i.e., similarity in type declaration and uses, field accesses, and

30 Miryung Kim, Na Meng, Tianyi Zhang

method calls). Xing et al. later presented an extended approach to refactor-
ing reconstruction based on change-facts queries [203]. They first extract facts
regarding design-level entities and relations from each individual source code
version. These facts are then pairwise compared to determine how the basic en-
tities and relations have changed from one version to the next. Finally, queries
corresponding to well-known refactoring types are applied to the change-facts
database to find concrete refactoring instances. Among these refactoring recon-
struction techniques, we introduce a representative example of refactoring re-
construction, called RefFinder in details [94, 151].

Fig. 11. RefFinder infers a replace conditionals with polymorphism refactoring from
change facts deleted conditional, after subtype, before method, added method and simi-
lar body. [94]

Example: RefFinder. RefFinder is a logic-query based approach for inferring
various types of refactorings in Fowler’s catalog [151]. It first encodes each refac-
toring type as a structural constraint on the program before and after the refac-
toring in a template logic rule. It then compares the syntax tree of each version to
compute change facts such as added subtype, at the level of code elements (pack-
ages, types, methods, and fields), structural dependencies (subtyping, overriding,
method-calls, and field-accesses), and control constructs (while, if-statements,
and try-catch blocks). It determines a refactoring inference order to find atomic
refactorings before composite refactorings.

For example, consider an extract superclass refactoring that extracts com-
mon functionality in different classes into a superclass. It finds each pull-up-
method refactoring and then tests if they combine to an extract superclass refac-

Lecture Notes in Computer Science: Authors’ Instructions 31

toring. For each refactoring rule, it converts the antecedent of the rule to a
logic query and invokes the query on the change-fact database. If the query
returns the constant bindings for logic variables, it creates a new logic fact
for the found refactoring instance and writes it to the fact-base. For exam-
ple, by invoking a query pull up method(?method, ?class, ?superclass) ∧
added type(?superclass), it finds a concrete instance of extract superclass
refactoring. Figure 12 illustrates an example refactoring reconstruction process.

pull up method You have methods with identical results on subclasses; move them to the superclass.
template deleted method(m1, n, t1) ∧ after subtype(t2, t1) ∧ added method(m1, n, t2) ⇒

pull up method(n, t1, t2)
logic rules pull up method(m1, t1, t2) ∧ added type(t2) ⇒ extract superclass(t1,t2)
code example +public class Customer{

+ chargeFor(start:Date, end:Date) { ... } ...}
-public class RegularCustomer{
+public class RegularCustomer extends Customer{
- chargeFor(start:Date, end:Date){ ... } ...}
+public class PreferredCustomer extends Customer{
- chargeFor(start:Date, end:Date){ ... } // deleted ... }

found pull up method(”chargeFor”, ”RegularCustomer”, ”Customer”)
refactorings pull up method(”chargeFor”, ”PreferredCustomer”, ”Customer”)

extract superclass(”RegularCustomer”, ”Customer”)
extract superclass(”PreferredCustomer”, ”Customer”)

Fig. 12. Reconstruction of Extract Superclass Refactoring

This approach has two advantages over other approaches. First, it analyzes
the body of methods including changes to the control structure within method
bodies. Thus, it can handle the detection of refactorings such as replacing condi-
tional code with polymorphism. Second, it handles composite refactorings, since
the approach reasons about which constituent refactorings must be detected first
and reason about how those constituent refactorigs are knit together to detect
higher-level, composite refactorings. It supports 63 out of 72 refactoring types in
Fowler’s catalog. As shown in Figure 11, RefFinder visualizes the reconstructed
refactorings as a list. The panel on the right summarizes the key details of the
selected refactoring and allows the developer quickly navigate to the associated
code fragments.

4.1.4 Change Conflicts, Interference, and Relevance. As development
teams become distributed, and the size of the system is often too large to be
handled by a few developers, multiple developers often work on the same module
at the same time. In addition, the market-pressure to develop new features or
products makes parallel development no longer an option. A study on a sub-
system of Lucent 5ESS telephone found that 12.5% of all changes are made by
different developers to the same files within 24 hours, showing a high degree of
parallel updates [150]. A subsequent study found that even though only 3% of
the changes made within 24 hours by different developers physically overlapped
each other’s changes at a textual level but there was a high degree of semantic

32 Miryung Kim, Na Meng, Tianyi Zhang

interference among parallel changes at a data flow analysis level (about 43%
of revisions made within one week). They also discovered a significant correla-
tion between files with a high degree of parallel development and the number of
defects [169].

Most version control systems are only able to detect most simple types of con-
flicting changes—changes made on top of other changes [126]. To detect changes
that indirectly conflict with each other, some define the notion of semantic in-
terference using program slicing on program dependence graphs, and integrate
non-interfering versions only if there is no overlap between program slices [73].
As another example, some define semantic interference as the overlap between
the data-dependence based impact sets of parallel updates [169].

4.1.5 Detecting and Preventing Inconsistent Changes to Clones. Code
cloning often requires similar but not identical changes to multiple parts of the
system [97] and cloning is an important source of bugs. In 65% of the ported
code, at least one identifier is renamed, and in 27% cases at least one state-
ment is inserted, modified, or deleted [114]. An incorrect adaptation of ported
code often leads to porting errors [82]. Interviews with developers confirm that
inconsistencies in clones are indeed bugs and report that “nearly every sec-
ond, unintentional inconsistent changes to clones lead to a fault.” [86]. Several
techniques find inconsistent changes to similar code fragments by tracking copy-
paste code and by comparing the corresponding code and its surrounding con-
texts [78, 81, 82, 114, 157]. Below, we present a representative technique, called
Critics.

Example: Critics. Critics allows reviewers to interactively detect inconsistent
changes through template-based code search and anomaly detection [215]. Given
a specified change that a reviewer would like to inspect, Critics creates a change
template from the selected change, which serves as the pattern for searching sim-
ilar changes. Critics includes change context in the template—unchanged, sur-
rounding program statements that are relevant to the selected change. Critics

models the template as Abstract Syntax Tree (AST) edits and allows review-
ers to iteratively customize the template by parameterizing its content and by
excluding certain statements. Critics then matches the customized template
against the rest of the codebase to summarize similar changes and locate po-
tential inconsistent or missing changes. Reviewers can incrementally refine the
template and progressively search for similar changes until they are satisfied
with the inspection results. This interactive feature allows reviewers with little
knowledge of a codebase to flexibly explore the program changes with a desired
pattern.

Figure 13 shows a screenshot of Critics plugin. Critics is integrated with
the Compare View in Eclipse, which displays line-level differences per file (see
¬ in Figure 13). A user can specify a program change she wants to inspect by
selecting the corresponding code region in the Eclipse Compare View. The Diff
Template View (see ­ in Figure 13) visualizes the change template of the selected

Lecture Notes in Computer Science: Authors’ Instructions 33

Fig. 13. A screen snapshot of Critics’s Eclipse plugin and its features

change in a side-by-side view. Reviewers can parameterize concrete identifiers
and exclude certain program statements by clicking on the corresponding node in
the Diff Template View. Textual Diff Template View (see ± in Figure 13) shows
the change template in a unified format. The Matching Result View summarizes
the consistent changes as similar changes (see ® in Figure 13) and inconsistent
ones as anomalies (see ¯ in Figure 13).

4.2 Program Differencing

Program differencing serves as a basis for analyzing software changes between
program versions. The program differencing problem is a dual problem of code
matching, and is defined as follows.

Suppose that a program P ′ is created by modifying P . Determine the dif-
ference ∆ between P and P ′. For a code fragment c′ ∈ P ′, determine whether
c′ ∈ ∆. If not, find c′’s corresponding origin c in P.

A code fragment in the new version either contributes to the difference or
comes from the old version. If the code fragment has a corresponding origin in the
old version, it means that it does not contribute to the difference. Thus, finding
the delta between two versions is the same problem as finding corresponding
code fragments between two versions.

Suppose that a programmer inserts if-else statements in the beginning of the
method m A and reorders several statements in the method m B without chang-
ing semantics (see Figure 14). An intuitively correct matching technique should
produce [(p0-c0), (p1-c2), (p2-c3), (p4-c4), (p4-c6), (p5-c7), (p6-c9), (p7-c8),
(p8-c10), (p9-c11)] and identify that c1 and c5 are added.

Matching code across program versions poses several challenges. First, pre-
vious studies indicate that programmers often disagree about the origin of code

34 Miryung Kim, Na Meng, Tianyi Zhang

Past Current

p0 mA (){ c0 mA (){

p1 if (pred_a) { c1 if (pred_a0) {

p2 foo() c2 if (pred_a) {

p3 } c3 foo()

p4 } c4 }

p5 mB (b) { c5 }

p6 a := 1 c6 }

p7 b := b+1 c7 mB (b) {

p8 fun (a,b) c8 b := b+1

p9 } c9 a := 1

c10 fun (a,b)

c11 }

Fig. 14. Example code change

elements; low inter-rater agreement suggests that there may be no ground truth
in code matching [100]. Second, renaming, merging, and splitting of code el-
ements that are discussed in the context of refactoring reconstruction in Sec-
tion 4.1.3 make the matching problem non-trivial. Suppose that a file PElmtMatch

changed its name to PMatching; a procedure matchBlck is split into two proce-
dures matchDBlck and matchCBlck; and a procedure matchAST changed its name to
matchAbstractSyntaxTree. The intuitively correct matching technique should pro-
duce [(PElmtMatch, PMatching), (matchBlck, matchDBlck), (matchBlck, matchCBlck),
and (matchAST, matchAbstractSyntaxTree)], while simple name-based matching
will consider PMatching, matchDBlck, matchCBlck, and matchAbstractSyntaxTree

added and consider PElmtMatch, matchBlck, and matchAST deleted.
Existing code matching techniques usually employ syntactic and textual sim-

ilarity measures to match code. They can be characterized by the choices of (1)
an underlying program representation, (2) matching granularity, (3) matching
multiplicity, and (4) matching heuristics. Below, we categorize program differenc-
ing techniques with respect to internal program representations, and we discuss
seminal papers for each representation.

4.2.1 String and Lexical Matching. When a program is represented as a
string, the best match between two strings is computed by finding the longest
common subsequence (LCS) [16]. The LCS problem is built on the assump-
tion that (1) available operations are addition and deletion, and (2) matched
pairs cannot cross one another. Thus, the longest common subsequence does not
necessarily include all possible matches when available edit operations include

Lecture Notes in Computer Science: Authors’ Instructions 35

copy, paste, and move. Tichy’s bdiff [184] extended the LCS problem by relaxing
the two assumptions above: permitting crossing block moves and not requiring
one-to-one correspondence.

The line-level LCS implementation, diff [76] is fast, reliable, and readily
available. Thus, it has served as a basis for popular version control systems such
as CVS. Many evolution analyses are based on diff because they use version
control system data as input. For example, identification of fix-inducing code
snippets is based on line tracking (file name:: function name:: line number)
backward from the moment that a bug is fixed [173]

The longest common subsequence algorithm is a dynamic programming algo-
rithm with O(mn) in time and space, when m is the line size of the past program
and the n is the line size of the current program. The goal of LCS-based diff is
to report the minimum number of line changes necessary to convert one file to
another. It consists of two phases: (1) computing the length of LCS and (2) read-
ing out the longest common subsequence using a backtrace algorithm. Applying
LCS to the example in Figure 14 will produce the line matching of [(p0-c0),
(p1-c1), (p2-c3), (p3-c5), (p4-c6), (p5-c7), (p6-c9), (p8-c10), (p9-c11)]. Due to
the assumption of no crossing matches, LCS does not find (p7-c8). In addition,
because the matching is done at the line level and LCS does not consider the
syntactic structure of code, it produces a line-level match such as (p3-c5) that
do not observe the matching block parentheses rule.

