An Empirical Investigation into
the Impact of Refactoring on
Regression Testing

Napol Rachatasumrit and Miryung Kim
The University of Texas at Austin

Motivation

It is believed that refactoring improves
software quality and maintainability
Refactoring has the risk of functionality
regression and increased testing cost

The impact of refactoring edits on regression
tests has not been investigated using version

history.

Study Findings

We use refactoring reconstruction analysis

and change impact analysis in tandem.
Only 22% of refactored code is tested by existing
regression tests.

While refactoring edits constitute only 8% of
changes, 38% of affected tests are relevant to
refactorings.

Refactoring edits appear in almost half of the
failed test case execution.

Outline

Motivation & Related Work
Study Approach Overview
Research Questions and Results
Limitations

Conclusions

Conventional Wisdom

Refactoring improves software quality and
maintainability

A lack of refactoring incurs technical debt.
‘Cunningham, Lehman]

Refactor mercilessly [Beck, eXtreme
Programming]

Refactoring Realities

The number of bug reports increases after
refactorings [Weil3gerber & Diehl, Kim et al.]
Refactoring tools are buggy [Daniel et al.]
Programmers do not leverage refactoring
tools effectively [Murphy-Hill et al. Vakilian et
al.]

Refactoring comes with a risk of introducing

subtle bugs and functionality regression [Kim
et al.]

Outline

Motivation

Study Approach Overview
Research Questions and Results
_imitations

Related Work

Conclusions

Approach Overview

RefFinder: FaultTracer:
o Refactoring a Change Impact
Reconstruction Analysis
[ICSM 2010, Prete et al.] [ICSM 2011, Zhang et al.]
|ldentify Refactoring |ldentify Change Impact
Edits on Regression Tests

—_— . —

Investigate Refactoring Change
9 Impact on Tests

Step 1. Reconstruction of

Refactoring Edits

RefFinder:

Refactoring Identify edits that fit the program
: structure before and after each refactoring type
Reconstruction

[ICSM 2010, Prete et al.]

move_field(“color”, “PieChart”, “"Chart”)
pull_up_field(“color”, “"PieChart”, "Chart")
collapse_hierarchy(*Chart”, “PieChart")

introduce_explaining_var("val”,"EXPR..." , “get()"”)

Step 1. Reconstruction of

Refactoring Edits

We use our logical program differencing framework,
LSdiff [ICSE 2009, Kim & Notkin] to compute change
facts at the level of code elements, control and data

dependences, etc.

past_subtype(”Chart”,”PieChart”), deleted_subtype(”Chart”,”PieChart”)
deleted_field("PieChart.color”, “color”, "PieChart"),
added_field("Chart.color”, “color”, “Chart")

deleted_access(“PieChart.color”, “Chart.draw”), added_access(“Chart.color”,
“"Chart.draw”). . .

Step 1. Reconstruction of

Refactoring Edits

We encode each refactoring type in a template logic
rule.

1. collapse hierarchy: A superclass and its subclass is not very different.
Merge them together.

(deleted_subtype(ta,t2) A (pull_up_field(f,t2,t1) V
pull_up_method(m,t2,t1))) V (past_subtype(t1,t2) A deleted_type(t1,n,p) A
(push_down_field(f,t1,t2) V push_down_method(m,t1,t2)))=>
collapse_hierarchy(tz,t2)

2. pull up method: A method is moved from a class to its superclass.

move_method(f, t, t1) A past_subtype(ta, t)=>pull_up_method(f, t, t1)

Step 1. Reconstruction of

Refactoring Edits

RefFinder converts the antecedent of a rule to a logic
query and invokes the query on the change-fact

database.
deleted_field(f, f, ta) A + move_field(“color”, "PieChart”,
added_field(f2, f, t2) A deleted "Chart")
_access(f1, m1) A added_access(f2,
m1i) ?
move_field(f, t1, t2) A + pull_up_field(“color”, “PieChart”,
past_subtype(t2, t1)? “Chart”)
invoking a collapse hierarchy query. .. + collapse_hierarchy(“Chart”,

"PieChart”)

Step 2. Fault Tracer Change Impact

Analysis

FaultTracer: affected tests—a set of regression tests relevant

Change Impact to atomic changes
Analysis affecting changes—a subset of atomic changes

[ICSM 2011, Zhang et al.] relevant to each affected test

Step 2. Fault Tracer Change Impact

Analysis

Inputs:
Old Version P, Test Suite T, New Version P’

 temmmeaae.

Change
Extraction

Step 2. Fault Tracer Change Impact

Analysis

Inputs:
Old Version P, Test Suite T, New Version P’

M

Change ECG (Extended Call
Extraction Graph) Collection

Test 1 Test 2

/\ calls /\ calls

Method M1 Method M2 Method M2 Method M3

reads/\ reads/\

Field F1 Method M3 Field F2 Method M3

Step 2. Fault Tracer Change Impact

Analysis

Inputs:
Old Version P, Test Suite T, New Version P’

ev

Change ECG (Extended Call | Affected Test
Extraction Graph) Collection —> Selection

Test 1 Test 2

e~y cls e gyl

Method M1 Method M2 Method M2 Method M3

reads/\ reads/\

Field F1 Method M3 Field F2 Method M3

Step 2. Fault Tracer Change Impact

Analysis

Inputs:
Old Version P, Test Suite T, New Version P’

M

Change ECG (ExtendedCall | AffectedTest ~_, Affecting Change
Extraction Graph) Collection —> Selection Determination
“>
Test1

