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Abstract10

Tensors are multi-dimensional data structures that can represent the data processed by machine11

learning tasks. Tensor programs tend to be short and readable, and they can leverage libraries and12

frameworks such as TensorFlow and PyTorch, as well as modern hardware such as GPUs and TPUs.13

However, tensor programs also tend to obscure shape information, which can cause shape errors14

that are difficult to find. Such shape errors can be avoided by a combination of shape annotations15

and shape analysis, but such annotations are burdensome to come up with manually.16

In this paper, we use gradual typing to reduce the barrier of entry. Gradual typing offers a way17

to incrementally introduce type annotations into programs. From there, we focus on tool support18

for type migration, which is a concept that closely models code-annotation tasks and allows us to do19

shape reasoning and utilize it for different purposes. We develop a comprehensive gradual typing20

theory to reason about tensor shapes. We then ask three fundamental questions about a gradually21

typed tensor program. (1) Does the program have a static migration? (2) Given a program and22

some arithmetic constraints on shapes, can we migrate the program according to the constraints?23

(3) Can we eliminate branches that depend on shapes? We develop novel tools to address the three24

problems. For the third problem, there are currently two PyTorch tools that aim to eliminate25

branches. They do so by eliminating them for just a single input. Our tool is the first to eliminate26

branches for an infinite class of inputs, using static shape information. Our tools help prevent bugs,27

alleviate the burden on the programmer of annotating the program, and improves the process of28

program transformation.29
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1 Introduction35

Multidimensional data structures are a common abstraction in modern machine learning36

frameworks such as PyTorch [13], TensorFlow [1], and JAX [5]. A significant portion of37

programs written using these frameworks involve transformations on tensors. Tensors in38

this setting are n-dimensional arrays. A tensor is characterized by its rank and shape. The39

rank is the number of dimensions. For example, a matrix is two-dimensional; hence it is a40

rank-2 tensor. The shape captures the lengths of all axes of the tensor. For example, in a41

2× 3 matrix, the length of the first axis is 2 and the length of the second axis is 3; hence its42

shape is (2, 3).43
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11:2 Generalizing Shape Analysis with Gradual Types

Programming with tensors provides the programmer with high level and easy to under-44

stand constructs. Furthermore, tensors can utilize modern hardware such as GPUs and45

TPUs for parallelization. For those reasons, programming with tensors is preferred over46

programming with scalars and nested loops.47

Tensors in programming languages present the challenge that their shapes are hard to48

track. Modern machine learning frameworks support a plethora of operations on tensors,49

with complex shape rules. Addition for example, typically supports broadcasting, which is a50

mechanism that allows us to add tensors of different shapes, which is not intuitive. Complex51

shape rules make shapes hard to determine in programs, because shape information rarely52

explicitly appears in them. As a result, shape errors occur frequently [31].53

When not caught statically, shape errors will appear at runtime, which is undesirable54

because we would only know about the error when the wrong operation is finally invoked55

on concrete runtime values. Tensor computations are costly and a program may take a long56

time to run before finally crashing with an error. Additionally, some shape errors occur only57

for specific input shapes.58

The ability to reason about shapes is useful in various contexts in the machine learning59

area. It can prevent programmers from making mistakes and since programmers routinely60

transform machine learning programs [17], shape reasoning can also help program transform-61

ation tools to make valid program transformations because program transformations may62

depend on shape information.63

Users often add asserts or comments to help them reason about shapes. These tasks64

have a high cognitive load on users, especially when they are dealing with complex tensor65

operations. Shape asserts present even further challenges; they can manifest in the form of66

branches on program shapes. We observed this pattern on various transformer benchmarks67