4.2.2 Syntax Tree Matching. For software version merging, Yang [207] de-
veloped an AST differencing algorithm. Given a pair of functions (fT , fR), the
algorithm creates two abstract syntax trees T and R and attempts to match
the two tree roots. Once the two roots match, the algorithm aligns T ’s sub-
trees t1, t2, ..., ti and R’s subtrees r1, r2, ...rj using the LCS algorithm and maps
subtrees recursively. This type of tree matching respects the parent-child re-
lationship as well as the order between sibling nodes, but is very sensitive to
changes in nested blocks and control structures because tree roots must be
matched for every level. Because the algorithm respects parent-child relation-
ships when matching code, all matches are observe the syntactic boundary of
code and the matching block parentheses rule. Similar to LCS, because Yang’s
algorithm aligns subtrees at the current level by LCS, it cannot find crossing
matches caused by code reordering. Furthermore, the algorithm is very sensitive
to tree level changes or insertion of new control structures in the middle, because
Yang’s algorithm performs top-down AST matching.

As another example, Change Distiller [56] uses an improved version of Chawathe
et al.’s hierarchically structured data comparison algorithm [32]. Change Distiller
takes two abstract syntax trees as input and computes basic tree edit operations
such as insert, delete, move or update of tree nodes. It uses bi-gram string sim-
ilarity to match source code statements such as method invocations and uses
subtree similarity to match source code structures such as if-statements. Af-
ter identifying tree edit operations, Change Distiller maps each tree-edit to an
atomic AST-level change type.

36 Miryung Kim, Na Meng, Tianyi Zhang

4.2.3 Control Flow Graph Matching. Laski and Szermer [110] first de-
veloped an algorithm that computes one-to-one correspondences between CFG
nodes in two programs. This algorithm reduces a CFG to a series of single-entry,
single-exit subgraphs called hammocks and matches a sequence of hammock
nodes using a depth first search (DFS). Once a pair of corresponding hammock
nodes is found, the hammock nodes are recursively expanded in order to find
correspondences within the matched hammocks.

Jdiff [14] extends Laski and Szermer’s (LS) algorithm to compare Java pro-
grams based on an enhanced control flow graph (ECFG). Jdiff is similar to the
LS algorithm in the sense that hammocks are recursively expanded and com-
pared, but is different in three ways: First, while the LS algorithm compares
hammock nodes by the name of a start node in the hammock, Jdiff checks
whether the ratio of unchanged-matched pairs in the hammock is greater than
a chosen threshold in order to allow for flexible matches. Second, while the LS
algorithm uses DFS to match hammock nodes, Jdiff only uses DFS up to a cer-
tain look-ahead depth to improve its performance. Third, while the LS algorithm
requires hammock node matches at the same nested level, Jdiff can match ham-
mock nodes at a different nested level; thus, Jdiff is more robust to addition
of while loops or if-statements at the beginning of a code segment. Jdiff has
been used for regression test selection [146] and dynamic change impact analy-
sis [15]. Figure 15 shows the code example and corresponding extended control
flow graph representations in Java. Because their representation and matching
algorithm is designed to account for dynamic dispatching and exception han-
dling, it can detect changes in the method body of m3 (A a), even though it did
not have any textual edits: (1) a.m1() calls the method definition B.m() for the
receiver object of type B and (2) when the exception type E3 is thrown, it is
caught by the catch block E1 instead of the catch block E2.

CFG-like representations are commonly used in regression test selection re-
search. Rothermel and Harrold [165] traverse two CFGs in parallel and iden-
tify a node with unmatched edges, which indicates changes in code. In other
words, their algorithm stops parallel traversal as soon as it detects changes in a
graph structure; thus, this algorithm does not produce deep structural matches
between CFGs. However, traversing graphs in parallel is still sufficient for the
regression testing problem because it conservatively identifies affected test cases.
In practice, regression test selection algorithms [68, 146] require that syntacti-
cally changed classes and interfaces are given as input to the CFG matching
algorithm.

4.2.4 Program Dependence Graph Matching. There are several program
differencing algorithms based on a program dependence graph [25,72,79].

Horwitz [72] presents a semantic differencing algorithm that operates on a
program representation graph (PRG) which combines features of program de-
pendence graphs and static single assignment forms. In her definition, semantic
equivalence between two programs P1 and P2 means that, for all states σ such
that P1 and P2 halt, the sequence of values produced at c1 is identical to the

Lecture Notes in Computer Science: Authors’ Instructions 37

Figure 3. ECFGs for D.m3 in P and P ′ (Figure 1).

and 4) because a’s dynamic type can be either A or B. Both
added nodes correspond to the same method, and thus have
the same label, because B does not override method m1.

Consider now one of the two differences between P and
P ′ in Figure 1: the redefinition of method m1 in B. Such a
change causes a possibly different behavior in P and P ′ for
the call to a.m1 in method D.m3: if the dynamic type of a
is B, the call results in an invocation of method A.m1 in P
and results in an invocation of method B.m1 in P ′.

Figure 3(b) shows how the different binding, and the pos-
sibly different behavior, is reflected in the ECFG for method
D.m3: the call edge labeled B from the call node for a.m1
(i.e., the call edge representing the binding when a’s type
is B) is now connected to a new callee node that repre-
sents method B.m1. This difference between the ECFGs
for D.m3 in P and P ′ lets our analysis determine that this
call to a.m1 may behave differently in P and P ′. Note that
a simple textual comparison would identify the addition of
the method, but it would require a manual inspection of the
code (or some further analysis) to identify the points in the
code where such change can affect the program’s behavior.

Variable and object types

When modifying a program, changing the type of a variable
may lead to changes in program behavior (e.g., changing
a long to an int). To identify these kinds of changes, in
our representation, we augment the name of scalar variables
with type information. For example, we identify a variable
a of type double as a double. This method for representing
scalar variables reflects any change in the variable type in
the locations where that variable is referenced.

Another change that may lead to subtle changes in pro-
gram behavior is the modification of class hierarchies (e.g.,
moving a class from one hierarchy to another, by changing
the class that it extends). Effects of these changes that re-
sult in different bindings in P and P ′ are captured by our

method-call representation. Other effects, however, must
be specifically addressed. To this end, instead of explic-
itly representing class hierarchies, we encode the hierar-
chy information at points where a class is used as an ar-
gument to operator instanceof , as an argument to opera-
tor cast, as a type of a newly created exception, and as the
declared type of a catch block. To encode the type infor-
mation, we use globally-qualified class names. A globally-
qualified class name for a class contains the entire inheri-
tance chain from the root of the inheritance tree (i.e., from
class java.lang.Object) to its actual type.2 The inter-
faces that are implemented by the class are also included in
globally-qualified names. If a class implements more than
one interface, the names of the interfaces are inserted in al-
phabetical order. This method reflects changes in class hi-
erarchies in the locations where the change may affect the
program behavior. For example, nodes 7 and 19 in Figure 3
show the globally-qualified name for class E3 in P and P ′,
respectively.

Exception Handling

As for dynamic binding, program modifications in the pres-
ence of exception-handling constructs can cause subtle side
effects in parts of the code that have no obvious relation to
the modifications. For example, a modification of an excep-
tion type or a catch block can cause a previously caught ex-
ception to go uncaught in the modified program, thus chang-
ing the flow of control in unforeseen ways.

To identify these changes in the program, we explicitly
model, in the ECFG, exception-handling constructs in Java
code. We represent such constructs using an approach simi-
lar to that used in Reference [3]. For each try statement, we
create a try node and an edge between the try node and the
node that represents the first statement in the try block.

We then create a catch node and a CFG to represent each
catch block of the try statement. Each catch node is labeled
with the type of the exception that is caught by the corre-
sponding catch block. An edge connects the catch node to
the entry of the CFG for the catch block.

An edge, labeled “exception”, connects the try node to
the catch node for the first catch block of the try statement.
That edge represents all control paths from the entry node
of the try block along which an exception can be propagated
to the try statement. An edge labeled “exception” connects
also the catch node for a catch block bi to the catch node for
catch block bi+1 that follows bi (if any). This edge repre-
sents all control paths from the entry node of the try block
along which an exception is (1) raised, (2) propagated to the
try statement, and (3) not handled by any of the catch blocks
that precede bi+1 in the try statement.

2For efficiency, we exclude class Object from the name, except that for
class Object itself.

Fig. 15. JDiff Change Example and CFG representations [15]

38 Miryung Kim, Na Meng, Tianyi Zhang

sequence of values produced at c2 where c1 and c2 are corresponding locations.
Horwitz uses Yang’s algorithm [208] to partition the vertices into a group of
semantically equivalent vertices based on three properties, (1) the equivalence
of their operators, (2) the equivalence of their inputs, (3) the equivalence of the
predicates controlling their evaluation. The partitioning algorithm starts with
an initial partition based on the operators used in the vertices. Then by follow-
ing flow dependence edges, it refines the initial partition if the successors of the
same group are not in the same group. Similarly, it further refines the partition
by following control dependence edges. If two vertices in the same partition are
textually different, they are considered to have only a textual change. If two
vertices are in different partitions, they have a semantic change. After the par-
titioning phase, the algorithm finds correspondences between P1’s vertices and
P2’s vertices that minimize the number of semantically or textually changed
components of P2. In general, PDG-based algorithms are not applicable to pop-
ular modern program languages because they can run only on a limited subset
of C-like languages without global variables, pointers, arrays, or procedures.

4.2.5 Related Topics: Model Differencing and Clone Detection. A
clone detector is simply an implementation of an arbitrary equivalence function.
The equivalence function defined by each clone detector depends on a program
representation and a comparison algorithm. Most clone detectors are heavily
dependent on (1) hash functions to improve performance, (2) parametrization
to allow flexible matches, and (3) thresholds to remove spurious matches. A clone
detector can be considered as a many-to-many matcher based solely on content
similarity heuristics.

In addition to these, several differencing algorithms compare model ele-
ments [47,144,177,202]. For example, UMLdiff [202] matches methods and classes
between two program versions based on their name. However, these techniques
assume that no code elements share the same name in a program and thus use
name similarity to produce one-to-one code element matches. Some have de-
veloped a general, meta-model based, configurable program differencing frame-
work [4, 167]. For example, SiDiff [167, 186] allows tool developers to configure
various matching algorithms such as identity-based matching, structure-based
matching, and signature-based matching by defining how different types of ele-
ments need to be compared and by defining the weights for computing an overall
similarity measure.

4.3 Recording Changes: Edit Capture and Replay

Recorded change operations can be used to help programmers reason about
software changes. Several editors or integrated development environment (IDE)
extensions capture and replay keystrokes, editing operations, and high-level up-
date commands to use the recorded change information for intelligent version
merging, studies of programmers’ activities, and automatic updates of client ap-
plications. When recorded change operations are used for helping programmers

Lecture Notes in Computer Science: Authors’ Instructions 39

reason about software changes, this approach’s limitation depends on the gran-
ularity of recorded changes. If an editor records only keystrokes and basic edit
operations such as cut and paste, it is a programmer’s responsibility to raise the
abstraction level by grouping keystrokes. If an IDE records only high-level change
commands such as refactorings, programmers cannot retrieve a complete change
history. In general, capturing change operations to help programmers reason
about software change is impractical as this approach constrains programmers
to use a particular IDE. Below, we discuss a few examples of recording change
operations from IDEs:

Spyware is a representative example in this line of work [161]. It is a smalltalk
IDE extension to capture AST-level change operations (creation, addition, re-
moval and property change of an AST node) as well as refactorings. It captures
refactorings during development sessions in an IDE rather than trying to infer
refactorings from two program versions. Spyware is used to study when and
how programmers perform refactorings, but such edit-capture-replay could be
used for performing refactoring-aware version merging [46] or updating client
applications due to API evolution [69].