E7§ calls

Method Ma Method M2

calls o reads W §caIIs
Method M4 Field F1 Method M3

Step 3. Refactoring Change Impact

Assessment

Investigate
Refactoring Change

Identify Refactoring Edits Affecting Tests
Impact on Tests

Test 1
=)~

Method M1 Method M2

& >

Field F1 Method M3

Step 3. Refactoring Change Impact

Assessment

Investigate
Refactoring Change
Impact on Tests

Identify Tests Affected by Refactoring Edits

Test 1

°=?§

Method M1 Method M2
wyryy vb ﬁ

{ Method M4 Field F1 Method M3

Data Sets

Versions
Releases
LOC
Classes
Methods
Fields

Refactoring
Types

Total Correct
Refactorings

Atomic Changes

6
Ro.oto Rg.0
31005~40695

313~402

2501~3237

830~970
4 ~12

349

307

4
Ro.oto R3.0

17435~22863
181~154
1244~1023
129~151

6~10
161

214

9
Ro.0to R8.0

17201~80444
172~650
1581~7190
4£4,0~3212
0~14

511

1155

Outline

Motivation and Related Work
Study Approach Overview
Research Questions and Results
Limitations

Conclusions

Research Questions

Qzx: Are there adequate tests for refactoring
edits in practice?

Q2: How many of existing regression tests
are relevant to refactoring edits and thus
need to be re-run for the new version?

Q3: What proportion of failure-inducing
changes are relevant to refactorings?

Q. Are there adequate tests for

refactoring edits in practice?

T
Test Coverage |

The percentage of tested elements |71 out of all
code elements 1Al

Change Test Coverage Thc

1C |
The percentage of changed elements exercised

by tests |7 N1 out of all changed elements IC|

Refactoring Test Coverage 'Tlgf'

The percentage of refactored elements exercised
by tests ITNRI out of all refactored elements IR

Q. Are there adequate tests for

refactoring edits in practice?

IR
JMeter 352
XML 60
Ant 326
Total 738

IC |

4040
1101
4375

9516

T ITNC]
ICI
5776 23.8%
1719 25.1%
10588 15.1%
18038 19.9%

ITORI

IR |

16.5%
61.7%
19.9%

22.1%

171
Al

29.8%
41.2%
25.7%

27.9%

Only 22% of refactored methods and fields are tested by existing

regression tests.

Q. Are there adequate tests for

refactoring edits in practice?

IRI el T | ITNCI ITNRI ITI

ICI IR Al
JMeter 352 4040 5776 23.8% 16.5% 29.8%
XML 60 1101 1719 25.1% 61.7% 41.2%
Ant 326 4375 10588 15.1% 19.9% 25.7%
Total 738 9516 18038 19.9% 22.1% 27.9%

: If the refactoring edits are impure, more tests need
to cover refactoring edits

Q2. How many of existing tests are

relevant to refactoring edits?

AT: affected tests

AT: the ratio of affected tests that exercise
at least one refactoring edit location

AC: affecting changes

AC,.the ratio of affecting changes whose
location overlaps with at least one refactoring
edit

Q2. How many of existing tests are

relevant to refactoring edits?

| AT | | AT, | |AC, | IR

IC I
JMeter 284 120 (42.2%) 70 8.7%
XML 180 133 (73.8%) 35 5.4%
Ant 1100 311(28.2%) 85 7.4%
Total 1564 594(38.0%) 190 7.8%

While refactoring edits constitute only 8% of atomic
changes, 38% of affected tests are relevant to refactoring
edits

Q2. How many of existing tests are

relevant to refactoring edits?

| AT | | AT, | |AC, | IRI

IC I
JMeter 284 120 (42.2%) 70 8.7%
XML 180 133 (73.8%) 35 5.4%
Ant 1100 311(28.2%) 85 7.4%
Total 1564 594(38.0%) 190 7.8%

If the refactorings are pure and can be isolated, then there’s
an opportunity of saving testing cost.

Q3.How much of failure-inducing

edits are related to refactorings?

AT: affected tests that succeeded in the old
version but failed in the new version

AT a subset of AT that exercise refactoring
edits

AC.: failure-inducing changes, i.e., a set of
affecting changes for the failed tests

ACg:: a subset of AC:that exercise the
location of refactoring edits

Q3.How much of failure-inducing

edits are related to refactorings?

AT, | | AT, | 1AC, | 1AC,, |
JMeter 19 14 43 3
XML 5 5 12 7
Ant 61 20 607 57
Total 80 39 662 67

Half of the failed affected tests include refactoring edits

Q3.How much of failure-inducing

edits are related to refactorings?

AT, | | AT, | 1AC, | 1AC,, |
JMeter 19 14 43 3
XML 5 5 12 7
Ant 61 20 607 57
Total 80 39 662 67

Refactorings seem to appear on the execution traces of
failed tests without being root failure causes.

Study Limitations and Future Work

False negatives of refactoring reconstruction
Our broader definition of refactoring edits—
tolerating behavior modifications during our
manual inspection

Only three projects in SIR

Our data is available in public:

http://users.ece.utexas.edu/~miryung/
inspected_dataset.zip

Summary

We study the impact of refactoring edits on
regression tests
Refactoring test coverage is insufficient

Though only a small portion of edits consists of
refactoring edits, many tests are impacted by
them
We need an automated regression test
augmentation and validation approach

targeting refactoring edits

Acknowledgment

This research is in part supported by National
Science Foundation, CCF-1117902,

CCF-1149391, and CCF-1043810 and
Microsoft SEIF award.

