
A Study of Evolution in the Presence of
Source-Derived Partial Design Representations

Vibha Sazawal, Miryung Kim, and David Notkin
University of Washington

Computer Science & Engineering
Seattle, Washington 98195-2350, USA

{vibha, miryung, notkin}@cs.washington.edu

Abstract

When performing evolution tasks, software engineers fo-
cus on both the low-level changes required and the effects
those changes will have on the system’s design. The De-
sign Snippets Tool generates partial design representations
intended to help engineers address one design criterion:
ease of change. In this paper, we describe a study in which
participants used the Design Snippets Tool and other aids
to perform a restructuring task focused on ease of change.
Our findings describe how participants proceeded through
the restructuring task and how they used the Design Snip-
pets Tool. The results show that participants used the De-
sign Snippets Tool for high-level tasks such as discovery of
design problems, identification of restructuring goals, and
confirmation of design improvements.

1. Introduction

Software engineers intend to build and maintain soft-
ware systems that meet not only functional requirements
but also relevant design criteria. Common design criteria
for software systems include ease of change, ease of un-
derstanding, testability, and robustness. When modifying
existing code, software engineers focus on both the low-
level changes needed and the implications those changes
will have on the system’s design. For example, software
engineers examine whether changes will affect the system’s
adherence to relevant design criteria or whether the system
should be restructured before changes are implemented.

Today’s integrated development environments (IDEs)
provide significant support for browsing code, navigating
through code, and editing code. Software engineers have
far less support, however, for the high-level design decision-
making they perform as they investigate and modify exist-
ing code. Some software engineers gather low-level results

from tools such as grep and then process it into design-
level information. Software engineers also turn to low-tech
tools such as whiteboards and notebooks.

Both low-level tools and low-tech tools have some ad-
vantages. Neither requires the use of a formal design no-
tation; freedom from such notations is convenient when an
engineer must divide attention between design-level ideas
and code-level modifications. In addition, these tools re-
main useful when existing code is incomplete or in an in-
consistent state. Nonetheless, these tools do not provide
direct support for evaluating an existing system’s design.

We have developed a new tool that provides better sup-
port for one design criterion: ease of change. If software
is undergoing active evolution, then ease of change is es-
sential [10]. Ease of change is a complex criterion that is
affected by many properties of a software system. For the
purposes of designing our new tool, we focused on three
change-related design rules from the literature: (a) hide
volatile implementation details behind an interface [14], (b)
reduce coupling between modules [1], and (c) if volatile de-
tails must be revealed to some clients, then restrict clients
who do not need privileged details to a narrower interface
[3].1 Our tool displays information relevant to compliance
with these three design rules. More specifically, the tool an-
alyzes code to generate partial design representations that
we call design snippets.

In this paper, we describe an investigation into support
for ease of change during software evolution. We present
the results of a study in which participants were asked to
perform a restructuring task. Participants could use stan-
dard IDE features, pen and paper, and our new tool that
generates design snippets. In Section 2, we introduce the
restructuring task that participants were asked to perform.
This task is used as a running example when we describe the

1Other software engineering design rules also promote ease of change.
For example, Parnas has defined rules for ease of extension and contraction
[15]. Accommodation of these additional rules is a subject of future work.

Proceedings of the 7th International Workshop on Principles of Software Evolution (IWPSE’04) 
1550-4077/04 $ 20.00 IEEE 



Design Snippets Tool in Section 3. In Sections 4 through 6,
we describe our study in detail and present results. Sections
7 and 8 discuss related work and conclusions respectively.

2. The restructuring task

We conducted the study presented in this paper to learn
more about design decisions made during evolution tasks
and to explore what value our tool might provide when mak-
ing decisions related to ease of change. The study observes
the use of our tool and other aids during a restructuring task.
In this section, we introduce the restructuring task we asked
study participants to perform. The next section introduces
the Design Snippets Tool using this task as a running exam-
ple.

The restructuring task motivates use of the design rules
described in the Section 1. Most small tasks cannot realisti-
cally require application of all three design rules, so we lim-
ited the scope of our task to the first two design rules. The
task was inspired by the description of the Strategy pattern
in Design Patterns [5]. One application area for Strategy
described in the book is text input validation.

We created a simple application that validated text input
but did not use the Strategy pattern to implement input val-
idation. Instead the application implemented validation in
a more coupled and less flexible way. We call this applica-
tion the “InputForm.” The task given to participants is to
restructure the InputForm application to make it easier to
change.

2.1. The InputForm application

The InputForm application’s GUI contains three text
fields. A user inputs a date, a phone number, and a social
security number. When a user clicks the “Enter” button, the
application validates the entered inputs. If the format is in-
valid, the application displays the message “Format Error.”

The InputForm application is implemented using six
Java classes and one Java interface. TestDriver con-
tains the Swing GUI code needed to provide an appealing
look and feel to the application. It is not critical to the re-
structuring task. The InputForm class creates several in-
stances of the TextBox class to populate the form. The
remaining three classes – PhoneFormat, DateFormat,
and SSNFormat – all implement the Format interface.