5 An Organized Tour of Seminal Papers: III. Change
Validation

Regression)Testing
[Rothermel and)Harrold 1997])

(Chapter)on)Testing)

Debugging
[Zeller)1999]

Change)Impact)Analysis
[Ren)et)al.)2004]

Refactoring)Validation
[Overbey et)al.)2010
Alves et)al.)2017]

Sec)5.)Validating)Changes

Fig. 16. Change Validation and Related Research Topics

After making software changes, developers must validate the correctness of
updated software. Validation and verification is a vast area of research. In this
section, we focus on techniques that aim to identify faults introduced due to
software changes. As Chapter cross reference to testing discusses the history and
seminal work on regression testing in details, we refer the interested readers to
that chapter instead. Section 5.1 discusses Change Impact Analysis, which aims
to determine the impact of source code edits on programs under test. Section 5.2
discusses how to localize program changes responsible for test failures. Section 5.3
discusses the techniques that are specifically designed to validate refactoring

40 Miryung Kim, Na Meng, Tianyi Zhang

edits under the assumption that software’s external behavior should not change
after refactoring.

5.1 Change Impact Analysis

Change Impact Analysis consists of a collection of techniques for determining
the effects of source code modifications, and can improve programmer productiv-
ity by: (i) allowing programmers to experiment with different edits, observe the
code fragments that they affect, and use this information to determine which
edit to select and/or how to augment test suites, (ii) reducing the amount of
time and effort needed in running regression tests, by determining that some
tests are guaranteed not to be affected by a given set of changes, and (iii) re-
ducing the amount of time and effort spent in debugging, by determining a safe
approximation of the changes responsible for a given tests failure.

In this section, we discuss the seminal change impact analysis work, called
Chianti that serve the both purposes of affected test identification and isolation
of failure-inducing deltas. It uses a two-phase approach in Figure 17 [158].

In the first phase, to identify which test cases a developer must rerun on the
new version to ensure that all potential regression faults are identified, Chianti
takes the old and new program versions Po and Pn and an existing test suite T
as inputs, and identify a set of atomic program changes at the level of methods,
fields, and subtyping relationships. It then computes the profile of the test suite
T on Po in terms of dynamic call graphs and selects T ′ ⊂ T that guarantees the
same regression fault revealing capability between T and T ′.

In the second phase, Chianti then first runs the selected test cases T ′ from
the first phase on the new program version Pn and computes the profile of T ′

on Pn in terms of dynamic call graphs. It then uses both the atomic change set
information together with dynamic call graphs to identify which subset of the
delta between Po and Pn led to the behavior differences for each failed test on
Pn.

:w

Fig. 17. Chianti Change Impact Analysis: identifying affected tests (left) and identi-
fying affecting change (right) [158]

To represent atomic changes, Chianti compares the syntax tree of the old
and new program versions and decomposes the edits into atomic changes at a

Lecture Notes in Computer Science: Authors’ Instructions 41

method and field level. Changes are then categorized as added classes (AC),
deleted classes (DC), added methods (AM), deleted methods (DM), changed
methods (CM), added fields (AF), deleted fields (DF), and lookup (i.e., dynamic
dispatch) changes (LC). The LC atomic change category models changes to the
dynamic dispatch behavior of instance methods. In particular, an LC change
LC(Y, X.m()) models the fact that a call to method X.m() on an object of type
Y results in the selection of a different method call target.

For example, Figure 18 shows a software change example and corresponding
lists of atomic changes inferred from AST-level comparison. An arrow from an
atomic change A1 to an atomic change A2 indicates that A2 is dependent on
A1. For example, the addition of the call B.bar() in method B.foo() is the
method body change CM(B.foo()) represented as 8©. This change 8 requires the
declaration of method B.bar() to exist first, i.e., AM(B.bar()) represented as 6©.
This dependence is represented as an arrow from 6© to 8©.

Phase I reports affected tests—a subset of regression tests relevant to edits.
It identifies a test if its dynamic call graph on the old version contains a node
that corresponds to a changed method (CM) or deleted method (DM) or or if the
call graph contains an edge that corresponds to a lookup change (LC). Figure 18
also shows the dynamic call graph of each test for the old version (left) and the
new version (right). Using the call graphs on the left, it is easy to see that: (i)
test1 is not affected, (ii) test2 is affected because its call graph contains a node
for B.foo(), which corresponds to 8©, and (iii) test3 is affected because its call
graph contains an edge corresponding to a dispatch to method A.foo() on an
object of type C, which corresponds to 4©.

Phase II then reports affecting changes—a subset of changes relevant to
the execution of affected tests in the new version. For example, we can compute
the affecting changes for test2 as follows. The call graph for test2 in the edited
version of the program contains methods B.foo() and B.bar(). These nodes
correspond to 8© and 9© respectively. Atomic change 8© requires 6© and 9©
requires 6© and 7©. Therefore, the atomic changes affecting test2 are 6©, 7©, 8©,
and 9©. Informally, this means that we can automatically determine that test2

is affected by the addition of field B.y, the addition of method B.bar(), and the
change to method B.foo(), but not on any of the other source code changes.

5.2 Debugging Changes

The problem of simplifying and isolating failure-inducing input is a long standing
problem in software engineering. Delta Debugging (DD) addresses this problem
by repetitively running a program with different sub-configurations (subsets) of
the input to systematically isolate failure-inducing inputs [212, 213]. DD splits
the original input into two halves using a binary search-like strategy and re-runs
them. DD requires a test oracle function test(c) that takes an input configuration
c and checks whether running a program with c leads to a failure. If one of
the two halves fails, DD recursively applies the same procedure for only that
failure-inducing input configuration. On the other hand, if both halves pass,
DD tries different sub-configurations by mixing fine-grained sub-configurations

42 Miryung Kim, Na Meng, Tianyi Zhang

class A {
public A(){ }
public void foo(){ }
public int x;

}
class B extends A {

public B(){ }
public void foo(){ B.bar(); }
public static void bar(){ y = 17; }
public static int y;

}
class C extends A {

public C(){ }
public void foo(){ x = 18; }
public void baz(){ z = 19; }
public int z;

}

class Tests {
public static void test1(){

A a = new A();
a.foo();

}
public static void test2(){

A a = new B();
a.foo();

}
public static void test3(){

A a = new C();
a.foo();

}
}

(a)

AF

A.x

1

LC

C,C.foo()

5

LC

C,A.foo()

4

CM

C.foo()

2

AM

C.foo()

3

AM

B.bar()

CM

B.foo()

AF

B.y

CM

B.bar()

6 8

7 9

AF

C.z

10

AM

C.baz()

11

CM

C.baz()

12

LC

C,C.baz()

13

(b)

A.A()

Tests.test1()

A.A() A.foo()

Tests.test2()

B.B() B.foo()

A.A()

Tests.test3()

C.C() A.foo()

<A,A.foo()>

<B,A.foo()>

<C,A.foo()>

A.A()

Tests.test1()

A.A() A.foo()

Tests.test2()

B.B()

A.A()

Tests.test3()

C.C() C.foo()

<A,A.foo()>

<B,A.foo()>

B.foo()

B.bar()

<C,A.foo()>

(c) (d)

Figure 1: (a) Example program with 3 tests. Added code fragments are shown in boxes. (b) Atomic changes
for the example program, with their interdependences. (c) Call graphs for the tests before the changes were
applied. (d) Call graphs for the tests after the changes were applied.

435

class A {
public A(){ }
public void foo(){ }
public int x;

}
class B extends A {

public B(){ }
public void foo(){ B.bar(); }
public static void bar(){ y = 17; }
public static int y;

}
class C extends A {

public C(){ }
public void foo(){ x = 18; }
public void baz(){ z = 19; }
public int z;

}

class Tests {
public static void test1(){

A a = new A();
a.foo();

}
public static void test2(){

A a = new B();
a.foo();

}
public static void test3(){

A a = new C();
a.foo();

}
}

(a)

AF

A.x

1

LC

C,C.foo()

5

LC

C,A.foo()

4

CM

C.foo()

2

AM

C.foo()

3

AM

B.bar()

CM

B.foo()

AF

B.y

CM

B.bar()

6 8

7 9

AF

C.z

10

AM

C.baz()

11

CM

C.baz()

12

LC

C,C.baz()

13

(b)

A.A()

Tests.test1()

A.A() A.foo()

Tests.test2()

B.B() B.foo()

A.A()

Tests.test3()

C.C() A.foo()

<A,A.foo()>

<B,A.foo()>

<C,A.foo()>

A.A()

Tests.test1()

A.A() A.foo()

Tests.test2()

B.B()

A.A()

Tests.test3()

C.C() C.foo()

<A,A.foo()>

<B,A.foo()>

B.foo()

B.bar()

<C,A.foo()>

(c) (d)

Figure 1: (a) Example program with 3 tests. Added code fragments are shown in boxes. (b) Atomic changes
for the example program, with their interdependences. (c) Call graphs for the tests before the changes were
applied. (d) Call graphs for the tests after the changes were applied.

435

Fig. 18. Chianti change impact analysis

Lecture Notes in Computer Science: Authors’ Instructions 43

with larger sub-configurations (computed as the complement from the current
configuration).

Under the assumption that failure is monotone—where C is a super set of all
configurations, if a larger configuration c is successful, then any of its smaller sub-
configurations c′ does not fail, i.e., ∀c ⊂ C (test(c) = 3 → ∀c′ ⊂ c (test(c′) 6=
7)), DD returns a minimal failure-inducing configuration.

This idea of Delta Debugging was applied to isolate failure-inducing changes.
It considers all line-level changes between the old and new program version as
the candidate set without considering compilation dependences among those
changes. In Zeller’s seminal paper, “yesterday, my program worked, but today, it
does not, why?” Zeller demonstrates the application of DD to isolate program
edits responsible for regression failures [212]. DDD 3.1.2, released in December,
1998, exhibited a nasty behavioral change: When invoked with a the name of
a non-existing file, DDD 3.1.2 dumped core, while its predecessor DDD 3.1.1
simply gave an error message. The DDD configuration management archive lists
116 logical changes between the 3.1.1 and 3.1.2 releases. These changes were
split into 344 textual changes to the DDD source. After only 12 test runs and
58 minutes, the failure-inducing change was found:

diff -r1.30 -r1.30.4.1 ddd/gdbinit.C

295,296c296

<

< --- >

string classpath =

getenv("CLASSPATH") != 0 ? getenv("CLASSPATH") : ".";

string classpath = source view->class path();

When called with an argument that is not a file name, DDD 3.1.1 checks
whether it is a Java class; so DDD consults its environment for the class lookup
path. As an “improvement”, DDD 3.1.2 uses a dedicated method for this pur-
pose. Unfortunately, the source view pointer used is initialized only later, result-
ing in a core dump.

Spectra-based fault localization. Spectrum-based fault localization techniques
such as Tarantula [85] statistically compute suspiciousness scores for statements
based on execution traces of both passed and failed test cases, and rank potential
faulty statements based on the derived suspiciousness scores. Researchers have
also introduced more suspiciousness computation measures to the realm of fault
localization for localizing faulty statements [117,137] and also developed various
automated tool-sets which embodies different spectrum-based fault localization
techniques [1, 80]. However, such spectrum-based fault localization techniques
are not scalable to large evolving software systems, as they compute spectra on
all statements in each program version and do not leverage information about
program edits between the old and new versions.

To address this problem, FaultTracer [214] combines Chianti-style change
impact analysis and Tarantula-style fault localization. To present a ranked list
of potential failure-inducing edits, FaultTracer applies a set of spectrum-based

44 Miryung Kim, Na Meng, Tianyi Zhang

ranking techniques to the affecting changes determined by Chianti-style change
impact analysis. It uses a new enhanced call graph representation to measure
test spectrum information directly for field-level edits and to improve upon the
existing Chianti algorithm. The experimental results show that FaultTracer out-
performs Chianti in selecting affected tests (slightly better) as well as in de-
termining affecting changes (with an improvement of approximately 20%). By
ranking the affecting changes using spectrum-based profile, it places a real regres-
sion fault within a few atomic changes, significantly reducing developers effort
in inspecting potential failure-inducing changes.

5.3 Refactoring Validation

Unlike other types of changes, refactoring validation is a special category of
change validation. By definition, refactoring must guarantee behavior preserva-
tion and thus the old version’s behavior could be compared against the new
version’s behavior for behavior preservation. Regression testing is the most used
strategy for checking refactoring correctness. However, a recent study finds that
test suites are often inadequate [153] and developers may hesitate to initiate or
perform refactoring tasks due to inadequate test coverage [98]. Soares et al. [175]
design and implement SafeRefactor that uses randomly generated test suites for
detecting refactoring anomalies.

