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Contradicting Beliefs on Refactoring

Benefits

Refactoring improves software quality and
maintainability
A lack of refactoring incurs technical debt

VS.

Refactorings do not provide immediate
benefits unlike bug fixes and new features



Conflicting Evidences on Refactoring

Benefits

Bug fix time decreases after refactoring [carriere et
al.]

Defect density decreases after refactoring
[Ratzinger et al.]

VS.

Inconsistent refactorings cause bugs [Gérg and
WeilRgerber, Kim et al.]

Code churns are correlated with defect density
[Nagappan & Ball]



Key Findings

Refactoring is not confined to behavior
oreserving transformation.

Developers perceive that refactoring
involves substantial cost and risk.
Refactored modules experienced
significant reduction in inter-module
dependencies and post-release defects.







Survey Participants

Target: 1290 engineers whose check-in comments
include a keyword ‘refactor*’ in the last 2 years

Windows, exchange, ocs, office, Winymobile,
Test Build
16.04%  o0s 0.91%
Participants: 328 engineers
6.35 years at MS
9.74 years in software industry

Develop
ment
82.74%

22 multiple choice and free form questions



Finding 1. Refactoring is not confined to

behavior-preserving transformations

46% did not mention preservation of behavior,
semantics, or functionality

78% define refactoring improves some aspects of
program behavior

71% said basic refactorings are often a part of
larger, architecture level effort



Finding 2. Engineers face various

challenges of doing refactoring

29% pointed out a lack of support for refactoring
integration, code reviews targeting refactoring

edits, and custom refactoring engine.
"Cross-branch integration was the biggest problem.”

"Refactoring typically increases the number of lines
involved in a check-in. That burdens code reviewers.”
When a regression test suite is inadequate, there
is no safety net for checking the correctness of

refactoring.



Finding 3. Refactoring engines are not

used much

Developers do 86% of refactorings manually,
despite awareness of automated tools.
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Finding 4. Refactoring is driven by

Immediate, concrete needs.
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46% refactor code as a part of bug fixes and
feature additions.

More than 95% of developers refactor code
across all milestones not only in quality
milestones (MQ).
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Finding 5. Refactoring involves substantial

cost and risks

75% perceive that refactoring has a risk of
functionality regression and bugs.

75%

19% 24%

11% )
2% 7%
churn regression merge time taken testing cost difficult to
bugs and conflicts from other code review

build breaks tasks
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Outline




Details on Interviewees

Architect (9o mins)
Architect / Dev Manager
(30 Mins)

Dev Team Lead (75 mins)
Dev Team Lead (85 mins)
Developer (75 mins)
Researcher (60 mins)
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Refactoring of Windows

A designated team initiated refactoring effort
to improve modularity and parallel
development efficiency

Driven by foresights to repurpose Windows to
target different execution environments
Conducted analysis of de-facto dependency
structure and created a “layer map”
Developed custom tools and processes such
as MaX and “quality gate check” (srivastava et al.]






Research Questions

Q1: Where was Windows 7
refactoring effort focused on?
Q2: Did refactoring reduce binary-
level dependencies?

Q3: Are refactored binaries more

bmarles7
Q4: Did refactoring reduce post-
release defects?




Windows 7 Refactoring Study

Method

perf_dev_foo

refactor_dev

refactor
winmain
media_core
By
AJ
Windows 7/

Windows Vistar



Windows 7 Refactoring Study

Method

perf_dev_foo

winmain

media core

By
[ 3

U

Windows Vistar

Non-refactoring branches WindOWS“7

Identified branches where the refactoring team made frequent commits

The refactoring team confirmed refactoring branches
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Windows 7 Refactoring Study

Method

'Y perf_dev_foo

winmain
o0 00 ® 00 00 00
®O® cdiacore ©® OO0 00
U £
Non-refactoring branches WlndOWS7

Windows Vistar

Categorize all Windows 7 commits into refactorings vs. non-refactorings
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Windows 7 Refactoring Study

Method

Non-refactor

BOO32.dll 00000 O
0000 00

FOO.dII

Map commits to DLLs (binary modules)



Windows 7 Refactoring Changes

1.27% 98.73%
2.04% 99.84%

94.64% 99.05%



Qa. Where was the refactoring

effort focused on?

Ratio of Refactored DLLs vs. Dependencies in Vista
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Ratio of Refactored DLLs

Top 25% of most frequently refactored DLLs cover 53% of all
neighboring dependency counts in Vista for modified DLLs.
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Q2. Did refactoring reduce binary-

level dependencies?

Cumulative Dependency Ratio
(Only modified DLLs are considered)
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Q3. Are refactored binaries more likely

defect-prone than non-refactored binaries?

Ratio of DLLs and Cumulative Failure Ratio

Cumulative Ratio
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Ratio of DLLs

No, Top 20% of most frequently refactored DLLs are
responsible for 42 % of all Win 7 post release defects, while top

20% of most modified DLLs are responsible for 55%.
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Q4. Did refactoring reduce post

release defects more?

Reduction of Post-Release Defects

(Vista vs. Win 7)
-112.2% -104.4% -97.8% -89.1% -100.8%

Top 25 Top 50 Top 75
Top 25% to 50% to 75% to 100% AllDLLs
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Summary

We present a three-pronged view of refactoring
in a large company through a survey, interviews,
and version history analysis.

The definition of refactoring in practice is
broader than behavior-preserving program
transformations.

Developers perceive that refactoring involves
substantial cost and risks.

Developers need various types of tool support
beyond automated refactoring within IDEs.
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Summary

Centralized, system-wide refactoring was
facilitated by custom tools and processes
such as MaX and quality gate check.
Refactored modules experienced higher
reduction in the number of inter-module
dependencies and post-release defects than
other changed modules.
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