Key portions of the application related to the restructur-
ing task are located in two methods of the InputForm
class: createTextBoxes and checkFields. An ex-
cerpt of source code from these two methods is listed below.

public JPanel createTextBoxes() {
JPanel panel = new JPanel();
//create a date field
dateField = new TextBox();

dateField.setFormat(new DateFormat());
JLabel dateLabel
= new JLabel(date+":" + "YYYY/MM/DD");
dateLabel.setLabelFor(dateField);

//create a phone field
TextBox phoneField = new TextBox();
phoneField.setFormat(new PhoneFormat());
JLabel phoneLabel
= new JLabel(phone+": " + "(###)###-####");
phoneLabel.setLabelFor(phoneField);

// create a SSN field in the same way...

// add each field to an array of
// TextBox instances
textboxes.add(dateField);
textboxes.add(phoneField);
textboxes.add(ssnField);

// add textboxes to panel (omitted here)

return panel;
}

public boolean checkFields() {

Iterator i = textboxes.iterator();
boolean result = true;
while (i.hasNext()) {

TextBox textbox = (TextBox)i.next();
Format format = textbox.getFormat();
String data = textbox.getText();

if (format instanceof DateFormat) {
DateFormat f = (DateFormat)format;
if (textbox.check(f, data) == false) {

result = false;
}

}
if (format instanceof PhoneFormat) {

PhoneFormat f = (PhoneFormat)format;
if (textbox.check(f, data) == false) {

result = false;
}

}
if (format instanceof SSNFormat) {

// ... analogous code here
}

}
return result;

}

Despite the existence of three format classes, the code
that performs the actual input validation is contained within
the TextBox class. TextBox actually contains three
methods named check, each one taking a different type
of format as a parameter. TextBox also contains numer-
ous static final constants that are used by the check meth-
ods. InputForm casts the Format instance associated
with each TextBox instance and then calls one of the
TextBox.check methods to execute the input checking.

This code contains numerous violations of the first two
design rules mentioned in Section 1. First, implementa-

Proceedings of the 7th International Workshop on Principles of Software Evolution (IWPSE’04) 
1550-4077/04 $ 20.00 IEEE 



tion details about input validation are not adequately hidden
from InputForm: createTextBoxes has knowledge
of format strings (such as “YYYY/MM/DD”) and check-
Fieldsmakes assumptions about the types of formats that
are returned from TextBox.getFormat(). Secondly,
there is unnecessarily tight coupling among InputForm,
TextBox, and all three format classes. Adding new kinds
of text fields to this application is tedious and difficult.

2.2. The task and a plausible solution

The task was given to study participants as follows:
Restructure the InputForm application, with the antic-

ipation that different kinds of text fields will be added in
the future. For example, a planned future change involves
adding text fields for “Zip code,” “Credit card number,” and
“Expiration date.” All three of the new fields will need input
validation as well.

Your task is to restructure the existing application to
make the software easier to change, given the knowledge
of this upcoming change request.

One plausible solution to the task is to apply the Strategy
pattern to the application. Input validation would be per-
formed by the three format classes, not TextBox. For-
mat would be changed into a class and would hold general
constants likely to be used by multiple Format subclasses.
Format subclasses would be responsible for preparing
the format strings used in createTextBoxes. These
changes would encapsulate input validation details behind
the Format interface.

As stated in the Design Patterns book, a known feature
(or flaw, depending on your perspective) of the Strategy pat-
tern is that “clients must be aware of different Strategies”
[5, page 318]. In other words, the InputForm must still
know which of the Format subclasses to instantiate when
creating a text field. Because InputForm is a simple ap-
plication, this feature of Strategy may be acceptable. Alter-
natively, a restructuring may also include application of the
Factory pattern. A well-implemented factory could encap-
sulate the creation of TextBox instances and their associ-
ated formats from the InputForm class and thus remove
the coupling between InputForm and the Format sub-
classes.

3. The Design Snippets Tool

The Design Snippets Tool generates partial design repre-
sentations (design snippets) from code. A design snippet is
a partial, lightweight design representation that is displayed
with an associated unit of code and is useful for design eval-
uation. The usage scenario assumes that software engineers
will view code and design snippets at the same time or in
the same small time frame. Co-display of design snippets

and code creates a shared context that increases the com-
prehensibility of snippets and allows the software engineer
to focus more easily on design details related to a unit of
interest.

When evaluating a single unit of a codebase, engineers
often need to consider the unit’s relationships with other
parts of the codebase. Design snippets assist in this task
by providing both information about the current unit and
relevant information about other parts of the codebase. In
other words, design snippets are partial but not local. De-
sign snippets offer a broader context that supports decision-
making yet is sufficiently scoped to ease transitions between
viewing code and snippets.