Formal verification is an alternative for avoiding refactoring anomalies [127].
Some propose rules for guaranteeing semantic preservation [37], use graph rewrit-
ing for specifying refactorings [128], or present a collection of refactoring speci-
fications, which guarantee the correctness by construction [147]. However, these
approaches focus on improving the correctness of automated refactoring through
formal specifications only. Assuming that developers may apply refactoring man-
ually rather, Schaeffer et al. validate refactoring edits by comparing data and
control dependences between two program versions [166].

RefDistiller is a static analysis approach [12, 13] to support the inspection
of manual refactorings. It combines two techniques. First, it applies predefined
templates to identify potential missed edits during manual refactoring. Second,
it leverages an automated refactoring engine to identify extra edits that might
be incorrect, helping to determine the root cause of detected refactoring anoma-
lies. GhostFactor [58] checks the correctness of manual refactoring, similar to
RefDistiller. Another approach by Ge and Murphy-Hill [50] helps reviewers by
identifying applied refactorings and letting developers examine them in isolation
by separating pure refactorings.

6 Future Directions and Open Problems

Software maintenance is challenging and time-consuming. Albeit various research
and existing tool support, the global cost of debugging software has risen up to
$312 billion annually [3]. The cost of software maintenance is rising dramatically
and has been estimated as more than 90% of the total cost for software [51].

Lecture Notes in Computer Science: Authors’ Instructions 45

Software evolution research still has a long future ahead, because there are still
challenges and problems that cost developers a lot of time and manual effort. In
this section, we highlight some key issues in change comprehension and sugges-
tion.

6.1 Change Comprehension

Understanding software changes made by other people is a difficult task, because
it requires not only the domain knowledge of the software under maintenance,
but also the comprehension of change intent, and the interpretation of mappings
between the program semantics of applied changes and those intent. Existing
change comprehension tools discussed in Section 4.1 and program differencing
tools discussed in Section 4.2 mainly present the textual or syntactical differences
between the before- and after- versions of software changes. Current large-scale
empirical studies on code changes discussed in Sections 3.1, 3.2, 3.3 and 3.4 also
mainly focus on textual or syntactical notion of software changes. However, there
is no tool support to automatically summarize the semantics of applied changes,
or further infer developers’ intent behind the changes.

The new advanced change comprehension tools must assist software profes-
sionals in two aspects. First, by summarizing software changes with a natural lan-
guage description, these tools must produce more meaningful commit messages
when developers check in their program changes to software version control sys-
tems (e.g., SVN, Git) to facilitate other people (e.g., colleagues and researchers)
to mine, comprehend, and analyze applied changes more precisely [70]. Second,
the generated change summary must provide a second opinion to developers of
the changes, and enable them to easily check whether the summarized change de-
scription matches their actual intent. If there is a mismatch, developers should
carefully examine the applied changes and decide whether the changes reflect
realize their original intent.

To design and implement such advanced change comprehension tools, re-
searchers must address several challenges.

1. How should we correlate changes applied in source code, configuration files,
and databases to present all relevant changes and their relationships as a
whole? For instance, how can we explain why a configuration file is changed
together with a function’s code body? How are the changes in a database
schema correspond to source code changes?

2. How should we map concrete code changes or abstract change patterns to
natural language descriptions? For instance, when complicated code changes
are applied to improve a program’s performance, how can we detect or reveal
that intent? How should we differentiate between different types of changes
when inferring change intent or producing natural language descriptions ac-
cordingly?

3. When developers apply multiple kinds of changes together, such as refactor-
ing some code to facilitate feature addition, we can we identify the boundary
between the different types of changes? How can we summarize the changes

46 Miryung Kim, Na Meng, Tianyi Zhang

in a meaningful way so that both types of changes are identified, and the
connection between them is characterized clearly?

To solve these challenges, we may need to invent new program analysis techniques
to correlate changes, new change interpretation approaches to characterize dif-
ferent types of changes, and new text mining and natural language processing
techniques to map changes to natural language descriptions.

6.2 Change Suggestion

Compared with understanding software changes, applying changes is even more
challenging, and can cause serious problems if changes are wrongly applied. Em-
pirical studies showed that 15-70% of the bug fixes applied during software main-
tenance were incorrect in their first release [171,210], which indicates a desperate
need for more sophisticated change suggestion tools. Below we discuss some of
the limitations of existing automatic tool support, and also suggest potential
future directions.

Corrective Change Suggestion. Although various bug fix and program
repair tools discussed in Section 3.1 detect different kinds of bugs or even suggest
bug fixes, the suggested fixes are usually relatively simple. They may focus on
single-line bug fixes, multiple if-condition updates, missing APIs to invoke, or
similar code changes that are likely to be applied to similar code snippets. How-
ever, no existing approach can suggest a whole missing if-statement or while-
loop, neither can they suggest bug fixes that require declaring a new method
and inserting the invocation to the new method in appropriate code locations.

Adaptive Change Suggestion.Existing adaptive change support tools dis-
cussed in Section 3.2 allow developers to migrate programs between specific
previously known platforms (e.g., desktop and cloud). However, it is not easy to
extend these tools when a new platform becomes available and people need to mi-
grate programs from existing platforms to the new one. Although cross-platform
software development tools can significantly reduce the necessity of platform-to-
platform migration tools, these tools are limited to the platforms for which they
are originally built. When a new platform becomes available, these tools will
undergo significant modifications to support the new platform. In the future, we
need extensible program migration frameworks, which will automatically infer
program migration transformations from the concrete migration changes manu-
ally applied by developers, and then apply the inferred transformations to auto-
mate other migration tasks for different target platforms. With such frameworks,
developers will not need to manually apply repetitive migration changes.

Perfective Change Suggestion. There are some programming paradigms
developed (e.g., AOP and FOP discussed in Section 3.3), which facilitate develop-
ers to apply perfective changes to enhance or extend any existing software. How-
ever, there is no tool support to automatically suggest what perfective changes
to apply and where to apply those changes. The main challenge of creating such
tools is that unlike other types of changes, perfective changes usually aim to
introduce new features instead of modifying existing features. Without any hint

Lecture Notes in Computer Science: Authors’ Instructions 47

provided by developers, it is almost impossible for any tool to predict what new
features to add to the software. However, when developers know what new fea-
tures they want to add but do not know how to implement those features, some
advanced tools can be helpful by automatically searching for relevant open source
projects, identifying relevant code implementation for the queried features, or
even providing customized change suggestion to implement the features and to
integrate the features into existing software.

Preventive Change Suggestion. Although various refactoring tools dis-
cussed in Section 3.4 can automatically refactor code, all the supported refac-
torings are limited to predefined behavior-preserving program transformations.
It is not easy to extend existing refactoring tools to automate new refactorings,
especially when the program transformation involves modifications of multiple
software entities (i.e., classes, methods, and fields). Some future tools should be
designed and implemented to facilitate the extensions of refactoring capabili-
ties. There are also some refactoring tools that suggest refactoring opportunities
based on code smells. For instance, if there are many code clones in a codebase,
existing tools can suggest a clone removal refactoring to reduce duplicated code.
In reality, nevertheless, most of the time developers apply refactorings only when
they want to apply bug fixes or add new features, which means that refactorings
are more likely to be motivated by other kinds of changes instead of code smells
and change history [172]. In the future, with the better change comprehension
tools mentioned above, we may be able to identify the trends of developers’
change intent in the past, and observe how refactorings were applied in com-
bination with other types of changes. Furthermore, with the observed trends,
new tools must be built to predict developers’ change intent in future, and then
suggest refactorings accordingly to prepare for the upcoming changes.

6.3 Change Validation

In terms of change validation discussed in Section 5, there is disproportionately
more work being done in the area of validating refactoring (i.e., preventative
changes), compared to other types of changes such as adaptive and perfective
changes. Similarly, in the absence of adequate existing tests which helped to
discover defects in the first place, it is not easy to validate whether corrective
changes are applied correctly to fix the defects.

The reason why is that, with the exception of refactoring that has a canonical,
straightforward definition of behavior preserving modifications, when it comes to
other types of software changes, it is difficult to define the updated semantics of
software systems. For example, when a developer adds a new feature, how can
we know the desired semantics of the updated software?

This problem naturally brings up the needs of having the correct specifica-
tions of updated software and having easier means to write such specifications in
the context of software changes. Therefore, new tools must be built to guide de-
velopers in writing software specifications for the changed parts of the systems.
In particular, we see a new opportunity for tool support suggests the template for
updated specifications by recognizing the type and pattern of program changes

48 Miryung Kim, Na Meng, Tianyi Zhang

to guide developers in writing updated specifications—Are there common speci-
fication patterns for each common type of software changes? Can we then suggest
which specifications to write based on common types of program modifications
such as API evolution? Such tool support must not require developers to write
specifications from scratch but rather guide developers on which specific parts of
software require new, updated specifications, which parts of software may need
additional tests, and how to leverage those written specifications effectively to
guide the remaining areas for writing better specifications. We envision that,
with such tool support for reducing the effort of writing specifications for up-
dated software, researchers can build change validation techniques that actively
leverage those specifications. Such effort will contribute to expansion of change-
type specific debugging and testing technologies.

Appendix

The following text box shows selected, recommended readings for understanding
the area of software evolution.

Lecture Notes in Computer Science: Authors’ Instructions 49

Key References:
T. Apiwattanapong, A. Orso, and M. J. Harrold. A differencing algorithm for
object-oriented programs. In ASE ’04: Proceedings of the 19th IEEE Interna-
tional Conference on Automated Software Engineering, pages 2–13, Washing-
ton, DC, USA, 2004. IEEE Computer Society.
A. Bacchelli and C. Bird. Expectations, outcomes, and challenges of modern
code review. In Proceedings of the 2013 international conference on software
engineering, pages 712–721. IEEE Press, 2013.
J. R. Cordy. The txl source transformation language. Science of Computer
Programming, 61(3):190–210, 2006.
D. R. Engler, D. Y. Chen, and A. Chou. Bugs as inconsistent behavior: A gen-
eral approach to inferring errors in systems code. In Symposium on Operating
Systems Principles, pages 57–72, 2001.
J. Henkel and A. Diwan. Catchup!: Capturing and replaying refactorings to
support api evolution. In ICSE ’05: Proceedings of the 27th International
Conference on Software Engineering, pages 274–283, New York, NY, USA,
2005. ACM.
M. Kim, T. Zimmermann, and N. Nagappan. A field study of refactoring
challenges and benefits. In Proceedings of the ACM SIGSOFT 20th Interna-
tional Symposium on the Foundations of Software Engineering, FSE ’12, pages
50:1–50:11, New York, NY, USA, 2012. ACM.
M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An empirical study of code
clone genealogies. In Proceedings of the 10th European Software Engineering
Conference Held Jointly with 13th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ESEC/FSE-13, pages 187–196, New
York, NY, USA, 2005. ACM.
K. Prete, N. Rachatasumrit, N. Sudan, and M. Kim. Template-based recon-
struction of complex refactorings. In Software Maintenance (ICSM), 2010
IEEE International Conference on, pages 1 –10. IEEE Press, September 2010.
X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley. Chianti: a tool for
change impact analysis of java programs. In OOPSLA ’04: Proceedings of the
19th annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 432–448, New York, NY, USA,
2004. ACM.
P. Tarr, H. Ossher, W. Harrison, and J. Stanley M. Sutton. N degrees of
separation: multi-dimensional separation of concerns. In ICSE ’99: Proceedings
of the 21st International Conference on Software Engineering, pages 107–119,
Los Alamitos, CA, USA, 1999. IEEE Computer Society Press.
W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest. Automatically finding
patches using genetic programming. In Proceedings of the 31st International
Conference on Software Engineering, ICSE ’09, pages 364–374, Washington,
DC, USA, 2009. IEEE Computer Society.
A. Zeller. Yesterday, my program worked. today, it does not. why? In
ESEC/FSE-7: Proceedings of the 7th European Software Engineering Con-
ference held jointly with the 7th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, pages 253–267, London, UK, 1999.
Springer-Verlag.

