An Empirical Study of API Stability
and Adoption in the Android
Ecosystem

Tyler McDonnell, Baishakhi Ray and Miryung Kim
The University of Texas at Austin

Motivation

Despite the benefit of new or updated APIs,
developers are often slow to adopt new APIs.

APl evolution and its associated ripple effect
throughout software ecosystems are still
under-studied.

Study Findings

We study the co-evolution of Android APIs
and applications using the github data

Android is evolving fast at a rate of 125 API
updates per month.

28% of APl references in client apps are outdated
with a median lagging time of 16 months.

APl usage adaptation code is defect prone than
other code.

Outline

Motivation & Related Work
Study Approach

Research Questions and Results
Limitations

Conclusions

Related Work

Many techniques have been proposed to ease

APl update and version incompatibilities

APl evolution and its associated ripple effect

through ecosystems are under-studied
Robbes et al. study how API deprecation affects

client applications in Smalltalk.
Kim et al. study the relationship between API

refactoring and bugs in libraries.

Study Approach

Android API Version
History

Mobile Apps in
Github

Correlate changes in mobile apps
with changes in Android OS

APl Version: 14

Release date: October 19, 2011

Class: android.widget.RemoteViews

void setRemoteAdapter(int, Intent)

Android API Version History

Client Code : Remote.java

Commit Date: January 26, 2012

import android.widget.RemoteViews;

int viewID = settings.getViewID();
Intent I = new Intent(this,
ActivityTwo.class);

setRemoteAdapter(viewlD, I);

Client Source Code

Android OS API Evolution

Characteristics

APl Version 3 to 15

A A + - A + -
Min 37 o) o) o) 7 0 0
Max 269 416 98 9 619 205 0
Avg 149 158 37 2 179 32 0
Rate 42 A 11 <1 51 9 0

Android OS is evolving fast at the rate of 115 APl updates per month.

Android API Evolution

Characteristics

APl Update Interval (Month)

40.00
35.00
30.00
25.00
20.00
15.00
10.00
5.00
0.00

Sip |

o W
text W=
bluetooth s
hardware ™=
openg| .

telephony |
rtp

gest |EE—————
security |EE———

uti| -

graphics ™

wifi -

media =
support
content ™
animation ==
location =S
test W=
net W
webkit =
appwidget |E——
database W=
os =
view =

Hardware, user interface and web support are evolving fast.

Data Sets : Mobile Apps

Congress Tracker 1359 13349 7 30%
Apollo M 9 15783 1 35%
Cyanogen 109 28972 20 24%

Google Analytic 926 52932 23 26%

LastFM 212 9771 7 16%
mp3Tunes 104 9608 1 22%
OneBusAway 497 51784 5 22%
ownCloud 665 25109 12 30%
RedPhone 116 21315 5 19%
XMBCremote 928 92893 24 22%

Around 25% of all method and field references in client code use
Android APls.

Research Questions

Q1: What is the lag time between client code
and the most recent Android API?

Q2: How quickly do APl changes propagate
throughout client code?

Q3: What is the relationship between API
updates and bugs in clients?

Q4: What is the relationship between API
stability and adoption?

Qa: What is the lag time between client

code and the most recent Android API?

APl Version: 7
APl Version: 4 Release Date: October 26, 2009

Release Date: September 15, 2009 Changed Method:
Added Method: void setButton2(charSequence)

void setButton2(charSequence) *now deprecated*

Android API
Lag Time: 2 months
Client Code

Client Code

Commit Date: December 20, 2009
Method Use:
setButton2(charSequence)

Lag time: the number of months elapsed between the release of
the new version and the commit time of the outdated APl usage

Qa: What is the lag time between client

code and the most recent Android API?

Congress Tracker 18%
Apollo M 72%
Cyanogen 12%

Google Analytic 37%

LastFM 43%
mp3Tunes 5%
OneBusAway 3%
ownCloud 18%
RedPhone 43%
XMBCremote 15%

Average 28%

Qa: What is the lag time between client

code and the most recent Android API?

©
~
Ul

O
u

0.25

% of outdated API usages

o

1 3 15 22 29 36

Lag Time (months)

A half of all outdated API references are lagging behind by 16
months or more.

Q2: How quickly do API changes

propagate throughout client code?

APl Version: 1 APl Version: g9
Release Date: September 23, 2008 Release Date: December 6, 2010
Added Method: Changed Method:
Method getMethod(String) Method getMethod(String, Class)
Android API
Propagation Time: 3 months
Client Code
Client Code Client Code
Commit Date: March 18, 2009 Commit Date: March 8, 2011
Method Use: Method Use:
getMethod(String) getMethod(String, Class)

Propagation time: time difference in months between the API
release and the timing of client adaptation

Q2: How quickly do API changes

propagate throughout client code?

Congress Tracker 45%
Apollo Music 0%
Cyanogen 27%
Google Analytic 34%
LastFM 5%
mp3Tunes 0%
OneBusAway 12%
ownCloud 29%
RedPhone 39%
XMBCremote 33%

Average 22%

Q2: How quickly do API changes

propagate throughout client code?

0.75

o
8

0.25

o

1 8 15 22 29 36

% of Updated API References

Propagation Time (months)

The median propagation time is 14 months. Outdated APl usages
upgrade to newer APIs but at a much slower pace than the API
release rate.

Q3: What is the relationship between API

updates and bugs?

CLOC APl Update Non APl Update
Congress Tracker 0.39 0.56 0.39
OneBusAway 0.26 0.46 0.25
RedPhone 0.23 0.24 0.23
XMBCremote 0.34 0.62 0.33
Google Analytic 0.36 0.54 0.31
ownCloud 0.43 0.55 0.42
Cyanogen 0.58 0.63 0.58
LastFM 0.42 0.37 0.43

Files with APl usage adaptations are defect-prone in all
applications except LastFM.

Q4: What is the relationship between API

stability and usage?

API evolution vs client usage

(7,]

i -

t

(@]

__ 30 15 €
X =
~— M
@ 2
g 20 10 g
~ Q
= &
5 B

=

=

<

f

2 x5 22c g5 e@E 8L 28 3
8 (@) (g0}) ()] 5 s 8 C > c O (g0} o _9
H T o o c = 8 O
[) o E o i i) Q
_3 © - (@] .E -~ oo [¢0] v
o < g © ©
=—=usage (%) AP| update interval

Correlation between APl usage (%) and APl update interval: -0.47
Fast evolving APIs are used more by clients.

Study Limitations and Future Work

False negatives and positives in detecting API
usage updates.

Our method of detecting lagging methods
does not take into account multi-version API
support.

We study the correlation between APl usage,
adoption, and bugs, but not causation.
External validity beyond studied mobile apps
from github.

Summary and Future Work

We study on the co-evolution of Android OS and
its clients.

28% of Android references are lagging behind the
latest version with a median lagging time of 16
months.

22% of outdated API references upgrade to use newer
APls. The median propagation time is 14 months.

Fast-evolving APIs are used more.

APl updates are more defect prone than other types
of changes in client code.

Summary and Future Work

Various stakeholders affect the process of AP!
adoption in the software ecosystem. We need
to identify factors affecting APl adoption.

Our goal is to automate required API
adaptations in client applications using our
example-based program transformation
approach [Meng et al. 2013.]

Questions?