Snippets are lightweight in several senses. First, they are
designed to be used concurrently with code. Second, the
unit of code under consideration has a set of associated snip-
pets that are automatically, quickly, and statically extracted
from the code and kept up-to-date as the code is modified.
(The analysis of the code is done statically.) Third, they
are designed to be easy to integrate into existing software
evolution processes.

The Design Snippets Tool is implemented as a plug-in to
the Eclipse Java IDE [4]. Since Eclipse programmers edit
Java files, the “unit” of code associated with each snippet
is a Java file. The Design Snippets Tool displays the set of
design snippets associated with the active Java file. Figure
1 shows a screenshot of the Eclipse IDE with the Design
Snippets Tool plug-in. The snippets appear below the code.

Figure 1. The Eclipse Java IDE with Design
Snippets Tool plug-in

The Design Snippets Tool currently computes four de-
sign snippets, each supporting one of the three “ease of
change” design rules described in Section 1. The Informa-
tion Hiding snippet and Type Assumptions snippet support
adherence to the first design rule (hide implementation de-
tails). The Dependencies snippet supports adherence to the
second design rule (reduce coupling). The De Facto In-
terfaces snippet supports adherence to the third design rule

Proceedings of the 7th International Workshop on Principles of Software Evolution (IWPSE’04) 
1550-4077/04 $ 20.00 IEEE 



(restrict non-privileged clients to a narrow interface). As we
describe each of the snippets, we will provide examples of
the snippet views that are generated from files in the Input-
Form application.

3.1. Information Hiding snippet

The Information Hiding snippet provides information
that helps the programmer evaluate the separation between
interface and implementation. The snippet computes a view
of the interface and implementation of each type defined
in the associated Java file. The interface view lists su-
perclasses, superinterfaces, and non-private member signa-
tures. The implementation view lists private member sig-
natures and “other classes used” by the class. The “other
classes used” are neither parameters nor fields, but the im-
plementation depends on them. These dependencies cannot
be determined from perusal of the class declaration.

Using the Information Hiding snippet, a software engi-
neer can identify relationships revealed by the interface and
relationships hidden by the implementation. The snippet’s
display is organized for easy comparison of interface and
implementation.

Figures 2 and 3 display screen shots of the Information
Hiding views associated with TextBox.java. We present the
interface view and the implementation view separately, but
in the actual tool they appear side-by-side.

Figure 2. Information Hiding view for
Textbox.java, interface portion

Figure 3. Information Hiding view for
Textbox.java, implementation portion

3.2. Type Assumptions snippet

The Type Assumptions snippet lists casts of parameters
and return values. These casts matter because the method
signature is the interface between caller and callee. If a
callee casts a parameter, then it makes an assumption about
the data passed to it by the caller. If a caller casts a return
value, then it makes an assumption about the data passed to
it by the callee. These assumptions violate the separation
between interface and implementation.

Figure 4 shows the Type Assumptions view associated
with TextBox.java. The view shows that InputForm
makes assumptions about the possible run-time types of the
Format instance returned from TextBox.getFormat.

Figure 4. Type Assumptions view for
Textbox.java

3.3. Dependencies snippet

The Dependencies snippet describes interclass relation-
ships. Given a set of types T defined in the currently active
file, the Dependencies snippet displays which types depend
on T and which types T depends on. Edge labels indicate
the cause of the source and sink’s relationship.2 Types are
clustered into groupings based on Java packages, so depen-
dencies that cross package boundaries are easily identified.
Design Snippets Tool users can also choose to elide depen-
dencies in order to focus on classes of interest. The De-
pendencies snippet is intended to help software engineers
reduce coupling between modules.

Figure 5 shows an example of the Dependencies view
associated with InputForm.java. Edge labels are asso-
ciated with the edge to the left of the label. Dependencies
to Java library classes have been elided.

3.4. De Facto Interfaces snippet

The De Facto Interfaces snippet helps the programmer
identify the width of interfaces used by clients. A de facto
interface [9] is the set of members actually used by a client.
For each type defined in the currently active file, the De
Facto Interfaces snippet reports a list of clients and the de

2For example, A “new” B means that A dynamically instantiates an
instance of B. A full explanation of all edge labels appears elsewhere [17].

Proceedings of the 7th International Workshop on Principles of Software Evolution (IWPSE’04) 
1550-4077/04 $ 20.00 IEEE 



Figure 5. Dependencies view for Input-
Form.java

facto interface for each client. With the De Facto Interfaces
snippet, software engineers can evaluate whether volatile
design details are being properly restricted to privileged
clients.

An alternative view of the De Facto Interfaces snippet
reports a list of members and a set of clients for each mem-
ber. This reordering is similar to a call graph. The call
graph style may be more useful to software engineers when
the third design rule (restrict non-privileged clients) is not
immediately relevant.

Figure 6 shows the De Facto Interface views for Phone-
Format.java.