50 Miryung Kim, Na Meng, Tianyi Zhang

References

1. http://pleuma.cc.gatech.edu/aristotle/Tools/tarantula/index.html.
2. ASM. http://asm.ow2.org.
3. Cambridge University Study States Software Bugs Cost Economy $312 Billion Per

Year. http://markets.financialcontent.com/stocks/news/read/23147130/

Cambridge_University_Study_States_Software_Bugs_Cost_Economy_$312_

Billion_Per_Year.
4. Eclipse EMF Compare Project description: http://www.eclipse.org/emft/projects/compare.
5. Javassist. http://jboss-javassist.github.io/javassist/.
6. Pmd: http://pmd.sourceforge.net/.
7. The AspectJ Project. https://eclipse.org/aspectj/.
8. The Guided Tour of TXL. https://www.txl.ca/tour/tour1.html.
9. Software Maintenance and Computers (Ieee Computer Society Press Tutorial).

Ieee Computer Society, 1990.
10. Refactoring: Improving the Design of Existing Code. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 1999.
11. Iso/iec 14764:2006: Software engineering software life cycle processes mainte-

nance. Technical report, ISO/IEC, 2006.
12. E. L. G. Alves, M. Song, and M. Kim. Refdistiller: A refactoring aware code

review tool for inspecting manual refactoring edits. In Proceedings of the 22Nd
ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing, FSE 2014, pages 751–754, New York, NY, USA, 2014. ACM.

13. E. L. G. Alves, M. Song, T. Massoni, P. D. L. Machado, and M. Kim. Refactoring
inspection support for manual refactoring edits. IEEE Transactions on Software
Engineering, PP(99):1–1, 2017.

14. T. Apiwattanapong, A. Orso, and M. J. Harrold. A differencing algorithm for
object-oriented programs. In ASE ’04: Proceedings of the 19th IEEE International
Conference on Automated Software Engineering, pages 2–13, Washington, DC,
USA, 2004. IEEE Computer Society.

15. T. Apiwattanapong, A. Orso, and M. J. Harrold. Efficient and precise dynamic im-
pact analysis using execute-after sequences. In ICSE ’05: Proceedings of the 27th
International Conference on Software Engineering, pages 432–441, New York, NY,
USA, 2005. ACM.

16. A. Apostolico and Z. Galil, editors. Pattern matching algorithms. Oxford Uni-
versity Press, Oxford, UK, 1997. program differencing LCS.

17. A. Bacchelli and C. Bird. Expectations, outcomes, and challenges of modern
code review. In Proceedings of the 2013 international conference on software
engineering, pages 712–721. IEEE Press, 2013.

18. M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and K. Kontogiannis. Par-
tial redesign of java software systems based on clone analysis. In WCRE ’99:
Proceedings of the Sixth Working Conference on Reverse Engineering, page 326,
Washington, DC, USA, 1999. IEEE Computer Society.

19. M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and K. Kontogiannis. Advanced
clone-analysis to support object-oriented system refactoring. In Proceedings Sev-
enth Working Conference on Reverse Engineering, pages 98–107, 2000.

20. C. Y. Baldwin and K. B. Clark. Design Rules: The Power of Modularity. MIT
Press, Cambridge, MA, USA, 1999.

21. M. Barnett, C. Bird, J. Brunet, and S. K. Lahiri. Helping developers help them-
selves: Automatic decomposition of code review changesets. In Proceedings of the

Lecture Notes in Computer Science: Authors’ Instructions 51

37th International Conference on Software Engineering-Volume 1, pages 134–144.
IEEE Press, 2015.

22. D. Batory and S. O’Malley. The design and implementation of hierarchical soft-
ware systems with reusable components. ACM Trans. Softw. Eng. Methodol.,
1(4):355–398, Oct. 1992.

23. L. A. Belady and M. M. Lehman. A model of large program development. IBM
Syst. J., 15(3):225–252, Sept. 1976.

24. M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens. Modern code reviews in
open-source projects: Which problems do they fix? In Proceedings of the 11th
working conference on mining software repositories, pages 202–211. ACM, 2014.

25. D. Binkley, S. Horwitz, and T. Reps. Program integration for languages with
procedure calls. ACM Transactions on Software Engineering and Methodology,
4(1):3–35, 1995.

26. M. Boshernitsan, S. L. Graham, and M. A. Hearst. Aligning development tools
with the way programmers think about code changes. In CHI ’07: Proceedings of
the SIGCHI conference on Human factors in computing systems, pages 567–576,
New York, NY, USA, 2007. ACM.

27. A. Bosu, M. Greiler, and C. Bird. Characteristics of useful code reviews: An empir-
ical study at microsoft. In Mining Software Repositories (MSR), 2015 IEEE/ACM
12th Working Conference on, pages 146–156. IEEE, 2015.

28. S. Breu and T. Zimmermann. Mining aspects from version history. In Interna-
tional Conference on Automated Software Engineering, pages 221–230, 2006.

29. N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim, A. Mac-
Cormack, R. Nord, I. Ozkaya, R. Sangwan, C. Seaman, K. Sullivan, and N. Za-
zworka. Managing technical debt in software-reliant systems. In Proceedings of
the FSE/SDP workshop on Future of software engineering research, FoSER ’10,
pages 47–52, New York, NY, USA, 2010. ACM.

30. G. Canfora, L. Cerulo, M. Cimitile, and M. Di Penta. Social interactions around
cross-system bug fixings: the case of freebsd and openbsd. In Proceeding of the
8th working conference on Mining software repositories, MSR ’11, pages 143–152,
New York, NY, USA, 2011. ACM.

31. J. Carriere, R. Kazman, and I. Ozkaya. A cost-benefit framework for making
architectural decisions in a business context. In ICSE ’10: Proceedings of the
32nd ACM/IEEE International Conference on Software Engineering, pages 149–
157, New York, NY, USA, 2010. ACM.

32. S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom. Change detec-
tion in hierarchically structured information. In SIGMOD ’96: Proceedings of the
1996 ACM SIGMOD International Conference on Management of Data, pages
493–504, New York, NY, USA, 1996. ACM.

33. A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An empirical study of
operating systems errors. In Proceedings of the Eighteenth ACM Symposium on
Operating Systems Principles, SOSP ’01, pages 73–88, New York, NY, USA, 2001.
ACM.

34. K. Chow and D. Notkin. Semi-automatic update of applications in response to
library changes. In ICSM ’96: Proceedings of the 1996 International Conference on
Software Maintenance, page 359, Washington, DC, USA, 1996. IEEE Computer
Society.

35. J. R. Cordy. The txl source transformation language. Science of Computer Pro-
gramming, 61(3):190–210, 2006.

52 Miryung Kim, Na Meng, Tianyi Zhang

36. J. R. Cordy. Exploring large-scale system similarity. using incremental clone
detection and live scatterplots. In ICPC 2011, 19th International Conference on
Program Comprehension (to appear), 2011.

37. M. Cornélio, A. Cavalcanti, and A. Sampaio. Sound refactorings. Science of
Computer Programming, 75(3):106–133, 2010.

38. B. E. Cossette and R. J. Walker. Seeking the ground truth: A retroactive study
on the evolution and migration of software libraries. In FSE ’12 Proceedings of the
ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering, New York, NY, USA, 2012. ACM.

39. R. Cottrell, J. J. C. Chang, R. J. Walker, and J. Denzinger. Determining detailed
structural correspondence for generalization tasks. In Proceedings of the the 6th
joint meeting of the European software engineering conference and the ACM SIG-
SOFT symposium on The foundations of software engineering, ESEC-FSE ’07,
pages 165–174, New York, NY, USA, 2007. ACM.

40. W. Cunningham. The wycash portfolio management system. In OOPSLA ’92:
Addendum to the proceedings on Object-oriented programming systems, languages,
and applications (Addendum), pages 29–30, New York, NY, USA, 1992. ACM.

41. B. Dagenais, S. Breu, F. W. Warr, and M. P. Robillard. Inferring structural
patterns for concern traceability in evolving software. In ASE ’07: Proceedings of
the twenty-second IEEE/ACM International Conference on Automated Software
Engineering, pages 254–263, New York, NY, USA, 2007. ACM.

42. B. Dagenais and M. P. Robillard. Recommending adaptive changes for frame-
work evolution. In Proceedings of the 30th International Conference on Software
Engineering, ICSE ’08, pages 481–490, New York, NY, USA, 2008. ACM.

43. S. Demeyer, S. Ducasse, and O. Nierstrasz. Finding refactorings via change met-
rics. In OOPSLA ’00: Proceedings of the 15th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, pages 166–
177, New York, NY, USA, 2000. ACM.

44. D. Dig and R. Johnson. Automated detection of refactorings in evolving compo-
nents. In ECOOP ’06: Proceedings of European Conference on Object-Oriented
Programming, pages 404–428. Springer, 2006.

45. D. Dig and R. Johnson. How do apis evolve? a story of refactoring. Journal of
Software Maintenance and Evolution: Research and Practice, 18(2):83–107, 2006.

46. D. Dig, K. Manzoor, R. Johnson, and T. N. Nguyen. Refactoring-aware configu-
ration management for object-oriented programs. In Software Engineering, 2007.
ICSE 2007. 29th International Conference on, pages 427–436, 2007.

47. A. Duley, C. Spandikow, and M. Kim. Vdiff: a program differencing algorithm for
verilog hardware description language. Automated Software Engineering, 19:459–
490, 2012.

48. A. Dunsmore, M. Roper, and M. Wood. Object-oriented inspection in the face
of delocalisation. In ICSE ’00: Proceedings of the 22nd international conference
on Software engineering, pages 467–476, New York, NY, USA, 2000. ACM. code
inspection, code review, object-oriented, delocalized.

49. S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and A. Mockus. Does code
decay? assessing the evidence from change management data. IEEE Trans. Softw.
Eng., 27(1):1–12, Jan. 2001.

50. X. S. EmersonMurphy-Hill. Towards refactoring-aware code review. In CHASE’
14: 7th International Workshop on Cooperative and Human Aspects of Software
Engineering, co-located with 2014 ACM and IEEE 36th International Conference
on Software Engineering, 2014.

Lecture Notes in Computer Science: Authors’ Instructions 53

51. F. P. Engelbertink and H. H. Vogt. How to save on software maintenance costs.
Omnext white paper, 2010.

52. D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules using system-
specific, programmer-written compiler extensions. In Proceedings of the 4th Con-
ference on Symposium on Operating System Design & Implementation - Volume
4, OSDI’00, Berkeley, CA, USA, 2000. USENIX Association.

53. D. R. Engler, D. Y. Chen, and A. Chou. Bugs as inconsistent behavior: A general
approach to inferring errors in systems code. In Symposium on Operating Systems
Principles, pages 57–72, 2001.

54. M. E. Fagan. Design and code inspections to reduce errors in program develop-
ment. IBM Syst. J., 38(2-3):258–287, 1999. code inspection, checklist.

55. M. Fischer, J. Oberleitner, J. Ratzinger, and H. Gall. Mining evolution data of a
product family. In MSR ’05: Proceedings of the 2005 International Workshop on
Mining Software Repositories, pages 1–5, New York, NY, USA, 2005. ACM.

56. B. Fluri, M. Würsch, M. Pinzger, and H. C. Gall. Change distilling—tree dif-
ferencing for fine-grained source code change extraction. IEEE Transactions on
Software Engineering, 33(11):18, November 2007.

57. J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic. Identifying architec-
tural bad smells. In CSMR ’09: Proceedings of the 2009 European Conference on
Software Maintenance and Reengineering, pages 255–258, Washington, DC, USA,
2009. IEEE Computer Society.

58. X. Ge and E. Murphy-Hill. Manual refactoring changes with automated refactor-
ing validation. In Software Engineering (ICSE 2014) 36th International Confer-
ence on. IEEE, 2014.

