
Vdiff: A Program Differencing
Algorithm for Verilog HDL

Christopher Spandikow

IBM Corporation

Miryung Kim

The University of Texas at Austin

Adam Duley

ARM Inc

Problem: Limitations of using diff on
evolving hardware designs

•  assumes sequential execution semantics

•  relies on code elements having unique

names

•  does not leverage Boolean expression

equivalence checking despite the
availability of SAT solvers

Solution: Vdiff

•  a position-independent differencing
algorithm with intimate knowledge of
Verilog semantics

•  96.8% precision with 97.3% recall
compared to manually classified
differences

•  produces syntactic differencing results in
terms of Verilog-specific change types

Outline

•  Motivation

•  Verilog Background

•  Vdiff Algorithm

•  Evaluation

•  Conclusions

Motivation

•  hardware designers collaboratively evolve
large Verilog programs

•  hard to use diff-like tools during code
reviews

•  develop a foundation for reasoning about
evolving hardware design descriptions

Verilog HDL Background

include "uart_defines.v”
module uart_rfifo (clk, reset, data_out);
input clk, reset;
output [fifo_width-1:0] data_out;
reg [fifo_counter_w-1:0] fifo;
wire [fifo_pointer_w-1:0] overrun;
always @(posedge clk or posedge reset)
begin
 if(reset)
 begin
 fifo[1] <= 0;
 fifo[0] <= 0;
 end
end
assign data_out = fifo[0];
endmodule

include "uart_defines.v”
module uart_rfifo (clk, reset, data_out);
input clk, reset;
output [fifo_width-1:0] data_out;
reg [fifo_counter_w-1:0] fifo;
wire [fifo_pointer_w-1:0] overrun;
always @(posedge clk or posedge reset)
begin
 if(reset)
 begin
 fifo[1] <= 0;
 fifo[0] <= 0;
 end
end
assign data_out = fifo[0];
endmodule

Modules are building blocks with

an explicit input and output port interface.

A module is similar to a Java class.

Verilog HDL Background

include "uart_defines.v“
module uart_rfifo (clk, reset, data_out);
input clk, reset;
output [fifo_width-1:0] data_out;
reg [fifo_counter_w-1:0] fifo;
wire [fifo_pointer_w-1:0] overrun;
always @(posedge clk or posedge reset)
begin
 if(reset)
 begin
 fifo[1] <= 0;
 fifo[0] <= 0;
 end
end
assign data_out = fifo[0];
endmodule

Input and output ports are public interfaces that

connect modules to external hierarchy.

They are similar to a constructorʼs parameter list in Java.

Verilog HDL Background

include "uart_defines.v“
module uart_rfifo (clk, reset, data_out);
input clk, reset;
output [fifo_width-1:0] data_out;
reg [fifo_counter_w-1:0] fifo;
wire [fifo_pointer_w-1:0] overrun;
always @(posedge clk or posedge reset)
begin
 if(reset)
 begin
 fifo[1] <= 0;
 fifo[0] <= 0;
 end
end
assign data_out = fifo[0];
endmodule

Wires, registers, & integers are variable declarations.

Verilog HDL Background

include "uart_defines.v“
module uart_rfifo (clk, reset, data_out);
input clk, reset;
output [fifo_width-1:0] data_out;
reg [fifo_counter_w-1:0] fifo;
wire [fifo_pointer_w-1:0] overrun;
always @(posedge clk or posedge reset)
begin
 if(reset)
 begin
 fifo[1] <= 0;
 fifo[0] <= 0;
 end
end // always
assign data_out = fifo[0];
endmodule

always blocks are similar to Java methods.

However, they execute concurrently

when the sensitivity list is true.

Verilog HDL Background

include "uart_defines.v“
module uart_rfifo (clk, reset, data_out);
input clk, reset;
output [fifo_width-1:0] data_out;
reg [fifo_counter_w-1:0] fifo;
wire [fifo_pointer_w-1:0] overrun;
always @(posedge clk or posedge reset)
begin
 if(reset)
 begin
 fifo[1] <= 0;
 fifo[0] <= 0;
 end
end // always
assign data_out = fifo[0];
endmodule

Assign statements model concurrent dataflow.

Verilog HDL Background

include "uart_defines.v“
module uart_rfifo (clk, reset, data_out);
input clk, reset;
output [fifo_width-1:0] data_out;
reg [fifo_counter_w-1:0] fifo;
wire [fifo_pointer_w-1:0] overrun;
always @(posedge clk or posedge reset)
begin
 if(reset)
 begin
 fifo[1] = 0;
 fifo[0] = 0;
 end
end
assign data_out = fifo;
endmodule

Blocking statements are sequential assignments.