[30]. Thus, in that pattern, the result of a branch depends on the shape of the program68

input, so the branch result can vary over different inputs. In machine learning programs,69

branches can be undesirable because they limit the back-ends a program can be run on, such70

backends include TensorRT and XLA. The reason control-flow is undesirable is it complicates71

fix-point analysis, particularly in shape propagation [17]. In practice, various tools handle72

this challenge in different ways. Some tools reject such programs entirely while other tools73

run the program on a single input to eliminate branches. Running a program on a single74

input means that branch elimination is correct for just one input, which is an unsatisfactory75

solution.76

Aiming to prevent the need for ad-hoc shape asserts, entire systems have been build to77

detect shape errors such as [15] and [24]. However, these systems are too specific. They78

lack a general theoretical foundation that enables their solution to be adapted to a variety79

of contexts, including incorporating their logic into compilers and program transformation80

tools.81

A fundamental approach towards shape analysis is designing a type system that supports82

reasoning about shapes. In that approach, shapes are type annotations. Traditionally, types83

have been used to solve similar problems in the area of programming languages. A fully84

static type system with tensor shapes [20] has limitations. First, a static type system may85

need to be elaborate in order to capture the complexities of machine learning programs,86

which are typically written in permissive languages such as Python. As a result, refinement87

or polymorphic types may be needed. Second, a static type system has a high barrier of entry88

because it requires the user to come up with non-trivial type annotations in advance. Third,89

many machine learning programs are in Python, so they are usually only partially typed.90

Therefore, fully typed programs are not readily available, which prevents this approach from91
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being backwards-compatible.92

A common way to circumvent the requirement of having fully typed programs is to use93

gradual types. In a gradually typed system, type annotations are not needed for the program94

to compile, when a compiler does type erasure. However, for a gradually typed system to95

be widely usable, it should enable principled yet practical tool support. Previous work such96

as [9] designed a gradually typed system for shapes but it is so powerful that practical,97

elaborate tool support may be hard to obtain. We believe that the key to shape analysis with98

gradual types is to balance between (1) the expressiveness of a gradually typed system and99

(2) the ease of tool support in that system.100

We show that gradual types can help us tackle shape-related problems in a principled101

and unified way. We introduce a gradual typing system that reasons about shapes and102

enables tool support.103

We distill the challenge of shape analysis into three key problems that we can ask of every104

gradually typed tensor program, and we introduce a general theory to solve all of them:105

Q(1): Static migration: Does the program have a static migration?106

Q(2): Migration under arithmetic constraints: Given a program and some arithmetic107

constraints on shapes, can we migrate the program according to the constraints?108

Q(3): Branch elimination: Can we eliminate branches that depend on shapes?109

We use PyTorch as the setting for our tool design and evaluation, though our approach110

is more generally applicable. For Q(1) and Q(2), PyTorch does not currently have any111

comparable tools, so our tools for those challenges do something new in the PyTorch setting.112

For Q(3), we incorporate our shape reasoning into two existing PyTorch tools that aim113

to eliminate branches from PyTorch programs. After augmenting both tools with our logic,114

we are able to improve the performance and accuracy of both tools as we will describe below.115

Our contributions can be summarized as follows:116

1. A gradually typed tensor calculus that satisfies static gradual criteria [23].117

2. A formal characterization of Q(1), Q(2) and Q(3) and their solutions.118

3. A demonstration of how our approach works for Q(1) and Q(2) on four benchmarks.119

4. For Q(3), a comparison on six benchmarks, against HuggingFace Tracer (HFTracer) [30],120

a PyTorch tool. HFTracer eliminates all branches based on a single input, while we121

eliminate all branches based on infinite classes of inputs. We use constraints to represent122

infinite classes of inputs.123

5. For Q(3), a comparison on five benchmarks against TorchDynamo [2], a PyTorch tool.124

TorchDynamo eliminates 0% of the branches in these benchmarks, while we eliminate125

branches by 40% to 100% on infinite classes of inputs.126

The full version has Appendices A–F with definitions and proofs.127

2 Three Migration Problems128

In this section, we introduce our type system informally, and we postpone the formal details129

to Section 3. A tensor type in our system is of the form TensorType(d1, . . . , dn) where130