59. C. Görg and P. Weißgerber. Error detection by refactoring reconstruction. In
MSR ’05: Proceedings of the 2005 international workshop on Mining software
repositories, pages 1–5, New York, NY, USA, 2005. ACM Press.

60. W. Griswold. Coping with crosscutting software changes using information trans-
parency. In Reflection 2001: The Third International Conference on Metalevel
Architectures and Separation of Crosscutting Concerns, pages 250–265. Springer,
2001.

61. W. G. Griswold. Program Restructuring As an Aid to Software Maintenance.
PhD thesis, Seattle, WA, USA, 1992. UMI Order No. GAX92-03258.

62. W. G. Griswold, D. C. Atkinson, and C. McCurdy. Fast, flexible syntactic pat-
tern matching and processing. In WPC ’96: Proceedings of the 4th International
Workshop on Program Comprehension, page 144, Washington, DC, USA, 1996.
IEEE Computer Society.

63. Y.-G. Guéhéneuc and H. Albin-Amiot. Using design patterns and constraints
to automate the detection and correction of inter-class design defects. In Pro-
ceedings of the 39th International Conference and Exhibition on Technology of
Object-Oriented Languages and Systems (TOOLS39), TOOLS ’01, pages 296–,
Washington, DC, USA, 2001. IEEE Computer Society.

64. Y. Guo, C. Seaman, R. Gomes, A. Cavalcanti, G. Tonin, F. Q. B. Da Silva,
A. L. M. Santos, and C. Siebra. Tracking technical debt - an exploratory case
study. In Software Maintenance (ICSM), 2011 27th IEEE International Confer-
ence on, pages 528 –531, september.

65. Y. Guo, C. Seaman, N. Zazworka, and F. Shull. Domain-specific tailoring of code
smells: an empirical study. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 2, ICSE ’10, pages 167–170, New
York, NY, USA, 2010. ACM.

54 Miryung Kim, Na Meng, Tianyi Zhang

66. M. Harman. The current state and future of search based software engineering.
In International Conference on Software Engineering, pages 342–357, 2007.

67. W. Harrison, H. Ossher, S. Sutton, and P. Tarr. Concern modeling in the concern
manipulation environment. In Proceedings of the 2005 Workshop on Modeling
and Analysis of Concerns in Software, pages 1–5. ACM Press New York, NY,
USA, 2005.

68. M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pennings, S. Sinha,
S. A. Spoon, and A. Gujarathi. Regression test selection for java software. In
OOPSLA ’01: Proceedings of the 16th ACM SIGPLAN Conference on Object
Oriented Programming, Systems, Languages, and Applications, pages 312–326,
New York, NY, USA, 2001. ACM.

69. J. Henkel and A. Diwan. Catchup!: Capturing and replaying refactorings to sup-
port api evolution. In ICSE ’05: Proceedings of the 27th International Conference
on Software Engineering, pages 274–283, New York, NY, USA, 2005. ACM.

70. K. Herzig and A. Zeller. The impact of tangled code changes. In Mining Software
Repositories (MSR), 2013 10th IEEE Working Conference on, pages 121–130.
IEEE, 2013.

71. Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. Refactoring support based on
code clone analysis. In PROFES ’04: Proceedings of 5th International Conference
on Product Focused Software Process Improvement, Kausai Science City, Japan,
April 5-8, 2004, pages 220–233, 2004.

72. S. Horwitz. Identifying the semantic and textual differences between two versions
of a program. In PLDI ’90: Proceedings of the ACM SIGPLAN 1990 conference
on Programming language design and implementation, pages 234–245, New York,
NY, USA, 1990. ACM.

73. S. Horwitz, J. Prins, and T. Reps. Integrating noninterfering versions of programs.
ACM Transactions on Programming Languages and Systems, 11(3):345–387, 1989.

74. K. Hotta, Y. Higo, and S. Kusumoto. Identifying, tailoring, and suggesting form
template method refactoring opportunities with program dependence graph. In
Software Maintenance and Reengineering (CSMR), 2012 16th European Confer-
ence on, pages 53–62. IEEE, 2012.

75. D. Hou and X. Yao. Exploring the intent behind api evolution: A case study. In
Proceedings of the 2011 18th Working Conference on Reverse Engineering, WCRE
’11, pages 131–140, Washington, DC, USA, 2011. IEEE Computer Society.

76. J. W. Hunt and T. G. Szymanski. A fast algorithm for computing longest common
subsequences. Commun. ACM, 20(5):350–353, May 1977.

77. C. Izurieta and J. M. Bieman. How software designs decay: A pilot study of
pattern evolution. In ESEM, pages 449–451, 2007.

78. P. Jablonski and D. Hou. Cren: a tool for tracking copy-and-paste code clones and
renaming identifiers consistently in the ide. In Proceedings of the 2007 OOPSLA
workshop on eclipse technology eXchange, eclipse ’07, pages 16–20, New York,
NY, USA, 2007. ACM.

79. D. Jackson and D. A. Ladd. Semantic diff: A tool for summarizing the effects of
modifications. In ICSM ’94: Proceedings of the International Conference on Soft-
ware Maintenance, pages 243–252, Washington, DC, USA, 1994. IEEE Computer
Society.

80. T. Janssen, R. Abreu, and A. Gemund. Zoltar: A toolset for automatic fault
localization. In Proc. of ASE, pages 662–664. IEEE Computer Society, 2009.

81. L. Jiang, G. Misherghi, Z. Su, and S. Glondu. Deckard: Scalable and accurate tree-
based detection of code clones. In ICSE ’07: Proceedings of the 29th International

Lecture Notes in Computer Science: Authors’ Instructions 55

Conference on Software Engineering, pages 96–105, Washington, DC, USA, 2007.
IEEE Computer Society.

82. L. Jiang, Z. Su, and E. Chiu. Context-based detection of clone-related bugs. In
ESEC-FSE ’07: Proceedings of the the 6th joint meeting of the European Software
Engineering Conference and the ACM SIGSOFT symposium on The foundations
of software engineering, pages 55–64, New York, NY, USA, 2007. ACM.

83. P. M. Johnson. Reengineering inspection. Communications of the ACM, 41(2):49–
52, 1998.

84. R. Johnson. Beyond behavior preservation. Microsoft Faculty Summit 2011,
Invited Talk, July 2011.

85. J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test information to
assist fault localization. In Proceedings of the 24th International Conference on
Software Engineering, ICSE ’02, pages 467–477, New York, NY, USA, 2002. ACM.

86. E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner. Do code clones mat-
ter? In Proceedings of the 31st International Conference on Software Engineering,
ICSE ’09, pages 485–495, Washington, DC, USA, 2009. IEEE Computer Society.

87. N. Juillerat and B. Hirsbrunner. Toward an implementation of the” form template
method” refactoring. In Source Code Analysis and Manipulation, 2007. SCAM
2007. Seventh IEEE International Working Conference on, pages 81–90. IEEE,
2007.

88. Y. Kataoka, T. Imai, H. Andou, and T. Fukaya. A quantitative evaluation of
maintainability enhancement by refactoring. In Proceedings of the International
Conference on Software Maintenance (ICSM 2002), pages 576–585. IEEE Com-
puter Society, 2002.

89. Y. Kataoka, D. Notkin, M. D. Ernst, and W. G. Griswold. Automated support
for program refactoring using invariants. In Proceedings of the IEEE Interna-
tional Conference on Software Maintenance (ICSM’01), ICSM ’01, pages 736–,
Washington, DC, USA, 2001. IEEE Computer Society.

90. D. Kawrykow and M. P. Robillard. Non-essential changes in version histories. In
Proceedings of the 33rd International Conference on Software Engineering, ICSE
’11, pages 351–360, New York, NY, USA, 2011. ACM.

91. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Gris-
wold. An overview of aspectj. In Proceedings of the 15th European Conference
on Object-Oriented Programming, ECOOP ’01, pages 327–353, London, UK, UK,
2001. Springer-Verlag.

92. D. Kim, J. Nam, J. Song, and S. Kim. Automatic patch generation learned from
human-written patches. In IEEE/ACM International Conference on Software
Engineering, 2013.

93. M. Kim, D. Cai, and S. Kim. An empirical investigation into the role of refactor-
ings during software evolution. In ICSE’ 11: Proceedings of the 2011 ACM and
IEEE 33rd International Conference on Software Engineering, 2011.

94. M. Kim, M. Gee, A. Loh, and N. Rachatasumrit. Ref-finder: a refactoring re-
construction tool based on logic query templates. In FSE ’10: Proceedings of the
eighteenth ACM SIGSOFT international symposium on Foundations of software
engineering, pages 371–372, New York, NY, USA, 2010. ACM.

95. M. Kim and D. Notkin. Discovering and representing systematic code changes. In
Proceedings of the 31st International Conference on Software Engineering, ICSE
’09, pages 309–319, Washington, DC, USA, 2009. IEEE Computer Society.

96. M. Kim, D. Notkin, and D. Grossman. Automatic inference of structural changes
for matching across program versions. In ICSE ’07: Proceedings of the 29th Inter-

56 Miryung Kim, Na Meng, Tianyi Zhang

national Conference on Software Engineering, pages 333–343, Washington, DC,
USA, 2007. IEEE Computer Society.

97. M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An empirical study of code clone
genealogies. In Proceedings of the 10th European Software Engineering Conference
Held Jointly with 13th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, ESEC/FSE-13, pages 187–196, New York, NY, USA,
2005. ACM.

98. M. Kim, T. Zimmermann, and N. Nagappan. A field study of refactoring chal-
lenges and benefits. In Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering, FSE ’12, pages 50:1–
50:11, New York, NY, USA, 2012. ACM.

99. M. Kim, T. Zimmermann, and N. Nagappan. An empirical study of refactor-
ingchallenges and benefits at microsoft. IEEE Trans. Softw. Eng., 40(7):633–649,
July 2014.

100. S. Kim, K. Pan, and J. E. James Whitehead. When functions change their names:
Automatic detection of origin relationships. In WCRE ’05: Proceedings of the
12th Working Conference on Reverse Engineering, pages 143–152, Washington,
DC, USA, 2005. IEEE Computer Society.

101. S. Kim, K. Pan, and E. E. J. Whitehead, Jr. Memories of bug fixes. In Proceedings
of the 14th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, SIGSOFT ’06/FSE-14, pages 35–45, New York, NY, USA, 2006.
ACM.

102. R. Kolb, D. Muthig, T. Patzke, and K. Yamauchi. Refactoring a legacy component
for reuse in a software product line: a case study: Practice articles. J. Softw. Maint.
Evol., 18:109–132, March 2006.

103. R. Komondoor and S. Horwitz. Semantics-preserving procedure extraction. In
POPL ’00: Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 155–169, New York, NY, USA, 2000.
ACM Press.

104. R. Komondoor and S. Horwitz. Effective, automatic procedure extraction. In
IWPC ’03: Proceedings of the 11th IEEE International Workshop on Program
Comprehension, page 33, Washington, DC, USA, 2003. IEEE Computer Society.

105. G. G. Koni-N’Sapu. A scenario based approach for refactoring duplicated code
in object-oriented systems. Master’s thesis, University of Bern, June 2001.

106. G. P. Krishnan and N. Tsantalis. Refactoring clones: An optimization problem.
ICSM, 0:360–363, 2013.

107. D. A. Ladd and J. C. Ramming. A*: A language for implementing language
processors. IEEE Transactions on Software Engineering, 21(11):894–901, 1995.

108. R. Lammel, J. Saraiva, and J. Visser, editors. Generative and Transformational
Techniques in Software Engineering IV, International Summer School, GTTSE
2011, Braga, Portugal, July 3-9, 2011. Revised Papers, volume 7680 of Lecture
Notes in Computer Science. Springer, 2013.

109. J. Landauer and M. Hirakawa. Visual awk: a model for text processing by demon-
stration. In Proceedings of the 11th International IEEE Symposium on Visual
Languages, VL ’95, pages 267–, Washington, DC, USA, 1995. IEEE Computer
Society.

