
An Exploratory Study of Awareness Interests about
Software Modifications

Miryung Kim
Electrical and Computer Engineering

The University of Texas at Austin
miryung@ece.utexas.edu

ABSTRACT
As software engineers collaboratively develop software, they
need to often analyze past and present program modifications
implemented by other developers. While several techniques
focus on tool support for investigating past and present soft-
ware modifications, do these techniques indeed address de-
velopers’ awareness interests that are important to them?
We conducted an initial focus group study and a web survey
to understand in which task contexts and how often particu-
lar types of awareness-interests arise. Our preliminary study
results indicate that developers have daily information needs
about code changes that affect or interfere with their code,
yet it is extremely challenging for them to identify relevant
events out of a large number of change-events.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

General Terms
Human Factors

Keywords
Empirical study, code change, awareness interests

1. INTRODUCTION
Collaboration is essential to building and evolving large-

scale software. Software engineers typically spend 70% of
their time working with others and team activities account
for 85% of the costs of large software systems [9, 12]. At the
same time, software evolution—continual correction, adap-
tation, enhancement, and extension of a software system—is
inevitable; over 90% of the cost of a typical software sys-
tem is incurred during the maintenance and evolution phase.
Moreover, as much as 80% of a developer’s time is spent on
knowledge discovery in evolutionary phases [14]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0576-1/11/05 ...$10.00.

There are a number of tools that can help developers in-
vestigate code change history and provide awareness about
other developers’ software modifications. Hipikat [6] helps
developers to discover historical context and rationale when
they need to implement changes similar to past software
modification. Palantir [17] and FASTDash [2] help devel-
opers know about other developers’ modifications that may
lead to merge conflicts. Jazz [3] and CollabVS [10] allow de-
velopers to set watch-points such as“notify me when Alice is
done with the class ShapeBounds” to monitor about software
modifications made by other developers. While all of these
tools intend to help developers know about other develop-
ers’ modifications, do these tools indeed address developers’
awareness interests? What types of awareness interests do
developers have about other developers’ code changes? How
often does a particular awareness interest arise?

In order to gain a deeper understanding about developers’
awareness needs about software modifications, we conducted
a focus group study with five professional software engi-
neers. Furthermore, we compiled various types of awareness-
interests based on a literature survey, and conducted a web
survey with software developers to understand how often
developers have a certain kind of awareness needs.

The study found that different stakeholders often reason
about software modifications at a different abstraction level
and that users’ awareness-interests are rapidly-evolving as
their tasks change. The users are left to filter out irrel-
evant code modifications such as the changes that do not
semantically affect their own changes or to ignore insignifi-
cant changes such renaming or indentation changes from a
large volume of check-in notifications. Currently, this fil-
tering process requires substantial effort for developers to
identify and analyze software modifications relevant to their
tasks, focus, and interests. These findings suggest the need
for a more flexible tool that developers can select and cus-
tomize the notion of relevance and easily search and monitor
relevant code modifications.

2. RELATED WORK
Workspace awareness systems such as FASTDash [2] and

CollabVS [10] provide information about other developers’
task status or activities. Palantir [17] can assist program-
mers in detecting structural conflicts early by monitoring
changes in other programmers’ workspace in real-time. Night-
watch [15] and CVS-Watch monitor other developers’ activ-
ities using programmer-specified watch-points. YooHoo [11]
mitigates this problem in some degree by filtering out changes
according to predefined rules; however, it is limited to API

declaration changes that lead to build errors.
Ko et al. [13] studied software engineers’ information needs

by observing their daily activities and analyzing observation
logs. Sillito and Murphy [18] studied the types of questions
that programmers ask to assess how well existing tools sup-
port those questions. As opposed to general software en-
gineering tasks such as program comprehension, bug find-
ing, and expertise location, our study focuses on awareness-
interests about software modifications.

de Souza et al. [8] studied change impact management ap-
proaches in two different organizations. Our study comple-
ments this study by providing how often developers have a
certain types of awareness interests about other developers’
changes. Costa et al. [5] studied the scale, range, and volatil-
ity of coordination requirements using the version history of
five projects. While their study infers coordination needs
based on version histories, our study investigates when and
how often developers have awareness interests about other
developers’ changes using a focus group and a survey.