Verilog HDL Background

include "uart_defines.v“
module uart_rfifo (clk, reset, data_out);
input clk, reset;
output [fifo_width-1:0] data_out;
reg [fifo_counter_w-1:0] fifo;
wire [fifo_pointer_w-1:0] overrun;
always @(posedge clk or posedge reset)
begin
 if(reset)
 begin
 fifo[1] <= 0;
 fifo[0] <= 0;
 end
end
assign data_out = fifo;
endmodule

Non-blocking statements are concurrent assignments,

and they are prevalent in Verilog designs.

Verilog HDL Background

always @(posedge clk)
begin
 if(reset)
 begin
 fifo[1] <= 0;
- fifo[0] <= 0;
 end
end // always
- always @(posedge clk)
-begin
- if (reset)
- overrun <= 0;
- end // always

assign data_out = fifo[0];

Diff Results

+ always @(posedge clk)
+ begin
+ if (reset)
+ overrun <= 0;
+ end
always @(posedge clk)
begin
 if(reset)
 begin
+ fifo[0] <= 0;
 fifo[1] <= 0;
+ fifo[2] <= 0;
 end
end // always

assign data_out = fifo[0]; Verilogʼs non-unique identifiers and concurrent semantics cause
diff to identify a large amount of false positives.

Outline

•  Motivation

•  Verilog Background

•  Vdiff Algorithm

•  Evaluation

•  Conclusions

Algorithm

•  input: two versions of a Verilog file

•  output: syntactic differences in terms of

change types

1.  extract Abstract Syntax Tree (AST) from each file

2.  compare the two trees

3.  filter false positives in changes to sensitivity lists

using a SAT solver

4.  categorize differences based on Verilog syntax

Extract AST

module uart_rfifo (clk, reset,
 data_out, overrun);
always @(posedge clk)
begin
 if(reset)
 begin
 fifo[1] <= 0;
 fifo[0] <= 0;
 end
end // always
always @(posedge clk)
begin
 if (reset)
 overrun <= 0;
end // always
assign data_out = fifo[0];
endmodule

module

always
(fifo)

always
(run)

assign

<=
overrun

if

<=
fifo[0]

<=
fifo[1]

if

Tree Differencing Algorithm

•  hierarchically compare tree nodes from the top
down

•  initially align nodes using the longest common
subsequence (LCS) algorithm—unmatched
nodes are split into ADD and DELETE sets

•  for each pair in ADD x DELETE, calculate the
textual similarity

•  use greedy weighted bipartite graph matching to
associate a DELETE node to a corresponding
ADD node

Tree Comparison

uart_rfifo.v rev 87
 uart_rfifo.v rev 88

module

always
(fifo)

always
(run)

assign

<=
overrun

if

<=
fifo[1]

<=
fifo[0]

if

module

always
(run)

always
(fifo)

assign

<=
overrun

if

<=
fifo[0]

<=
fifo[2]

if

<=
fifo[1]

?

Tree Comparison

uart_rfifo.v rev 87
 uart_rfifo.v rev 88

module

always
(fifo)

always
(run)

assign

<=
overrun

if

<=
fifo[1]

<=
fifo[0]

if

module

always
(fifo)

always
(run)

assign

<=
overrun

if

<=
fifo[0]

<=
fifo[2]

if

<=
fifo[1]

mapped

LCS
Match

delete

add

Tree Comparison

uart_rfifo.v rev 87
 uart_rfifo.v rev 88

module

always
(fifo)

always
(run)

assign

<=
overrun

if

<=
fifo[1]

<=
fifo[0]

if

module

always
(fifo)

always
(run)

assign

<=
overrun

if

<=
fifo[0]

<=
fifo[2]

if

<=
fifo[1]

?

Tree Comparison

uart_rfifo.v rev 87
 uart_rfifo.v rev 88

module

always
(fifo)

always
(run)

assign

<=
overrun

if

<=
fifo[1]

<=
fifo[0]

if

module

always
(fifo)

always
(run)

assign

<=
overrun

if

<=
fifo[0]

<=
fifo[2]

if

<=
fifo[1]

?

Tree Comparison

uart_rfifo.v rev 87
 uart_rfifo.v rev 88

module

always
(fifo)

always
(run)

assign

<=
overrun

if

<=
fifo[1]

<=
fifo[0]

if

module

always
(fifo)

always
(run)

assign

<=
overrun

if

<=
fifo[0]

<=
fifo[2]

if

<=
fifo[1]

?

Tree Comparison

uart_rfifo.v rev 87
 uart_rfifo.v rev 88

module

always
(fifo)

always
(run)

assign

<=
overrun

if

<=
fifo[1]

<=
fifo[0]

if

module

always
(fifo)

always
(run)

assign

<=
overrun

if

<=
fifo[0]

<=
fifo[2]

if

<=
fifo[1]

?

