A Field Study of Refactoring
Benefits and Challenges

Miryung Kim

University of Texas at Austin

Thomas Zimmermann, Nachiappan Nagappan
Microsoft Research

Contradicting Beliefs on Refactoring

Benefits

Refactoring improves software quality and
maintainability
A lack of refactoring incurs technical debt

VS.

Refactorings do not provide immediate
benefits unlike bug fixes and new features

Conflicting Evidences on Refactoring

Benefits

Bug fix time decreases after refactoring [carriere et
al.]

Defect density decreases after refactoring
[Ratzinger et al.]

VS.

Inconsistent refactorings cause bugs [Gérg and
WeilRgerber, Kim et al.]

Code churns are correlated with defect density
[Nagappan & Ball]

Key Findings

Refactoring is not confined to behavior
oreserving transformation.

Developers perceive that refactoring
involves substantial cost and risk.
Refactored modules experienced
significant reduction in inter-module
dependencies and post-release defects.

Survey Participants

Target: 1290 engineers whose check-in comments
include a keyword ‘refactor*’ in the last 2 years

Windows, exchange, ocs, office, Winymobile,
Test Build
16.04% o0s 0.91%
Participants: 328 engineers
6.35 years at MS
9.74 years in software industry

Develop
ment
82.74%

22 multiple choice and free form questions

Finding 1. Refactoring is not confined to

behavior-preserving transformations

46% did not mention preservation of behavior,
semantics, or functionality

78% define refactoring improves some aspects of
program behavior

71% said basic refactorings are often a part of
larger, architecture level effort

Finding 2. Engineers face various

challenges of doing refactoring

29% pointed out a lack of support for refactoring
integration, code reviews targeting refactoring

edits, and custom refactoring engine.
"Cross-branch integration was the biggest problem.”

"Refactoring typically increases the number of lines
involved in a check-in. That burdens code reviewers.”
When a regression test suite is inadequate, there
is no safety net for checking the correctness of

refactoring.

Finding 3. Refactoring engines are not

used much

Developers do 86% of refactorings manually,
despite awareness of automated tools.

70%
o o
58% a9 58% 57% 54% 54% ©1% 56% 61%
37%
<)) T ()] Q v © (4] v - >0 4
° = = QO - o - = o - o - O
g & v o o g9 < 8 2 e OS>y 4 03
=l S T - = o w =] O Kbk S = T W
c [T} ng L o [T} € € c © 3 o =
o 3w x 9 € £ o — £ 00 0= g &
o E T w E o © E [+}]) ()] ; O+ WL un = ‘H o ©
= c é_“ aCJ — = o xgx @S 8 g
X £ o & =)

Finding 4. Refactoring is driven by

Immediate, concrete needs.

20%

0 10% 11% 0
9% 8% 7% 9%
(V)
3% 3% 29%
: z & = 5 s z § ¥ %
= =] S
2 o 3 - S 32 £ © € o -
o c @] = 2 = S 2 o o
© 'S n] o w O o S S ©
© -] Y= Q oo
Q - o - = [J] © Q
(3 c o (a] 7] - e
— (] © -
© 5 o = g
o0
=) o
oz -

46% refactor code as a part of bug fixes and
feature additions.

More than 95% of developers refactor code
across all milestones not only in quality
milestones (MQ).

10

Finding 5. Refactoring involves substantial

cost and risks

75% perceive that refactoring has a risk of
functionality regression and bugs.

75%

19% 24%

11%)
2% 7%
churn regression merge time taken testing cost difficult to
bugs and conflicts from other code review

build breaks tasks

11

Outline

Details on Interviewees

Architect (9o mins)
Architect / Dev Manager
(30 Mins)

Dev Team Lead (75 mins)
Dev Team Lead (85 mins)
Developer (75 mins)
Researcher (60 mins)

2 7 \
: ‘\Q_\ 7
—

Refactoring of Windows

A designated team initiated refactoring effort
to improve modularity and parallel
development efficiency

Driven by foresights to repurpose Windows to
target different execution environments
Conducted analysis of de-facto dependency
structure and created a “layer map”
Developed custom tools and processes such
as MaX and “quality gate check” (srivastava et al.]