Figure 6. De Facto Interfaces views for Phone-
Format.java

4. Study

The purpose of the study was to observe use of the De-
sign Snippets Tool and other tools during a restructuring
task focused on ease of change. We wanted to see if the De-
sign Snippets Tool provided value to study participants, and
in particular whether the Design Snippets Tool helped study
participants with design decision-making related to ease of
change.

Any restructuring task is open-ended by nature, and we
expected study participants to approach the task in different
ways. In addition to understanding the value of the Design

Snippets Tool, we were interested in two specific questions:
How did study participants use design snippets? and How
did study participants decide what to change?

4.1. Method

Eight subjects participated in the user study – two were
software engineering practitioners from industry and six
were graduate students in computer science. All eight par-
ticipants were experienced programmers.

Sessions ranged in time from 60 to 90 minutes. All par-
ticipants first read a set of tutorial slides. The tutorial in-
troduced the first two design rules for ease of change men-
tioned earlier (“Isolate implementation details behind an in-
terface” and “Reduce coupling between modules”). The
tutorial then described the four design snippets. Only the
call graph style of the De Facto Interfaces snippet was de-
scribed. Study participants were permitted to ask questions
as they read the tutorial and throughout the remainder of the
session.

After reviewing the tutorial, users were given a short
handout that described all the edge labels of Dependencies
snippet graphs. Study participants could choose to review
the edge label handout immediately or reserve it as a refer-
ence for later use.

Study participants were then given a functional descrip-
tion of the InputForm application. Upon review of the
functional description, the study participants launched the
Eclipse IDE and were shown the code for the InputForm
application. The study participants were also shown the lo-
cation of the four design snippet views in the Eclipse IDE.

Each user then completed three warm-up tasks designed
to give them familiarity with both the Design Snippets Tool
and the InputForm application. Example questions from the
warm-up tasks include “What classes depend on Phone-
Format?” and “Who calls TextBox.getFormat?”
The warm-up tasks were designed to be completed using
the Design Snippets Tool, but users were free to find an-
swers directly from perusal of the code or by using other
tools available in the Eclipse IDE. Users were allowed to
ask questions related to both the Design Snippet tool and
other features of the Eclipse IDE.

After the warm-up tasks, study participants were given
the restructuring task as described in Section 2.2. After the
restructuring task, study participants answered a series of
follow-up questions.

Each study session was attended by a facilitator and
a notetaker. Study participants were encouraged to think
aloud [11] during both the warm-up tasks and the restruc-
turing task. For six of the eight participants, we recorded
mouse and keyboard actions using screen capture software.

Proceedings of the 7th International Workshop on Principles of Software Evolution (IWPSE’04) 
1550-4077/04 $ 20.00 IEEE 



4.2. Two study session narratives

In this section, we present two study session narratives.
In the next section, we will summarize our findings from
analysis of all study session narratives. To help preserve
anonymity, all participants will be referred to using female
pronouns. The narratives were created by merging hand-
written notes from the user sessions with screen capture
data.

These two narratives illustrate two different usage sce-
narios with the Design Snippets Tool. Participant A is very
familiar with the Eclipse IDE and used its functionality
along with extensive review of the code. She used design
snippets briefly during the start and end of the restructur-
ing task. Participant B, in contrast, made extensive use of
design snippets before modifying the code. Each narrative
demonstrates ways in which design snippets can be incor-
porated into the evolution process.

Participant A. Participant A is a graduate student in
computer science. She has used Java extensively over the
last five years and has used the Eclipse IDE for one year.
This participant finished the restructuring task very quickly
compared to other participants, using less than 20 minutes.

Initial exploration and identification of design prob-
lems. When the participant began the restructuring task,
she looked briefly at the Dependencies view of Input-
Form. The participant then went on to study the code for
InputForm, DateFormat, and TextBox. While view-
ing TextBox.java, the participant saw declarations for the
three check methods in Eclipse’s Outline view.3 The partic-
ipant said aloud, “Oh ugliness!”

Solution approach. The participant then proceeded to
move the check methods out of TextBox into the three
format classes. Due to compiler errors generated by her
changes, the participant moved TextBox’s fields into a
new abstract base class called AbstractFormat.

After completing the restructuring task. At the end of
the restructuring, the participant looked at the Dependen-
cies view of InputForm. She noted that the view “shows
no more casts.” The participant stated that there was no
more restructuring to do. The participant also said that it
would take time to learn how to use design snippets effec-
tively. She asked if she could install the design snippets tool
on her personal machine so that she could learn to better in-
corporate it into her process.

Participant B. Participant B works for a medium-sized
software company. She has used Java for over three years
but has not used the Eclipse IDE previously. The participant
spent 30 minutes on the restructuring task.

Initial exploration and identification of design problems.
The participant began by reviewing the code of Input-

3Eclipse’s Outline view lists the members of all classes defined in the
current Java file.