Tree Comparison

uart_rfifo.v rev 87
 uart_rfifo.v rev 88

module

always
(fifo)

always
(run)

assign

<=
overrun

if

<=
fifo[1]

<=
fifo[0]

if

module

always
(fifo)

always
(run)

assign

<=
overrun

if

<=
fifo[0]

<=
fifo[2]

if

<=
fifo[1]

mapped

LCS
Match

delete

add

Tree Comparison

uart_rfifo.v rev 87
 uart_rfifo.v rev 88

module

always
(fifo)

always
(run)

assign

<=
overrun

if

<=
fifo[1]

<=
fifo[0]

if

module

always
(fifo)

always
(run)

assign

<=
overrun

if

<=
fifo[0]

<=
fifo[2]

if

<=
fifo[1]

mapped

LCS
Match

delete

add

Tree Comparison

uart_rfifo.v rev 87
 uart_rfifo.v rev 88

module

always
(fifo)

always
(run)

assign

<=
overrun

if

<=
fifo[1]

<=
fifo[0]

if

module

always
(fifo)

always
(run)

assign

<=
overrun

if

<=
fifo[0]

<=
fifo[2]

if

<=
fifo[1]

?

Tree Comparison

uart_rfifo.v rev 87
 uart_rfifo.v rev 88

module

always
(fifo)

always
(run)

assign

<=
overrun

if

<=
fifo[1]

<=
fifo[0]

if

module

always
(fifo)

always
(run)

assign

<=
overrun

if

<=
fifo[0]

<=
fifo[2]

if

<=
fifo[1]

?

Tree Comparison

uart_rfifo.v rev 87
 uart_rfifo.v rev 88

module

always
(fifo)

always
(run)

assign

<=
overrun

if

<=
fifo[1]

<=
fifo[0]

if

module

always
(fifo)

always
(run)

assign

<=
overrun

if

<=
fifo[0]

<=
fifo[2]

if

<=
fifo[1]

mapped

LCS
Match

delete

add

Tree Comparison

uart_rfifo.v rev 87
 uart_rfifo.v rev 88

module

always
(fifo)

always
(run)

assign

<=
overrun

if

<=
fifo[1]

<=
fifo[0]

if

module

always
(fifo)

always
(run)

assign

<=
overrun

if

<=
fifo[0]

<=
fifo[2]

if

<=
fifo[1]

Resulting Syntactic Differences

uart_rfifo.v rev 87-88 diff

module

always
(fifo)

<=
fifo[2]

if

Line 221, NB_ADD,
A Non-Blocking
assignment has been added

Boolean Equivalence Check

always @(posedge clk or negedge reset)

A= clk | ! reset

always @(negedge reset or posedge clk)
B= !reset or clk

SAT Solver (A & ! B) | (B & !A) ?= 1

XOR

Solvable?
Yes,

then A is not
equivalent to B.

No,
then A is

equivalent to B.

Change Type Classification

Number of

Syntactic Elements

Total Classifications

17
 52

Syntactic
Elements

Abbreviation
 Description

Non-Blocking
 NB_ADD
 Non-Blocking assignment
added

NB_RMV
 Non-Blocking assignment
removed

NB_CE
 Non-Blocking assignment
changed

Always
 AL_ADD
 Always block added

AL_RMV
 Always block removed

AL_SE
 Changes in the sensitivity list

Vdiff Tool Implementation

•  Eclipse plugin based on open source
veditor plug-in

•  interfaces with Eclipse compare plug-in

•  integrates with SVN (subclipse plug-in)

http://users.ece.utexas.edu/~miryung/software/Vdiff/web/index.html

Vdiff Eclipse Plugin

 Syntactic Diff Window

Textual Diff Window

Change Type Classification

Outline

•  Motivation

•  Verilog Background

•  Vdiff Algorithm

•  Evaluation

•  Conclusions

Evaluation

•  compare Vdiffʼs results with manual
differencing results—the first two
authors manually inspected the revisions

•  subjects

– UART16550 (opencores.org)

– RAMP GateLib DRAM controller

(ramp.eecs.berkeley.edu)

•  Criteria: precision & recall

Results

Project
 File

Revisions

Eval
 Vdiff
 |V∩E|
 Precision
 Recall

Total
(UART)

141
 600
 601
 586
 97.5%
 97.7%

Total
(GateLib)

69
 497
 502
 482
 96.2%
 96.9%

Total
 210
 1097
 1103
 1068
 96.8%
 97.3%

We evaluated 210 Verilog file revisions with more
then 1000 differences across two different projects.

Findings

•  Vdiff matches position-independent
constructs very well

•  Vdiff struggles on line edits with low text
similarity

•  Feedback from a logic designer at IBM:

 “I can see a use for [the change-types] right away. It

would be great for team leads because they could
look at this log of changes and understand what
has changed between versions without having to
look at the files [textual differences].”