Research Questions

Q1: Where was Windows 7
refactoring effort focused on?
Q2: Did refactoring reduce binary-
level dependencies?

Q3: Are refactored binaries more

bmarles7
Q4: Did refactoring reduce post-
release defects?

Windows 7 Refactoring Study

Method

perf_dev_foo

refactor_dev

refactor
winmain
media_core
By
AJ
Windows 7/

Windows Vistar

Windows 7 Refactoring Study

Method

perf_dev_foo

winmain

media core

By
[3

U

Windows Vistar

Non-refactoring branches WindOWS“7

Identified branches where the refactoring team made frequent commits

The refactoring team confirmed refactoring branches
18

Windows 7 Refactoring Study

Method

'Y perf_dev_foo

winmain
o0 00 ® 00 00 00
®O® cdiacore ©® OO0 00
U £
Non-refactoring branches WlndOWS7

Windows Vistar

Categorize all Windows 7 commits into refactorings vs. non-refactorings

19

Windows 7 Refactoring Study

Method

Non-refactor

BOO32.dll 00000 O
0000 00

FOO.dII

Map commits to DLLs (binary modules)

Windows 7 Refactoring Changes

1.27% 98.73%
2.04% 99.84%

94.64% 99.05%

Qa. Where was the refactoring

effort focused on?

Ratio of Refactored DLLs vs. Dependencies in Vista

o |
®
@
B
= ©
g o
[}
=
®
=
£ T _|
3 o
O
o~
© B -
O— Total Dependencies
B- - Qutgoing Dependencies
B— Neighbors
o
2

T T T T T
02 0.4 06 08 1

Ratio of Refactored DLLs

Top 25% of most frequently refactored DLLs cover 53% of all
neighboring dependency counts in Vista for modified DLLs.

22

Q2. Did refactoring reduce binary-

level dependencies?

Cumulative Dependency Ratio
(Only modified DLLs are considered)

(=
@® _|
o
© |
.O D
©
14
[o}] g
Z2 o 7
©
-
5
o 94
o
< m— V/ista Neighbors (All Changed DLLs
BE— Delta Neighbors (All Changed DLLs
o~ =— Vista Neighbors (Refactored DLLS;
o Top 12.8% of refactored DLLs | ™ Delta Neighbors (Refactored DLLs

| | | T |
0.2 04 0.6 0.8 1

Ratio of Refactored DLLs

23

Q3. Are refactored binaries more likely

defect-prone than non-refactored binaries?

Ratio of DLLs and Cumulative Failure Ratio

Cumulative Ratio
06 08 1.0

04

02

m— Win7Failure (All Changed DLLs
B— Win7Failure (Refactored DLLs)

00

0.2 04 06 0.8 1

Ratio of DLLs

No, Top 20% of most frequently refactored DLLs are
responsible for 42 % of all Win 7 post release defects, while top

20% of most modified DLLs are responsible for 55%.
24

Q4. Did refactoring reduce post

release defects more?

Reduction of Post-Release Defects

(Vista vs. Win 7)
-112.2% -104.4% -97.8% -89.1% -100.8%

Top 25 Top 50 Top 75
Top 25% to 50% to 75% to 100% AllDLLs

25

Summary

We present a three-pronged view of refactoring
in a large company through a survey, interviews,
and version history analysis.

The definition of refactoring in practice is
broader than behavior-preserving program
transformations.

Developers perceive that refactoring involves
substantial cost and risks.

Developers need various types of tool support
beyond automated refactoring within IDEs.

26

Summary

Centralized, system-wide refactoring was
facilitated by custom tools and processes
such as MaX and quality gate check.
Refactored modules experienced higher
reduction in the number of inter-module
dependencies and post-release defects than
other changed modules.

Acknowledgment

Anonymous survey and interview participants
Thanks to Galen Hunt, Chris Bird, Mike Barnett, Tom
Ball, Rob DeLine, Andy Begel, ESE and RISE friends
at MSR

This research is in part supported by National
Science Foundation, CAREER-1117902,
CCF-1149391, and CCF-1043810 and Microsoft SEIF
award.