d1, . . . , dn are dimensions.131

Every gradually typed system has a type Dyn, which represents the absence of static type132

information. In our system, Dyn can appear as a dimension, in which case the dimension is133

unknown. Dyn can also appear as a tensor annotation, in which case even the rank of the134

tensor is unknown.135

ECOOP 2024



11:4 Generalizing Shape Analysis with Gradual Types

In a gradual type system, a precision relation refers to the replacement of some of the136

occurrences of Dyn with static types. Dyn is the least precise type because it contains no137

type information. TensorType(1, 2, 3) and TensorType(1, 2) are unrelated by the precision138

relation because we cannot go from one type to another by replacing Dyn occurrences with139

more informative types, while TensorType(Dyn, 2) is less precise than TensorType(1, 2) be-140

cause we can replace the Dyn in141

TensorType(Dyn, 2) with 1 to get TensorType(1, 2). This relation extends to programs. Pro-142

gram A is less precise than program B if we can replace some occurrences of Dyn in program143

A to get to program B. Intuitively, program B is more static than program A. Precision144

gives rise to the migration space [12]. Given a well-typed program P , its migration space is145

the set of well-typed programs that are at least as precise as P .146

Intuitively, the migration space captures all ways of annotating a gradually typed pro-147

gram more precisely. Those possibilities form a partially ordered set, and our goal is to help148

the programmer find the migration paths they are looking for. With that in mind, let us149

look at examples of how reasoning about the migration space is beneficial for solving key150

problems about the shapes in a gradually typed program. Specifically, in Section 2, we will151

see two examples about Q(1) and Q(2) respectively, and in Section 2, we will see an example152

about Q(3).153

For an example of static migration, consider Listing 1 which has a type error.154
155

1 class ConvExample(torch.nn.Module):156

2 def __init__(self):157

3 super(BasicBlock, self).__init__()158

4 self.conv1 = torch.nn.Conv2d(in_channels=2, ..)159

5 self.conv2 = torch.nn.Conv2d(in_channels=4, ..)160

6161

7 def forward(self, x: TensorType([Dyn, Dyn])):162

8 self.conv1(x)163

9 return self.conv2(x)164165

Listing 1 Ill-typed convolution

In line 7, x is annotated with TensorType([Dyn, Dyn]). This is a typical gradual typing166

annotation which indicates that x is a rank-2 tensor. The annotation does not specify what167

the dimensions are. In line 8, we are applying a convolution to x. Intuitively, convolution is168

a variant of matrix multiplication; neural networks use it to extract features from images.169

According to PyTorch’s documentation, for the convolution to succeed, x cannot be rank-2.170

Thus, the type error stems from a wrong type annotation. The migration space of this171

program can easily inform us that the program is ill-typed, because the space will be empty.172

The reason for that is that the migration space of a well-typed program should contain at173

least one element, which is the program itself. A tool that can reason about the migration174

space can easily catch this bug in a single step.175

Let us fix this bug by replacing the wrong type annotation with a correct one. In176

Listing 2, we change x’s annotation from a rank-2 annotation to a rank-4 annotation:177

TensorType([Dyn, Dyn, Dyn, Dyn], which is correct. This program compiles, but it con-178

tains a more subtle bug. Let us look closely at the code to understand why.179

In line 4, we initialize a field, self.conv1, representing a convolution, torch.nn.Conv2d,180

which takes various parameters. The parameter that’s relevant to our point is called181

in_channels and it is set to 2. In line 5, we are initializing another field, self.conv2,182

but this time, we set the in_channels to 4. In line 7, we have a function that takes a vari-183

able x and calls both convolutions on it in lines 8 and 9. To understand why this program184

contains a bug, we must ask: how does the value of in_channels relate to x’s shape? PyT-185

orch’s documentation [14] states that in the simplest case, the input to a convolution has the186
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shape (N, in_channels,H,W ). Indeed, in line 7, x is annotated with TensorType([Dyn,187