Example: Expected Results

/* Old */

 counter_b <= 0x191;

/* New */

 counter_b <= 0x191;

/* If Condition Changed */
if (!srx_pad_i)

/* If Condition Changed */
if (!srx_pad_i || rstate == sr_idle)

Example: Vdiff Results

/* New */

/* IF Block Added */
if (!srx_pad_i || rstate == sr_idle)

 counter_b <= 0x191;

/* Old */

/* IF Block Removed*/
if (!srx_pad_i)
 counter_b <= 0x191;

Comparison of AST Matching
Algorithms

•  Exact matching [Neamtiu 2005]

•  In-order matching [Cottrell 2007]

•  Greedy weighted bipartite matching [Vdiff]

A

B B’

A’ 0.90

1.0

0.95

0.80

Comparison of AST Matching
Algorithms

•  Exact matching [Neamtiu 2005]

•  In-order matching [Cottrell 2007]

•  Greedy weighted bipartite matching [Vdiff]

A

B B’

A’ 0.90

1.0

0.95

0.80

Comparison of AST Matching
Algorithms

•  Exact matching [Neamtiu 2005]

•  In-order matching [Cottrell 2007]

•  Greedy weighted bipartite matching [Vdiff]

A

B B’

A’ 0.90

1.0

0.95

0.80

Comparison of AST Matching
Algorithms

•  Exact matching [Neamtiu 2005]

•  In-order matching [Cottrell 2007]

•  Greedy weighted bipartite matching [Vdiff]

A

B B’

A’ 0.90

1.0

0.95

0.80

•  Exact matching [Neamtiu 2005]

•  In-order matching [Cottrell 2007]

•  Greedy weighted bipartite matching [Vdiff]

Comparison of AST Matching
Algorithms

Average
 Exact

Match

In-Order
Match

Weighted
Bipartite

Precision
 56.1%
 90.9%
 97.5%

Recall
 67.9%
 91.8%
 97.7%

Comparison of AST Matching
Algorithms

Average
 Exact

Match

In-Order
Match

Weighted
Bipartite

Precision
 56.1%
 90.9%
 97.5%

Recall
 67.9%
 91.8%
 97.7%

1097 differences from 210 file revisions in 2 real world
projects shows that the ordering of code actually
matters in practice when it comes to computing

differences.

Comparison with General Model
Differencing Framework

•  EMF [Eclipse EMF compare project]

–  Mapped (1) modules to classes, (2) always blocks and

continuous assignments to operations, (3) wires, registers, and
ports to fields, and (4) modular instantiations to reference
pointers in an EMF ecore model.

–  Results (Recall=47%, Precision=80%) shows a need to expand
the Ecore model to be able to handle specific concurrency
constructs and non-unique identifiers.

•  Sidiff [Treude et al., 2007, Schmidt and
Gloetzner, 2008]

–  At the time of our evaluation Sidiff did not provide APIs to allow

us to map Verilog language constructs to their general
differencing algorithms.

Discussion

•  Vdiff is sensitive to subtle changes to variable names
and IF-conditions

–  Further investigation of different name similarity

measures is required

•  renaming of wires, registers, and modules caused false

positives

•  Vdiffʼs algorithm currently cannot recover from node

mismatches

•  equivalence check using a SAT solver is limited to

sensitivity lists

Outline

•  Motivation

•  Verilog Background

•  Vdiff Algorithm

•  Evaluation

•  Conclusions

Related Work

•  Syntactic program differencing

–  [Yang 1992, Neamtiu et al. 2005, Fluri et al. 2007, Cottrell et al.

2007, Raghavan et al. 2004, etc.]

–  Vdiff is similar to these but identifies syntactic differences

robustly even when multiple AST nodes have similar labels and
when they are reordered.

•  Model differencing

–  UMLdiff [Xing and Stroulia 2005], Sidiff [Kelter et al.] and EMF

[Eclipse EMF]

•  Change types

–  Change Distiller [Fluri et al. 2007]

–  Verilog change types [Sudakrishnan et al. 2009]

•  Differential symbolic execution [Person et al. 2008]

Conclusions

•  Vdiff is a position-independent differencing
algorithm designed for hardware design
descriptions

–  computes syntactic differences with high recall

(96.8%) and high precision (97.3%)

–  classifies differences in terms of Verilog specific

change types

–  can enable analysis of evolving hardware design

Acknowledgment

Vdiff website:

http://www.ece.utexas.edu/~miryung/software/Vdiff/web/index.html

The authors thank Greg Gibeling and Dr. Derek Chiou for providing
accesses to the RAMP repository and Dr. Adnan Aziz and

anonymous reviewers for their detailed comments on our draft.

Questions

?

Backup