3. A FOCUS GROUP STUDY ON
CODE CHANGE INVESTIGATION

To understand software developers’ awareness interests
about code changes, we conducted a focus group study with
professional software developers enrolled in the Option III
masters’ program at UT Austin. Based on an earlier screen-
ing questionnaire which gathered professional demographic
information including their job title, programming languages,
years of software development experience, and their com-
fort levels with various existing software engineering tools
(e.g., diff, version control, bug tracking, etc.), we recruited
a group of participants who frequently use diff-like tools,
version control systems, and reviewed the modifications of
other developers in a peer review setting.1 All participants
had used bug tracking software and investigated using code
change histories using a version control system interface such
as SVN log. Table 1 summarizes the participant profile.

We led the focus group through a brief demonstration of
software tools that can be used to investigate, search, and
monitor past and present software modifications. We audio-
taped the discussion and transcribed the recorded conver-
sation. Key findings from the study and supporting quotes
are organized by the questions raised in the study.

In which tasks contexts, do you need to know about
others’ code modifications?.

Developers need to know about program modifications
made by other developers, because (1) others’ program mod-
ifications may affect their code, (2) it is their job duty to
know about others’ code and peer review their changes, and
(3) they must be able to take over others’ responsibility when
colleagues are unavailable—e.g., they are sick or leave the
company.

“we are required know about code changes because if some-
one can’t do it, you are supposed to have the capability to
do it.”

“...it obviously affects your code. You only have a part of
it, but each part affects the other parts of it.”

1One participant did not provide their name on the original
survey, so we do not have their exact information.

What types of code modifications done by other devel-
opers do you want to know about?.

Change notifications without content are useless for de-
velopers. They want to know about changes made by other
developers that may depend on or interfere with their
own code.

“I work for a small company, and having somebody tell me
there was a change is almost useless, because I work with
3 other developers—if they make a change, I’ve heard them
make the change.”

“I want to know what other developers are doing, because
their code changes will impact my code.”

“I want to know when interfaces change, you know. Es-
pecially again going back to the dependence structure of the
application, I want to know when those external interfaces
change.”

Developers often want to know about the evolutionary
context in which the individual changes came about.

“The program has an evolution, but each of the changes
themselves has an evolution.”

“So you want to see the history of evolution, for how this
thing came to the point where it’s at. Because of the con-
stant need to enhance, you want to see what happened be-
fore.”

Software modification information should be tailored to
each stakeholder’s needs (developers, team leads, architects,
non-technical managers, document writers, and testers).

“And he is the CTO of that company, so he’s technically
savvy, and even though he doesn’t like seeing our code check-
ins, he does like seeing high level changes to the code.”

“We use open source too. We’re mostly interested if there
were bug fixes that we have to worry about.”

What are limitations of using existing tools to know
about others’ modifications?.

Developers noted that information overload and a lack of
relevance make current change notification mechanisms in-
adequate, and potentially harmful in terms of productivity.

“Once a week I get a big laundry list. It’s gotten to the
point that I see the email and I delete it...”

“I think the change has to be related to me, to my com-
munity, to my project.”

“So now I get this [SVN notification email], all these files
changed... it changed the import statement and I don’t care
about that.”

Information should be pulled only when users request it,
or must be aggregated into a single unobtrusive feed. Push-
based notifications such as emails and pop-ups could distract
users.

“(Email notifications are) not productive. It just stops
you, and you gotta look at it. You gotta decide whether it
is bad or useless.”

“As a programmer I’d like to minimize interruptions as
much as possible. Because it just takes you away, especially
interruptions that are work related.”

“So if I am going to have some kind of notification I prob-
ably would like a feed, not an email.”

Users should have the ability to control and customize
information that they want to know about.

“Are you allowed to see this release information about
products about to go out? In my company that would be a
big issue.”

“So you got a customer who wants to see why the changes

Years Job title Languages Do you regularly use the following tools or conduct the following tasks?
diff version control bug tracking peer code

reviews
change history in-
vestigation

25 Software Analyst Python (10yrs) Yes CVS, SCCS, VSS Bits Yes No
15 System Analyst 3 C++ (4yrs),

Java (9yrs)
Yes Microsoft VSS,

SVN
No Yes Yes

8 Team Lead C#, Java Yes SVN, Vault, Sur-
round

FogBugz Yes Yes

2.5 Software Engineer Java (5yrs),
Javascript
(3yrs)

Yes SVN, CVS Bugzilla, Jira Yes Yes

11 Software Architect Java (7yrs),
SQL (7yrs),
XML (10yrs)

Yes ADE Bugzilla Yes Yes

Table 1: Focus group participant profile

happened, you got a developer who wants to see not only
why, but how, and what, so there’s a lot more details there.”