Dyn, Dyn, Dyn], a typical gradual typing annotation indicating that x is a rank-4 tensor.188

The annotation does not state what the dimensions are, but it is still consistent with the189

shape stated in the documentation. Notice however that x’s second dimension should match190

the value of in_channels, while we have two values for in_channels that do not match.191

This mismatch will cause the program to crash if it ever receives any input, but not before.192

Our key questions can help us discover the bug statically across all inputs.193

194
1 class ConvExample(torch.nn.Module):195

2 def __init__(self):196

3 super(BasicBlock, self).__init__()197

4 self.conv1 = torch.nn.Conv2d(in_channels=2, ...)198

5 self.conv2 = torch.nn.Conv2d(in_channels=4, ...)199

6200

7 def forward(self, x: TensorType([Dyn, Dyn, Dyn, Dyn])):201

8 self.conv1(x)202

9 return self.conv2(x)203204

Listing 2 Gradually typed convolution

By determining whether we can replace all the Dyn dimensions with numbers (which205

is the answer to Q(1) from our key questions), we can discover that it is impossible to206

assign a number to the second dimension of x and thus detect the error before running the207

program. More generally, the absence of a static typing may reveal that a program cannot208

run successfully on any input.209

How can we benefit from the migration space to answer Q(1) and thus detect that this210

program cannot be statically typed? The migration space for this program contains programs211

where x is annotated to be a rank-4 tensor. A tool that can reason about the migration212

space can then take an extra constraint on the second dimension of x. The constraint should213

say that the second dimension must be a number. This constraint will narrow down the214

migration space to an empty set. The reason is that there is no such well-typed program.215

Therefore, we can conclude that the program cannot be statically typed because the second216

dimension cannot be assigned a number.217

Let us fix the bug. One way to fix the bug is by removing self.conv1 from the program.218

We get the program in Listing 3.219

220
1 class ConvExample(torch.nn.Module):221

2 def __init__(self):222

3 super(BasicBlock, self).__init__()223

4 self.conv2 = torch.nn.Conv2d(in_channels=4, ..)224

5 def forward(self, x: TensorType([Dyn, Dyn, Dyn, Dyn])):225

6 return self.conv2(x)226227

Listing 3 Gradually typed convolution

The program can run to completion and there can be various correct ways to annotate228

it. The current annotation for the variable x is that it is a tensor with four dimensions, but229

each dimension is denoted by Dyn, so the values of the dimensions are unknown. Suppose we230

want to specify constraints on those dimensions and determine if there are valid migrations231

that satisfy those constraints. This would be useful, not just for the user, but for compilers,232

since they can use those constraints to optimize for resources.233

We can require some of the dimensions of x to be static and then provide arithmetic234

constraints on each of them. In this example, let us require all dimensions to be static. A235

tool can accept four constraints indicating this requirement. Then it can accept constraints236

that specify ranges on those dimensions. For example, the first dimension could be between237

ECOOP 2024



11:6 Generalizing Shape Analysis with Gradual Types

5 and 20. The second dimension can only have one possible value, which is 4. So it is enough238

to have a constraint requiring that dimension to be a number. The third dimension could239

also be between 5 and 20, while the fourth dimension could be between 2 and 10.240

By giving these constraints as input to a tool, we are constraining the space to only the241

subspace that satisfies the constraints. A tool may find that this subspace indeed contains242

programs and outputs one of them. As a result, we may get the program in Listing 4. As243

shown, x has now been statically annotated with TensorType([19, 4, 19, 9]).244

245
1 class ConvExample(torch.nn.Module):246

2 def __init__(self):247

3 super(BasicBlock, self).__init__()248

4 self.conv2 = torch.nn.Conv2d(in_channels=4, ..)249

5 def forward(self, x: TensorType([19, 4, 19, 9])):250

6 return self.conv2(x)251252

Listing 4 Statically typed convolution

253
1 class ConvControlFlow(torch.nn.Module):254

2 def __init__(self):255

3 super().__init__()256

4 self.conv = torch.nn.Conv2d(257

5 in_channels=512, out_channels=512, kernel_size=3)258

6259

7 def forward(self, x: TensorType([Dyn, Dyn, Dyn, Dyn])):260

8 if self.conv(x).dim() == 4:261

9 return torch.relu(x)262

10 else:263

11 return torch.nn.Dropout(x)264265

Listing 5 Branch elimination

The program in Listing 5 can run to completion, and interestingly it contains control-266