Form, the Information Hiding view of PhoneFormat,
and the Dependencies views of PhoneFormat and SS-
NFormat. After this exploration, the participant stated that
InputForm and TextBox were too coupled to the three
format classes.

The participant went on to study more snippet views and
code, including the Type Assumptions view of TextBox
(which shows the casts of getFormat’s return value), the
Dependencies view of InputForm, and the code for In-
putForm.createTextBoxes. At this point, the partic-
ipant stated that createTextBoxes contains too much
code and that InputForm should not need to change much
when new text fields are added.

The participant then viewed the code and Dependencies
views of PhoneFormat and Format, followed by an-
other review of InputForm code. At this point, the user
suggested that application of the factory pattern might re-
move the coupling between InputForm and the three for-
mat classes. The participant also proposed a new class that
would encapsulate a JLabel instance, a Format instance,
and a TextBox instance. InputForm would instantiate
instances of this composite class instead of all three sepa-
rately.

The participant moved on to the Dependencies view of
TextBox. She stated that “TextBox depends on too
much.” She then used the De Facto view of TextBox to
determine the caller of Textbox.check. The De Facto
view led her to InputForm.checkFields.

Solution approach. The participant then ended her ex-
ploration and began restructuring the application. She
converted Format to a class and moved validation-
related constants from TextBox to Format. TextBox’s
check methods were moved to the three specific for-
mat classes. The participant then returned to In-
putForm.createTextBoxes and replaced the magic
strings (e.g. “YYYY/MM/DD”) with calls to For-
mat.getFormatString.

After completing the restructuring task. The participant
stated that if she had more time, she would implement the
composite class described earlier and then study the design
snippet views to explore the effects of her changes. The
participant also mentioned that the Type Assumptions and
Dependencies views for TextBox helped her identify de-
sign problems.

5. Findings from study session narratives

In this section, we summarize findings from seven of
the eight study sessions. To analyze study session narra-
tives, we partitioned each session narrative into a series of
episodes. Each episode consists of actions and statements
made in the same time frame toward a single purpose. Use
of the think-aloud protocol greatly assisted our ability to as-

Proceedings of the 7th International Workshop on Principles of Software Evolution (IWPSE’04) 
1550-4077/04 $ 20.00 IEEE 



certain the purpose of participants’ actions, and the process
of building episodes enabled us to connect actions with in-
tentions. We then reviewed the episodes for each participant
to answer questions of interest.

We omitted one session from our analysis because the
participant involved did not complete the restructuring task.
This participant stated that the task as written suggested that
only three new text fields would be added, and that three
fields was not enough motivation for serious restructuring
of the InputForm application. The participant proceeded
to add a new text field to the application, but the task of
adding a new text field is fundamentally different than the
restructuring task that all other participants completed. This
participant did not use design snippets.

Sections 5.1 and 5.2 summarize our answers to the two
questions posed in Section 4.1. In Section 6, we discuss
what our study suggests about the value of the Design Snip-
pets Tool.

5.1. How did study participants use design snippets?

Seven study participants chose to use design snippets as
they completed the restructuring task. We categorized these
uses based on the actions and statements that immediately
preceded and followed snippet use.

To identify design problems. Four participants used
design snippets to identify design problems with the sys-
tem. Design problems were identified from the Type As-
sumptions view of TextBox, the Dependencies view of
TextBox, and the Dependencies view of InputForm.
Study participants made comments such as “Oh, I see.
It’s annoying that TextBox explicitly depends on [format
classes].”

To plan restructuring or identify restructuring goals.
Three study participants used design snippets to plan their
restructuring or to identify objectives. After seeing the De-
pendencies view for InputForm, one participant decided
her restructuring should remove the “cast” edge label be-
tween InputForm and the format classes. The participant
stated after the task that the undesirable edge labels gave
her a goal. After reviewing design snippets and code, two
participants drew Dependencies-like diagrams on paper that
described the inter-class structure they wanted the restruc-
tured version to have.

To examine effects of changes on design. Three par-
ticipants used snippets to examine the effects of their re-
structuring changes on the system’s design. For example,
two participants used the Dependencies view of Input-
Form to confirm that the “cast” edge label was no longer
present. One participant used the Information Hiding view
of TextBox to confirm that she had simplified TextBox’s
public interface. That participant also used the Type As-
sumptions view of TextBox to confirm she had removed

the casts of getFormat’s return value. One participant ex-
pressed interest in returning to design snippets to evaluate
her changes but ran out of time.

To increase program understanding. Four participants
used design snippets to assist in program understanding
tasks. Often these program understanding tasks were re-
lated to determining the effects of changing part of the
code. One participant used the Information Hiding view
of InputForm to determine which InputForm method
called the format classes’ constructors. That participant also
used the Dependencies view of SSNFormat to learn which
classes depend on it. One participant used Dependencies
views extensively to learn about the different classes in the
program and their relationships to each other. Three partic-
ipants used the De Facto Interfaces view to determine the
callers of methods. One participant mentioned that class
usage can be more important when restructuring than class
definitions.