110. J. Laski and W. Szermer. Identification of program modifications and its ap-
plications in software maintenance. In ICSM 1992: Proceedings of International
Conference on Software Maintenance, 1992.

Lecture Notes in Computer Science: Authors’ Instructions 57

111. T. Lau, S. A. Wolfman, P. Domingos, and D. S. Weld. Learning repetitive text-
editing procedures with SMARTedit, pages 209–226. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2001.

112. C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer. A systematic study of
automated program repair: Fixing 55 out of 105 bugs for $8 each. In International
Conference on Software Engineering, pages 3–13, 2012.

113. M. M. Lehman. On understanding laws, evolution, and conservation in the large-
program life cycle. J. Syst. Softw., 1:213–221, Sept. 1984.

114. Z. Li, S. Lu, S. Myagmar, and Y. Zhou. Cp-miner: a tool for finding copy-paste
and related bugs in operating system code. In Proceedings of the 6th conference on
Symposium on Opearting Systems Design & Implementation - Volume 6, OSDI’04,
pages 20–20, Berkeley, CA, USA, 2004. USENIX Association.

115. Z. Li, S. Lu, S. Myagmar, and Y. Zhou. Cp-miner: finding copy-paste and related
bugs in large-scale software code. IEEE Transactions on Software Engineering,
32(3):176–192, March 2006.

116. Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai. Have things changed now?:
An empirical study of bug characteristics in modern open source software. In Pro-
ceedings of the 1st Workshop on Architectural and System Support for Improving
Software Dependability, ASID ’06, pages 25–33, New York, NY, USA, 2006. ACM.

117. D. Lo, L. Jiang, A. Budi, et al. Comprehensive evaluation of association measures
for fault localization. In ICSM, pages 1–10. IEEE, 2010.

118. A. MacCormack, J. Rusnak, and C. Y. Baldwin. Exploring the structure of
complex software designs: An empirical study of open source and proprietary
code. Management Science, 52(7):1015–1030, 2006.

119. N. H. Madhavji, F. J. C. Ramil, and D. E. Perry. Software evolution and feedback:
theory and practice. Hoboken, NJ: John Wiley & Sons, 2006.

120. G. Malpohl, J. J. Hunt, and W. F. Tichy. Renaming detection. Automated
Software Engineering, 10(2):183–202, 2000.

121. R. Marinescu. Detection strategies: Metrics-based rules for detecting design flaws.
In Proceedings of the 20th IEEE International Conference on Software Mainte-
nance, pages 350–359, Washington, DC, USA, 2004. IEEE Computer Society.

122. T. McDonnell, B. Ray, and M. Kim. An empirical study of api stability and
adoption in the android ecosystem. In Software Maintenance (ICSM), 2013 29th
IEEE International Conference on, pages 70–79, 2013.

123. N. Meng, L. Hua, M. Kim, and K. S. McKinley. Does automated refactoring
obviate systematic editing? In Proceedings of the 37th International Conference
on Software Engineering - Volume 1, ICSE ’15, pages 392–402, Piscataway, NJ,
USA, 2015. IEEE Press.

124. N. Meng, M. Kim, and K. S. McKinley. Systematic editing: generating program
transformations from an example. In Proceedings of the 32nd ACM SIGPLAN
conference on Programming language design and implementation, PLDI ’11, pages
329–342, New York, NY, USA, 2011. ACM.

125. N. Meng, M. Kim, and K. S. McKinley. Lase: locating and applying systematic
edits by learning from examples. In Proceedings of the 2013 International Con-
ference on Software Engineering, ICSE ’13, pages 502–511, Piscataway, NJ, USA,
2013. IEEE Press.

126. T. Mens. A state-of-the-art survey on software merging. IEEE Transactions on
Software Engineering, 28(5):449–462, 2002.

127. T. Mens and T. Tourwé. A survey of software refactoring. IEEE Trans. Softw.
Eng., 30(2):126–139, Feb. 2004.

58 Miryung Kim, Na Meng, Tianyi Zhang

128. T. Mens, N. Van Eetvelde, S. Demeyer, and D. Janssens. Formalizing refactorings
with graph transformations. Journal of Software Maintenance and Evolution:
Research and Practice, 17(4):247–276, 2005.

129. R. C. Miller and B. A. Myers. Interactive simultaneous editing of multiple text
regions. In Proceedings of the General Track: 2002 USENIX Annual Technical
Conference, pages 161–174, Berkeley, CA, USA, 2001. USENIX Association.

130. N. Moha, Y.-G. Guhneuc, A.-F. L. Meur, and L. Duchien. A domain analysis to
specify design defects and generate detection algorithms. In J. L. Fiadeiro and
P. Inverardi, editors, FASE, volume 4961 of Lecture Notes in Computer Science,
pages 276–291. Springer, 2008.

131. R. Moser, A. Sillitti, P. Abrahamsson, and G. Succi. Does refactoring improve
reusability? In ICSR, pages 287–297, 2006.

132. M. Mossienko. Automated Cobol to Java recycling. In Seventh European Con-
ference onSoftware Maintenance and Reengineering, 2003. Proceedings., 2003.

133. S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kauf-
mann Publishers Inc., 1997.

134. G. C. Murphy, M. Kersten, and L. Findlater. How are Java software developers
using the eclipse IDE? volume 23, pages 76–83, Los Alamitos, CA, USA, July
2006. IEEE Computer Society Press.

135. E. Murphy-Hill, C. Parnin, and A. P. Black. How we refactor, and how we know
it. IEEE Transactions on Software Engineering, 38(1):5–18, Jan 2012.

136. N. Nagappan and T. Ball. Use of relative code churn measures to predict system
defect density. In ICSE ’05: Proceedings of the 27th International Conference on
Software Engineering, pages 284–292. ACM, 2005.

137. L. Naish, H. Lee, and K. Ramamohanarao. A model for spectra-based software
diagnosis. ACM TOSEM, 20(3):11, 2011.

138. A. T. Nguyen, H. A. Nguyen, T. T. Nguyen, and T. N. Nguyen. Statistical learning
approach for mining api usage mappings for code migration. In Proceedings of
the 29th ACM/IEEE international conference on Automated software engineering,
pages 457–468. ACM, 2014.

139. A. T. Nguyen, T. T. Nguyen, and T. N. Nguyen. Divide-and-conquer approach
for multi-phase statistical migration for source code (t). In 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE), 2015.

140. H. A. Nguyen, T. T. Nguyen, G. Wilson, Jr., A. T. Nguyen, M. Kim, and T. N.
Nguyen. A graph-based approach to api usage adaptation. In Proceedings of the
ACM International Conference on Object Oriented Programming Systems Lan-
guages and Applications, OOPSLA ’10, pages 302–321, New York, NY, USA,
2010. ACM.

141. T. D. Nguyen, A. T. Nguyen, H. D. Phan, and T. N. Nguyen. Exploring api em-
bedding for api usages and applications. In Proceedings of the 39th International
Conference on Software Engineering, ICSE ’17, pages 438–449, Piscataway, NJ,
USA, 2017. IEEE Press.

142. T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N. Nguyen.
Graph-based mining of multiple object usage patterns. In ESEC/FSE ’09: Pro-
ceedings of the the 7th joint meeting of the European software engineering con-
ference and the ACM SIGSOFT symposium on The foundations of software en-
gineering, pages 383–392, New York, NY, USA, 2009. ACM.

143. R. Nix. Editing by example. In Proceedings of the 11th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, POPL ’84, pages 186–195,
New York, NY, USA, 1984. ACM.

Lecture Notes in Computer Science: Authors’ Instructions 59

144. D. Ohst, M. Welle, and U. Kelter. Difference tools for analysis and design doc-
uments. In ICSM ’03, page 13, Washington, DC, USA, 2003. IEEE Computer
Society.

145. W. F. Opdyke. Refactoring Object-oriented Frameworks. PhD thesis, Champaign,
IL, USA, 1992. UMI Order No. GAX93-05645.

146. A. Orso, N. Shi, and M. J. Harrold. Scaling regression testing to large soft-
ware systems. In SIGSOFT ’04/FSE-12: Proceedings of the 12th ACM SIGSOFT
twelfth International Symposium on Foundations of Software Engineering, pages
241–251, New York, NY, USA, 2004. ACM.

147. J. L. Overbey, M. J. Fotzler, A. J. Kasza, and R. E. Johnson. A collection
of refactoring specifications for fortran 95. In ACM SIGPLAN Fortran Forum,
volume 29, pages 11–25. ACM, 2010.

148. Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller. Documenting and automat-
ing collateral evolutions in linux device drivers. In Proceedings of the 3rd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2008, Eurosys ’08,
pages 247–260, New York, NY, USA, 2008. ACM.

149. Y. Padioleau, J. L. Lawall, and G. Muller. Understanding collateral evolution in
linux device drivers. In Proceedings of the 1st ACM SIGOPS/EuroSys European
Conference on Computer Systems 2006, EuroSys ’06, pages 59–71, New York,
NY, USA, 2006. ACM.

150. D. E. Perry, H. P. Siy, and L. G. Votta. Parallel changes in large-scale software
development: an observational case study. ACM Trans. Softw. Eng. Methodol.,
10(3):308–337, 2001.

151. K. Prete, N. Rachatasumrit, N. Sudan, and M. Kim. Template-based recon-
struction of complex refactorings. In Software Maintenance (ICSM), 2010 IEEE
International Conference on, pages 1 –10. IEEE Press, September 2010.

152. R. Purushothaman and D. E. Perry. Toward understanding the rhetoric of small
source code changes. IEEE Transactions on Software Engineering, 31(6):511–526,
2005.

153. N. Rachatasumrit and M. Kim. An empirical investigation into the impact of
refactoring on regression testing. In ICSM ’12: the 28th IEEE International Con-
ference on Software Maintenance, page 10. IEEE Society, 2012.

154. J. Ratzinger, M. Fischer, and H. Gall. Improving evolvability through refactoring.
In Proc. 2nd, pages 1–5, May 2005.

155. J. Ratzinger, T. Sigmund, and H. C. Gall. On the relation of refactorings and
software defect prediction. In MSR ’08: Proceedings of the 2008 international
working conference on Mining software repositories, pages 35–38, New York, NY,
USA, 2008. ACM.

156. B. Ray and M. Kim. A case study of cross-system porting in forked projects. In
Proceedings of the ACM SIGSOFT 20th International Symposium on the Founda-
tions of Software Engineering, FSE ’12, pages 53:1–53:11, New York, NY, USA,
2012. ACM.

157. B. Ray, M. Kim, S. Person, and N. Rungta. Detecting and characterizing semantic
inconsistencies in ported code. In Automated Software Engineering (ASE), 2013
IEEE/ACM 28th International Conference on, pages 367–377, Nov 2013.

158. X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley. Chianti: a tool for
change impact analysis of java programs. In OOPSLA ’04: Proceedings of the 19th
annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 432–448, New York, NY, USA, 2004. ACM.

60 Miryung Kim, Na Meng, Tianyi Zhang

159. P. C. Rigby and C. Bird. Convergent contemporary software peer review prac-
tices. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, pages 202–212. ACM, 2013.

160. P. C. Rigby, D. M. German, and M.-A. Storey. Open source software peer review
practices: a case study of the apache server. In ICSE ’08: Proceedings of the 30th
international conference on Software engineering, pages 541–550, New York, NY,
USA, 2008. ACM.

161. R. Robbes and M. Lanza. Spyware: a change-aware development toolset. In ICSE
’08: Proceedings of the 30th international conference on Software engineering,
pages 847–850, New York, NY, USA, 2008. ACM.

162. R. Robbes, M. Lungu, and D. Röthlisberger. How do developers react to api dep-
recation?: the case of a smalltalk ecosystem. In Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software Engineering, FSE
’12, pages 56:1–56:11, New York, NY, USA, 2012. ACM.

163. M. P. Robillard and G. C. Murphy. Feat: a tool for locating, describing, and
analyzing concerns in source code. In ICSE ’03: Proceedings of the 25th Inter-
national Conference on Software Engineering, pages 822–823, Washington, DC,
USA, 2003. IEEE Computer Society.