flow in the form of a branch. We want to eliminate this branch. We refer to eliminating267

branches from a program by the term branch elimination. Eliminating branches enables268

programs to run on back-ends where branches are undesirable. For example, HFTracer269

runs a program on a single input and computes the result of the branch and eliminates it270

accordingly. While the result of a branch could be fixed for all program inputs, the result271

may also vary. Thus, running a program on just a single input to eliminate a branch yields272

unsatisfactory branch elimination. We enable better branch elimination by finding all inputs273

for which a branch evaluates to a given result by reasoning about the program statically.274

We provide a mechanism to denote the set of inputs for which a branch evaluates to the275

given result. Notice that we reason about the static information given. Thus, if a variable276

has type Dyn, we optimistically assume that the program is well-typed and that the value277

for that variable will have the appropriate type at runtime.278

The program in Listing 5 contains a condition that depends on shape information. This279

is a common situation, where ad-hoc shape-checks are inserted in a program to reason about280

its shapes. Line 8 has function that takes a variable x and applies a convolution to it, with281

self.conv(x), and a condition that checks if the rank of self.conv(x) is 4. Since x is282

annotated as a rank-4 tensor on line 7, and convolution preserves the rank, self.conv(x)283

must also be rank-4. So the condition must always be true under the information given by284

x’s type annotation. We should be able to prove that the condition in line 8 always returns285

true without receiving any input for the program, by inspecting all the valid types that286

the program could possibly have. The migration space is useful for this analysis because it287

captures all possible, valid type annotations for a program.288
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Thus, under the convolution type rules, if self.conv(x).dim() == 4 evaluates to true,289

then x is also rank-4, which is consistent with x’s current annotation.290

In contrast, if self.conv(x).dim() == 4 evaluates to false, i.e self.conv(x).dim()291

!= 4 is true, then this means that x is not rank-4. However, the migration space of a292

program can never include inconsistent ranks for a variable. Therefore, it is impossible to293

have self.conv(x).dim() != 4, while also having that x is rank-4. A tool that reasons294

about the migration space as well as arbitrary predicates can make this conclusion. In this295

example, we can make a definitive conclusion about the result of this condition and we can296

re-write our program accordingly, as shown in Listing 6. We will expand on and formalize297

this idea in Section 5. In particular, we will detail how we reason about the migration space298

in the presence of branches, and explain why our approach works.299

300
1 class ConvControlFlow(torch.nn.Module):301

2 def __init__(self):302

3 super().__init__()303

4 self.conv = torch.nn.Conv2d(304

5 in_channels=512, out_channels=512, kernel_size=3)305

6306

7 def forward(self, x: TensorType([Dyn, Dyn, Dyn, Dyn])):307

8 return torch.relu(x)308309

Listing 6 Branch elimination

3 The Gradual Tensor Calculus310

In this section, we describe our design choices, core calculus, and type system, and we prove311

that our type system satisfy gradual typing criteria.312

Our design choices are guided by enabling four key requirements: (1) modularity and313

backwards compatibility, (2) tool support, (3) expressiveness, and (4) minimality of our314

language. We have made these four choices in the context of tool support for PyTorch, but315

they can be extended to other frameworks. Here, we outline those design choices.316