To discover relevant questions about the code. Fi-
nally, the design snippet views prompted two participants to
ask questions about the code. For example, one participant
asked, “Why are these fields in TextBox?” when look-
ing at the Information Hiding view of TextBox. Another
participant asked, “Where are Format instances casted?”
when viewing the Dependencies view of InputForm.

5.2. How did study participants decide what to
change?

Seven participants made changes in response to prob-
lems they found in the system. Participants differed in the
way that they discovered problems, the way they character-
ized the problems, and the solution approaches they took in
response to the problems. We present four approaches to
problem discovery below.

Review of design snippets in the context of code. As
discussed above, five of the participants used design snip-
pets to identify problems or plan their solution approaches.
These participants described problems in terms of classes
being too coupled and return values being inappropriately
casted. Sometimes the description of a problem and so-
lution approach were combined; for example, one partic-
ipant expressed the desire to restructure the code so cer-
tain edge labels would not appear in the Dependencies
view of InputForm.java. All participants who studied de-
sign snippets also studied the code, and often additional
problems or solution ideas came from review of the code.
For example, one participant’s study of casts in the De-
pendencies view of InputForm led to review of Input-
Form.checkFields. The participant then stated, “This
is silly. Format classes should do their own checking.”

Review of the code. Two participants identified prob-
lems solely through review of the code. Design snippets

Proceedings of the 7th International Workshop on Principles of Software Evolution (IWPSE’04) 
1550-4077/04 $ 20.00 IEEE 



may have helped them understand the code, but the code
was their primary source for identification of problems and
possible restructuring solutions. One participant identified
a problem area by stating that it did not match her intuition.
The solution approach was then to change the code so that it
better matched how the participant thought it should work.
Another participant looked at the three check methods in
TextBox and diagnosed the problem as one of “trying to
handle all the types [formats] in one class.” She immedi-
ately proposed the creation of a TextBox class hierarchy,
with one TextBox subclass for every format.

Use of other Eclipse features. Two participants identi-
fied problems using other Eclipse tools. For example, these
participants realized that there were three check methods
from Eclipse’s Outline view. Both of these participants also
studied the code and design snippets.

Compiler errors caused by previous changes. Once
participants identified a solution path, some participants
would immediately start making changes, while others
would first consider the implications of these solution ideas
on other parts of the code. For example, two of the partici-
pants, both of whom primarily used snippets to identify de-
sign problems, realized that their solution approaches would
require the movement of validation-related constants out of
TextBox. They made this realization before making any
actual changes to the code. In contrast, four participants did
not consider the validation-related constants in TextBox
until they encountered compiler errors created when they
moved the check methods out of TextBox.

6. Discussion

In this section, we discuss additional results that pertain
to the value of the Design Snippets Tool. We recognize that
only eight subjects participated in the study and that the re-
structuring task was a problem of our own choosing. As a
result, we cannot generalize our results, nor can we claim
to completely understand the benefits and costs of design
snippets use. These limitations affect the external validity
of our study. Nonetheless, we believe the study informs our
understanding of how design snippets can be used to sup-
port design decision-making related to ease of change. The
study can also inform our understanding of how the tool can
be improved.

6.1. Co-viewing of code and design snippets

Earlier in the paper we suggested that design snippets
and code are intended to be viewed in the same small time
frame. The study provides evidence that supports this claim.
All study participants who used design snippets used them
in the context of reviewing or editing code. Some partici-
pants primarily worked with code and viewed design snip-

pets infrequently, while others switched between code and
design snippets more frequently.

Table 1 describes the context switches made by the seven
study participants who used snippets. A context switch is a
switch between one Java file and another Java file, a switch
between a Java file and a design snippet view (or vice versa),
or a switch between two design snippet views. For the pur-
poses of this analysis, we did not consider other actions
performed by users, such as using other Eclipse tools, run-
ning the application, or drawing diagrams. The first four
columns list the number of switches performed by each par-
ticipant (A-G). In the last column, we show the percentage
of context switches that are code-to-snippet (code/DS) or
snippet-to-code (DS/code). These numbers were computed
from the screen recordings and our notes.

The table suggests that most study participants switched
numerous times between design snippets and code. This
evidence is promising, because our intended usage scenario
assumes that software engineers will view design snippets
as they view and modify code.

Table 1. Context switches by participants
Context Switches

from
design
snippet
to code

from
code to
design
snippet

between
two
snippets

between
two
Java
files

percent
switches
that are
code/DS
or
DS/code

A 1 2 0 29 9%
B 3 3 9 14 21%
C 6 7 22 52 15%
D 2 2 2 18 17%
E 5 4 7 39 16%
F 9 9 5 25 38%
G 5 5 7 20 27%

6.2. Support for ease of change

The Design Snippets Tool was created to support
decision-making related to ease of change. Did design snip-
pets help participants with design-level decision-making,
and specifically, did design snippets help with ease of
change?