“So in the case of my company where they need to know
what everyone is doing, as a developer I’m not engaged in
the every day detail of the project, but I want to have an
overview—it’s his project, he’s working on it.”

The results show that developers want to know about
code changes made by other developers, but discovering rel-
evant change events requires tremendous effort. The devel-
opers also would like to know about the context in which
code changes are introduced and they want to know about
changes at a different abstraction level depending on their
roles. The results motivate a tool that enables flexible means
of monitoring only relevant software modifications and in-
vestigating the evolutionary context of code modifications.

4. AWARENESS NEEDS ABOUT CHANGES
To produce a prioritized list of awareness-interests that are

important to developers, we conducted a web survey. We
first compiled a list of awareness interests about software
modifications based on a literature survey. Table 2 lists
them along with citations to the articles that inspire each
awareness interest statement.

By sending a study announcement email to about 60 UT
software engineering graduate students and professional soft-
ware engineers, we recruited 25 study participants. The par-
ticipants had 2 to 20 years of software engineering experi-
ence (8.36 years on average), and they consist of a diverse
group of professionals including 17 developers, 3 managers,
2 system analysts, 3 graduate research assistants with prior
industry experience, etc. We then asked the participants to
indicate how often they agree with each statement: Daily
(D), Weekly (W), Monthly (M), Seldom (S), and Never (N).

Table 2 shows our preliminary results with 25 participants
sorted by a frequency score: Score = 4|D|+3|W|+2|M|+|S|.
It includes the number of responses for each option. The
rightmost column is the computed score. The sorted list
shows that the impact and rationales of code changes are
one of the most frequently sought awareness information. In
fact, code change interference, impact, and dependence are
three of the top five information needs, and more than a half
of developers have daily information needs about the impact
of and interference with other developer’s modification.

5. STUDY LIMITATIONS
Though multiple focus groups are usually recommended

to calibrate the results of focus groups, we have conducted
only a single focus group so far. For the web survey, all ques-
tions were selected by the authors. Therefore, the prioritized
list of questions may be missing questions that participants
would find more important. While every attempt was made
to ensure questions were understandable, participants may
have misinterpreted the intent of questions. Due to a small
number of participants (5 in the focus group and 25 in the
survey), the study results may not generalize to a broader
community of software developers. As the survey relies on
self-reporting of how frequently developers have a certain
type of awareness interest, the results need to be carefully
interpreted. Findings in both studies may have been biased
by developers’ own past development experiences and the
organizations that they work for.

6. CONCLUSIONS AND FUTURE WORK
We conducted a focus group study with professional soft-

ware engineers to understand their awareness needs about
software modifications and limitations of existing tools to
investigate, search, and monitor code changes. The study
found that different stakeholders often reason about soft-
ware modifications at a different abstraction level and that
users’ awareness-interests are rapidly-evolving as their tasks
change. The users are left to filter out irrelevant code modi-
fications such as the changes that do not semantically affect
their own changes or to ignore insignificant changes such
renaming or indentation changes from a large volume of
check-in notifications. Currently, this filtering process re-
quires substantial effort for developers to identify and an-
alyze software modifications relevant to their tasks, focus,
and interests. These results are aligned with the findings
from prior work on change impact analysis, awareness, and
coordination [8, 17, 5].

As various notions of delta-relationships (e.g., interfer-
ence, dependence, similarity, and co-occurrence) can be used
to identify relevant software modifications, our position is
not to re-invent these code change analysis but to provide
a flexible analysis framework in which these definitions can
be imported, selected, and combined to search and monitor
relevant modifications.
Acknowledgment. The author thanks Shayne Czyzewski
for his assistance with a focus group and a survey. This
work was supported in part by National Science Foundation
under grant CCF-1043810.

Statement about awareness interests daily weekly monthly seldom never score
I want to know whose code changes semantically interfere with my recent
code changes. [18, 2, 17, 1]

13 4 4 4 0 76

I want to know whether my code is impacted by this change. [18, 2, 17,
1, 13]

11 4 7 3 0 73

I want to know how the use of this API changed. [18] 9 9 2 5 0 72
I want to know whose code changes my code depends on. [1] 13 2 3 6 1 70
I want to know why the code was implemented this way. [13] 9 8 5 3 0 70
I want to know whom I can go to for help with my task. [16, 1] 5 12 4 4 0 68
I want to know the context in which a piece of code appeared. [19, 1] 9 5 6 5 0 68
I want to know the files changed in this revision. [7, 16] 8 7 5 4 1 67
I want to know which coworker of mine has changed this class (method,
field, etc.), and when. [7]

7 7 6 4 1 65

I want to know what my coworkers have been doing. [13] 7 7 3 8 0 63
I want to know which bugs were fixed in this revision. [1] 6 6 8 4 1 62
I want to know how the resources (such as APIs) I depend on have
changed. [13]

8 4 5 8 0 62

I want to know how development tasks are distributed among my cowork-
ers. [19]

7 6 3 9 0 61

I want to know which parts of the code are unstable. [19] 8 4 7 3 3 61
I want to know in which revision this piece of code was modified. [7] 6 8 3 6 2 60
I want to know which revisions semantically interferes with my recent
code changes.