164. R. Rolim, G. Soares, L. D’Antoni, O. Polozov, S. Gulwani, R. Gheyi, R. Suzuki,
and B. Hartmann. Learning syntactic program transformations from examples. In
Proceedings of the 39th International Conference on Software Engineering, ICSE
’17, pages 404–415, Piscataway, NJ, USA, 2017. IEEE Press.

165. G. Rothermel and M. J. Harrold. A safe, efficient regression test selection tech-
nique. ACM Trans. Softw. Eng. Methodol., 6(2):173–210, 1997.

166. M. Schaefer and O. de Moor. Specifying and implementing refactorings. In
Proceedings of the ACM international conference on Object oriented programming
systems languages and applications, OOPSLA ’10, pages 286–301, New York, NY,
USA, 2010. ACM.

167. M. Schmidt and T. Gloetzner. Constructing difference tools for models using the
sidiff framework. In ICSE Companion ’08: Companion of the 30th international
conference on Software engineering, pages 947–948, New York, NY, USA, 2008.
ACM.

168. C. B. Seaman. Software maintenance: Concepts and practice. J. Softw. Maint.
Evol., 20(6):463–466, Nov. 2008.

169. D. Shao, S. Khurshid, and D. Perry. Evaluation of semantic interference detection
in parallel changes: an exploratory experiment. In Software Maintenance, 2007.
ICSM 2007. IEEE International Conference on, pages 74–83, Oct. 2007.

170. D. Shepherd, Z. P. Fry, E. Hill, L. Pollock, and K. Vijay-Shanker. Using natural
language program analysis to locate and understand action-oriented concerns. In
AOSD ’07: Proceedings of the 6th International Conference on Aspect-Oriented
Software Development, pages 212–224, New York, NY, USA, 2007. ACM.

171. S. Sidiroglou, S. Ioannidis, and A. D. Keromytis. Band-aid patching. In Proceed-
ings of the 3rd Workshop on on Hot Topics in System Dependability, HotDep’07,
Berkeley, CA, USA, 2007. USENIX Association.

172. D. Silva, N. Tsantalis, and M. T. Valente. Why we refactor? confessions of github
contributors. In Proceedings of the 2016 24th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, FSE 2016, pages 858–870, New
York, NY, USA, 2016. ACM.

173. J. Śliwerski, T. Zimmermann, and A. Zeller. When do changes induce fixes? In
Proceedings of the 2005 international workshop on Mining software repositories,
MSR ’05, pages 1–5, New York, NY, USA, 2005. ACM.

Lecture Notes in Computer Science: Authors’ Instructions 61

174. H. M. Sneed. Migrating from COBOL to Java. In Proceedings of the 2010 IEEE
International Conference on Software Maintenance, 2010.

175. G. Soares. Making program refactoring safer. In Proceedings of the 32Nd
ACM/IEEE International Conference on Software Engineering - Volume 2, ICSE
’10, pages 521–522, 2010.

176. S. Son, K. S. McKinley, and V. Shmatikov. Fix me up: Repairing access-control
bugs in web applications. In NDSS, 2013.

177. M. Soto and J. Münch. Process model difference analysis for supporting pro-
cess evolution. Lecture Notes in Computer Science, Springer Berlin, Volume
4257/2006:123–134, 2006.

178. K. Sullivan, P. Chalasani, and V. Sazawal. Software design as an investment
activity: A real options perspective. Technical report, 1998.

179. E. B. Swanson. The dimensions of maintenance. In Proceedings of the 2Nd
International Conference on Software Engineering, ICSE ’76, pages 492–497, Los
Alamitos, CA, USA, 1976. IEEE Computer Society Press.

180. L. Tahvildari and K. Kontogiannis. A metric-based approach to enhance design
quality through meta-pattern transformations. In Proceedings of the Seventh Eu-
ropean Conference on Software Maintenance and Reengineering, CSMR ’03, pages
183–, Washington, DC, USA, 2003. IEEE Computer Society.

181. R. Tairas and J. Gray. Increasing clone maintenance support by unifying
clone detection and refactoring activities. Information and Software Technology,
54(12):1297–1307, 2012.

182. Y. Tao and S. Kim. Partitioning composite code changes to facilitate code re-
view. In Mining Software Repositories (MSR), 2015 IEEE/ACM 12th Working
Conference on, pages 180–190. IEEE, 2015.

183. P. Tarr, H. Ossher, W. Harrison, and J. Stanley M. Sutton. N degrees of sep-
aration: multi-dimensional separation of concerns. In ICSE ’99: Proceedings of
the 21st International Conference on Software Engineering, pages 107–119, Los
Alamitos, CA, USA, 1999. IEEE Computer Society Press.

184. W. F. Tichy. The string-to-string correction problem with block moves. ACM
Transactions on Computer Systems, 2(4):309–321, 1984.

185. M. Toomim, A. Begel, and S. L. Graham. Managing duplicated code with linked
editing. In VLHCC ’04: Proceedings of the 2004 IEEE Symposium on Visual
Languages - Human Centric Computing, pages 173–180, Washington, DC, USA,
2004. IEEE Computer Society.

186. C. Treude, S. Berlik, S. Wenzel, and U. Kelter. Difference computation of large
models. In Proceedings of the the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The foundations
of software engineering, ESEC-FSE ’07, pages 295–304, New York, NY, USA,
2007. ACM.

187. N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou. Jdeodorant: Identification
and removal of type-checking bad smells. In CSMR ’08: Proceedings of the 2008
12th European Conference on Software Maintenance and Reengineering, pages
329–331, Washington, DC, USA, 2008. IEEE Computer Society.

188. N. Tsantalis and A. Chatzigeorgiou. Identification of extract method refactoring
opportunities. In CSMR ’09: Proceedings of the 2009 European Conference on
Software Maintenance and Reengineering, pages 119–128, Washington, DC, USA,
2009. IEEE Computer Society.

189. N. Tsantalis and A. Chatzigeorgiou. Identification of move method refactoring
opportunities. IEEE Trans. Softw. Eng., 35(3):347–367, 2009.

62 Miryung Kim, Na Meng, Tianyi Zhang

190. N. Tsantalis and A. Chatzigeorgiou. Identification of extract method refactoring
opportunities for the decomposition of methods. Journal of Systems and Software,
84(10):1757–1782, 2011.

191. N. Tsantalis and A. Chatzigeorgiou. Ranking refactoring suggestions based on
historical volatility. In 2011 15th European Conference on Software Maintenance
and Reengineering, pages 25–34, March 2011.

192. M. Vakilian, N. Chen, S. Negara, B. A. Rajkumar, B. P. Bailey, and R. E. Johnson.
Use, disuse, and misuse of automated refactorings. In 2012 34th International
Conference on Software Engineering (ICSE), pages 233–243, June 2012.

193. R. van Engelen. On the use of clone detection for identifying crosscutting concern
code. IEEE Transactions on Software Engineering, 31(10):804–818, 2005. Stu-
dent Member-Magiel Bruntink and Member-Arie van Deursen and Member-Tom
Tourwe.

194. E. Visser. Program transformation with Stratego/XT: Rules, strategies, tools, and
systems in StrategoXT-0.9. Domain-Specific Program Generation, 3016:216–238,
2004.

195. W. Wang and M. W. Godfrey. Recommending clones for refactoring using de-
sign, context, and history. In 2014 IEEE International Conference on Software
Maintenance and Evolution, pages 331–340, Sept 2014.

196. Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buchholz, B. Meyer, and A. Zeller.
Automated fixing of programs with contracts. In Proceedings of the 19th interna-
tional symposium on Software testing and analysis, ISSTA ’10, pages 61–72, New
York, NY, USA, 2010. ACM.

197. W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest. Automatically finding
patches using genetic programming. In Proceedings of the 31st International
Conference on Software Engineering, ICSE ’09, pages 364–374, Washington, DC,
USA, 2009. IEEE Computer Society.

198. P. Weißgerber and S. Diehl. Are refactorings less error-prone than other changes?
In MSR ’06: Proceedings of the 2006 international workshop on Mining software
repositories, pages 112–118, New York, NY, USA, 2006. ACM.

199. P. Weißgerber and S. Diehl. Identifying refactorings from source-code changes.
In ASE ’06: Proceedings of the 21st IEEE/ACM International Conference on
Automated Software Engineering, pages 231–240, Washington, DC, USA, 2006.
IEEE Computer Society.

200. Wikipedia. Comparison of bsd operating systems — Wikipedia, the free encyclo-
pedia, 2012.

201. S. Wong, Y. Cai, M. Kim, and M. Dalton. Detecting software modularity viola-
tions. In ICSE’ 11: Proceedings of the 2011 ACM and IEEE 33rd International
Conference on Software Engineering, 2011.

202. Z. Xing and E. Stroulia. UMLDiff: an algorithm for object-oriented design dif-
ferencing. In ASE ’05: Proceedings of the 20th IEEE/ACM International Con-
ference on Automated Software Engineering, pages 54–65, New York, NY, USA,
2005. ACM.

203. Z. Xing and E. Stroulia. Refactoring detection based on umldiff change-facts
queries. In WCRE ’06: Proceedings of the 13th Working Conference on Reverse
Engineering, pages 263–274, Washington, DC, USA, 2006. IEEE Computer Soci-
ety.

204. Z. Xing and E. Stroulia. Refactoring practice: How it is and how it should be
supported - an eclipse case study. In ICSM ’06: Proceedings of the 22nd IEEE
International Conference on Software Maintenance, pages 458–468, Washington,
DC, USA, 2006. IEEE Computer Society.

Lecture Notes in Computer Science: Authors’ Instructions 63

205. Z. Xing and E. Stroulia. Api-evolution support with diff-catchup. IEEE Trans.
Softw. Eng., 33(12):818–836, 2007.

206. T. Yamamoto, M. Matsushita, T. Kamiya, and K. Inoue. Measuring similarity
of large software systems based on source code correspondence. In Proceedings of
2005 Product Focused Software Process Improvement, pages 530–544, 2005.

207. W. Yang. Identifying syntactic differences between two programs. Software –
Practice & Experience, 21(7):739–755, 1991.

208. W. Yang, S. Horwitz, and T. Reps. Detecting program components with equiva-
lent behaviors. Technical Report CS-TR-1989-840, University of Wisconsin, Madi-
son, 1989.

209. K. Yasumatsu and N. Doi. SPiCE: a system for translating Smalltalk programs
into a C environment. IEEE Transactions on Software Engineering, 1995.

210. Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and L. Bairavasundaram. How do fixes
become bugs? In Proceedings of the 19th ACM SIGSOFT Symposium and the
13th European Conference on Foundations of Software Engineering, ESEC/FSE
’11, pages 26–36, New York, NY, USA, 2011. ACM.

211. R. Yokomori, H. P. Siy, M. Noro, and K. Inoue. Assessing the impact of framework
changes using component ranking. In ICSM, pages 189–198. IEEE, 2009.

212. A. Zeller. Yesterday, my program worked. today, it does not. why? In ESEC/FSE-
7: Proceedings of the 7th European Software Engineering Conference held jointly
with the 7th ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering, pages 253–267, London, UK, 1999. Springer-Verlag.

213. A. Zeller. Automated debugging: Are we close? IEEE Computer, 34(11):26–31,
2001.

214. L. Zhang, M. Kim, and S. Khurshid. Localizing failure-inducing program edits
based on spectrum information. In Proc. of ICSM, pages 23–32. IEEE, 2011.

215. T. Zhang, M. Song, J. Pinedo, and M. Kim. Interactive code review for system-
atic changes. In Proceedings of the 37th International Conference on Software
Engineering-Volume 1, pages 111–122. IEEE Press, 2015.

216. H. Zhong, S. Thummalapenta, T. Xie, L. Zhang, and Q. Wang. Mining API map-
ping for language migration. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering-Volume 1, pages 195–204. ACM, 2010.

217. L. Zou and M. W. Godfrey. Using origin analysis to detect merging and splitting of
source code entities. IEEE Transactions on Software Engineering, 31(2):166–181,
2005.