Seven of the eight study participants used design snip-
pets to identify design problems, identify restructuring
goals, or confirm that their changes had improved the sys-
tem’s design. These types of uses indicate that snippets may
help with high-level design decision-making and evaluation
of a system’s design.

Proceedings of the 7th International Workshop on Principles of Software Evolution (IWPSE’04) 
1550-4077/04 $ 20.00 IEEE 



With regard to ease of change, four participants men-
tioned that design snippets led them directly to undesirable
couplings or casts. Three participants mentioned that design
snippets confirmed that their changes had removed casts
or improved an interface. While few of these participants
explicitly used the phrase “ease of change,” most of them
made comments that highlighted symptoms or solutions di-
rectly related to ease of change. We believe these comments
indicate that design snippets helped participants evaluate
and improve the system with regard to ease of change.

We should note that participants also discovered “ease
of change” problems by reviewing the code. For ex-
ample, three participants noticed duplication in Input-
Form.createTextBoxes after studying the code. One
participant said, “If my goal is to make it easy to add
text fields, I definitely want to make this [create-
TextBoxes] less repetitive.”

When referring to duplication in createTextBoxes,
one participant stated that “It’s a bit deceptive if you start
thinking that design snippets will show you all the prob-
lems with the code, because it does not.” This comment is
consistent with the role that code plays in our usage sce-
nario. Design snippets cannot replace code review; instead,
our view is that design snippets and code should be studied
together. Using both design snippets and code, most study
participants successfully identified and fixed problems re-
lated to ease of change.

6.3. Scope and availability of design snippet
representations

Design snippets are partial representations. For example,
the Dependencies view for TextBox displays only those
classes that depend on TextBox or that TextBox depends
on. Earlier in the paper, we suggested that the partial scope
of snippets eases transitions between Java files and snippets.
Table 1 suggests that study participants were indeed able to
transition easily between Java files and snippets.

We also suggested earlier that the non-local information
provided by snippets offers a broader context that assists
decision-making. Anecdotal evidence from the study sug-
gests that participants appreciated the non-local informa-
tion. Participants’ comments include:

• “Cool, I can get it over here.” (The participant is refer-
ring to the casts visible in TextBox’s Type Assump-
tions view, even though the casts actually occur in In-
putForm.)

• “This [the Dependencies view] sort of reverses who
uses a particular [class] . . . [it’s the] reverse of [the]
typical [view] . . . it is very useful.” (This participant
is describing how the Dependencies view displays the

classes that depend on a class in addition to what the
class depends on.)

• “Now this [De Facto Interfaces view] is useful [be-
cause it lists callers when callee code is active] . . .
this seems to be a more natural interface for me.” (The
participant is comparing the De Facto Interfaces view
to Eclipse’s “Search References” right-click menu op-
tion [7].)

Study participants viewed snippets as they made changes
to the code and when they had completed their changes to
the code. Snippet views were updated as participants made
changes, with no effort required on the part of the partic-
ipant. One participant appreciated the real-time update of
design snippet views, saying, “[The Dependencies view] is
very helpful. I have used a UML visualization [tool] . . . it
is inconvenient, it takes time to update every time the struc-
ture changes. This was convenient. I don’t know of a better
way to do this.”

6.4. Possible tool improvements

Navigation from design snippets to code. Design snip-
pets in their current form are passive. Most participants,
however, attempted to navigate to different parts of the
codebase by clicking on elements in snippet views. As one
participant said, “I want to tie backward from the design
snippet tools to the code.” For example, navigation support
for the Type Assumptions view could include clicking on
entries to jump to locations of casts in the code.

Intra-module information. Three participants tried to
use design snippets to determine the specific TextBox
methods in which private TextBox fields were accessed.
Since design snippets do not display intra-module depen-
dencies, they did not answer this question. The three de-
sign rules that form the foundation for the Design Snippets
Tool focus on inter-module relationships, not intra-module
relationships. During the study, however, it became clear
that solutions to inter-module problems often require that a
module be torn apart. Intra-module information is very use-
ful when moving pieces of a module to other places. One or
more intra-module design snippets could also help software
engineers meet design rules related to intra-module struc-
ture.

7. Related work

Model-driven development tools. Model-driven devel-
opment tools, such as IBM’s Rational Rose XDE [6] and
Borland’s Together [2], support the creation of both UML
diagrams and code. These tools automatically generate
code from UML diagrams and vice versa.

Proceedings of the 7th International Workshop on Principles of Software Evolution (IWPSE’04) 
1550-4077/04 $ 20.00 IEEE 



The main difference between these tools and the Design
Snippets Tool is the form and role of design representations.
Using a model-driven tool, software engineers can create
large-scale UML models that describe the entire system. In
contrast, the Design Snippets Tool provides partial design
representations. These partial representations do not fully
describe the system; instead, they support three ease-of-
change rules. Design snippets exist to promote adherence
to design criteria. Their intended users focus primarily on
code but would benefit from design decision support as they
modify code.