7 5 6 5 2 60

I want to know which revisions my recent code changes depend on. 6 6 5 7 1 59
I want to know who owns this piece of code. [1] 5 6 6 6 2 56
I want to know which files are often changed together. [19] 5 5 5 9 1 54
I want to identify who are the key contributors of this project from this
date to this date. [16]

5 3 3 11 3 46

Table 2: Responses to our survey on awareness interests

7. REFERENCES
[1] A. Begel, Y. P. Khoo, and T. Zimmermann.

Codebook: discovering and exploiting relationships in
software repositories. In ICSE ’10, pages 125–134,
ACM.

[2] J. T. Biehl, M. Czerwinski, G. Smith, and G. G.
Robertson. Fastdash: a visual dashboard for fostering
awareness in software teams. In CHI ’07, pages
1313–1322, ACM.

[3] L.-T. Cheng, S. Hupfer, S. Ross, and J. Patterson.
Jazzing up eclipse with collaborative tools. In eclipse
’03: Proceedings of the 2003 OOPSLA workshop on
eclipse technology eXchange, pages 45–49, ACM.

[4] O. C. Chesley, X. Ren, and B. G. Ryder. Crisp: A
debugging tool for java programs. In ICSM ’05, pages
401–410, IEEE Computer Society.

[5] J. M. R. Costa, M. Cataldo, and C. de Souza. The
scale and evolution of coordination needs in large-scale
distributed projects: Implications for the future
generation of collaborative tools. In CHI’11 (to
appear)

[6] D. Cubranic and G. C. Murphy. Hipikat:
recommending pertinent software development
artifacts. In ICSE ’03, pages 408–418, IEEE Computer
Society.

[7] B. de Alwis and G. C. Murphy. Answering conceptual
queries with ferret. In ICSE ’08, pages 21–30, ACM.

[8] C. R. B. de Souza and D. F. Redmiles. An empirical
study of software developers’ management of
dependencies and changes. In ICSE ’08, pages
241–250, ACM.

[9] T. DeMarco and T. R. Lister. Peopleware : productive
projects and teams / Tom DeMarco & Timothy Lister.
Dorset House Pub. Co., New York, NY :, 1987.

[10] R. Hegde and P. Dewan. Connecting programming
environments to support ad-hoc collaboration. In ASE
2008, 15-19 September 2008, L’Aquila, Italy, pages
178–187, 2008.

[11] R. Holmes and R. J. Walker. Customized awareness:
recommending relevant external change events. In
ICSE ’10, pages 465–474, ACM.

[12] C. Jones. Programming productivity / Capers Jones.
McGraw-Hill, New York :, 1986.

[13] A. J. Ko, R. DeLine, and G. Venolia. Information
needs in collocated software development teams. In
ICSE’07, pages 344–353, 2007.

[14] N. H. Madhavji, F. J. C. Ramil, and D. E. Perry.
Software evolution and feedback: theory and practice.
Hoboken, NJ: John Wiley & Sons, 2006.

[15] C. O’Reilly, P. Morrow, and D. Bustard. Improving
conflict detection in optimistic concurrency control
models. SCM, pages 61–69, 2003.

[16] A. Sarma, L. Maccherone, P. Wagstrom, and
J. Herbsleb. Tesseract: Interactive visual exploration
of socio-technical relationships in software
development. In ICSE ’09, pages 23–33, IEEE
Computer Society.

[17] A. Sarma, Z. Noroozi, and A. van der Hoek. Palant́ır:
raising awareness among configuration management
workspaces. In ICSE ’03, pages 444–454, IEEE
Computer Society.

[18] J. Sillito, G. C. Murphy, and K. D. Volder. Asking
and answering questions during a programming
change task. IEEE TSE, 34(4):434–451, 2008.

[19] L. Voinea, J. Lukkien, and A. Telea. Visual assessment
of software evolution. Sci. Comput. Program.,
65:222–248, March 2007.