Program understanding tools. Tools such as Rigi [13]
and SHriMP [18] visualize the structure of software sys-
tems. SNiFF+ [8] performs static analysis to identify refer-
ences to symbols and visualize inter-module relationships.
Lemma [12] supports navigation through control flow and
data flow paths. Empirical studies of program understand-
ing tools have been performed by Storey et al. [19] and von
Mayrhauser and Lang [21].

The Design Snippets Tool differs from program un-
derstanding tools because of its explicit focus on ease of
change. Design snippets can assist code comprehension,
but the views presented are not intended to provide com-
plete understanding. Instead, design snippets elide details
unrelated to ease of change.

Design critics. Design critics [16] are design-support
agents that automatically critique designs. One design critic
tool, ArgoUML [20], has a set of built-in design rules for
UML diagrams. Examples of rules include “package names
should be written in lower case” and “circular compositions
are not permitted.”

The Design Snippets Tool also supports a set of rules
(in this case, three rules related to ease of change). How-
ever, the Design Snippets Tool analyzes code, not design
models. In addition, the Design Snippets Tool does not ex-
plicitly identify rule violations; instead, software engineers
view design snippets in the context of code to manually as-
sess the tradeoffs and decisions related to ease of change.

8. Conclusion

Design snippets are partial and lightweight design repre-
sentations that help software engineers assess adherence to
three design rules related to ease of change. In this paper,
we present a study in which participants used design snip-
pets and other aids to complete a restructuring task focused
on ease of change. The results suggest that study partici-
pants used design snippets in the context of code for high-
level tasks such as discovery of design problems and con-
firmation of design improvements. Participants also made
decisions using knowledge gained from code review and
low-level tool output (such as compiler errors). The study’s
findings increase our understanding of how design repre-

sentations can be used in the context of evolution. We plan
to use the study’s results to guide future improvements to
the Design Snippets Tool.

References

[1] G. Bergland. A guided tour of program design methodolo-
gies. IEEE Computer, October 1981.

[2] Borland Together. [http://www.borland.com/together].
[3] K. Britton, R. A. Parker, and D. Parnas. A procedure for

designing abstract interfaces for device interface modules.
In Proceedings of the 5th International Conference on Soft-
ware Engineering, March 1981.

[4] Eclipse Foundation. Eclipse. [http://www.eclipse.org].
[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design

Patterns. Addison-Wesley, 1995.
[6] IBM Rational Rose XDE Developer. [http://www-

306.ibm.com/software/rational].
[7] A. Kiezun. Java user development guide, 2004.

[http://www.eclipse.org/documentation/main.html].
[8] M. Klaus. Simplifying code comprehension for legacy code

reuse. Embedded Developers Journal, April 2002.
[9] W. Korman and W. Griswold. Elbereth: Tool support for

refactoring Java programs, 1998. Technical report, Univer-
sity of California, San Diego Department of Computer Sci-
ence and Engineering.

[10] M. Lehman and L. Belady. Program Evolution: processes
of software change. Academic Press, 1985.

[11] C. Lewis. Using the ‘thinking-aloud’ method in cognitive
interface design, 1982. Technical report RC9265, IBM T.J.
Watson Research Center.

[12] R. G. Mays. Power programming with the lemma code
viewer, 1996. Technical report, IBM TRP Networking Lab-
oratory.

[13] H. Müller and K. Klashinsky. Rigi – a system for
programming-in-the-large. In Proceedings of the 5th Inter-
national Conference on Software Engineering, April 1988.

[14] D. Parnas. On the criteria to be used in decomposing sys-
tems into modules. Communications of the ACM, December
1972.

[15] D. Parnas. Designing software for ease of extension and
contraction. IEEE Transactions on Software Engineering,
March 1979.

[16] J. E. Robbins, D. M. Hilbert, and D. F. Redmiles. Software
architecture critics in argo. In Proceedings of the 1998 Con-
ference on Intelligent User Interfaces, 1998.

[17] V. Sazawal. Dependencies snippet cheat sheet.
[http://www.cs.washington.edu/homes/vibha/ds.html].

[18] M.-A. D. Storey, H. A. Müller, and K. Wong. Manipulating
and documenting software structures. Software Visualiza-
tion, 1996.

[19] M.-A. D. Storey, K. Wong, and H. A. Müller. How do
program understanding tools affect how programmers un-
derstand programs? Science of Computer Programming,
36(2–3), 2000.

[20] Tigris.org. Argouml. [http://www.argouml.org].
[21] A. von Mayrhauser and S. Lang. On the role of static analy-

sis during software maintenance. In Proceedings of the Sev-
enth International Workshop on Program Comprehension,
1999.

Proceedings of the 7th International Workshop on Principles of Software Evolution (IWPSE’04) 
1550-4077/04 $ 20.00 IEEE 


	footer1: 