First, we require our system to support modularity and backwards compatibility for pro-317

grams. A gradually typed system suits our needs because it supports partial type annota-318

tions. One of the implications of this support is that gradually typed programs can compile319

with any amount of type annotations. In a gradually typed system, a missing type is rep-320

resented by the Dyn type.321

The Dyn type can sometimes be assigned to a variable that has been used in different322

parts of the program with different, possibly inconsistent types. This type is useful when323

the underlying static type system is not flexible enough to fully type that program. For324

example, we may have a program that takes a batch of images with a dynamic batch size,325

as well as dynamic sizes, but with a fixed number of channels. In this case, a possible type326

would be TensorType(Dyn, 3, Dyn, Dyn), which indicates a batch of images, where the batch327

size is dynamic and the sizes are dynamic but the number of channels, which is 3, is fixed.328

Another example is that a variable could be assigned a rank-2 tensor at one point in the329

program, then a rank-3 tensor at a different point. A suitable type for that variable could330

simply be Dyn. In both examples, if we did not have the Dyn type, we would need more331

complex annotations. The Dyn type allows the gradual type checker to admit programs332

statically, and determine how to handle variables with Dyn types at runtime. The flexibility333

of gradual types stems from the consistency relation, which is symmetric and reflexive but334

not transitive. This relation allows a gradual type checker to statically admit programs in335

the absence of type information.336

ECOOP 2024



11:8 Generalizing Shape Analysis with Gradual Types

(Program) p ::= decl∗ return e

(Declaration) decl ::= x : τ
(Expression) e ::= x | reshape(e, τ) | Conv2D(cin, cout, κ, e) | add(e1, e2)

(Integer Tuple) κ ::= (c∗)
(Const) c ::= ⟨Nat⟩

(Tensor Type) t, τ ::= Dyn | TensorType([d1, . . . , dn])
(Static Tensor Type) S, T ::= TensorType([D1, . . . , Dn])

(Dimension Type) d, σ ::= Dyn | D
(Dimension) U,D ::= ⟨Nat⟩

x /∈ dom(Σ)
Σ, x→∗ Σ, 0, 1 (V ar Fail) x : R ∈ Σ

Σ, x→∗ Σ, R, 0 (V ar)

Σ, e→∗ Σ, R, 1
Σ, reshape(e, TensorType(d1, . . . , dn))→∗ Σ, R, 1

(Reshape Fail)

Σ, e→∗ Σ, R, 1
Σ, Conv2D(cin, cout, κ, e)→∗ Σ, R, 1

(Conv2D Fail)

Σ, e1 →∗ Σ, R1, 1 ∨ Σ, e2 →∗ Σ, R2, 1
Σ, add(e1, e2)→∗ Σ, R2, 1

(Add Fail)

Σ, e→∗ σ,R, 0
Σ, reshape(e, TensorType(d1, . . . , dn))→∗ Σ,Reshape(R, (d1, . . . , dn))

(Reshape)

Σ, e→∗ Σ, R, 0
Σ, Conv2D(cin, cout, κ, e)→∗ Σ,Conv2D(cin, cout, κ,R)

(Conv)

Σ, e1 →∗ Σ, R1, 0 Σ, e2 →∗ Σ, R2, 0
Σ, add(e1, e2)→∗ Σ,Add(R1, R2)

(Add)

Figure 1 Gradual tensor calculus, syntax and semantics

Second, we require tool support. We design a simple type system for a core language to337

enable us to define and solve problems for tool support in a tractable way. Tool support is338

tractable because we define type migration syntactically. We base our approach on capturing339

the migration space by extending the constraint-based approach of [12] to solve our three340

key questions.341

Third, we require our system to be expressive enough to capture non-trivial programs.342

Our type system is more expressive than PyTorch’s existing type-system, which does not343

reason about dimensions. Our language consists of a set of declarations followed by an344

expression. This structure is a convenient representation for the PyTorch neural network345

models we encountered, which mainly consisted of a function which takes a set of parameters.346

In the function body are tensor operations applied on those parameters. This calculus struc-347

ture is inspired by the calculus from [18]. Rink highlighted that many DSLs can be mapped348

to their language. Besides adapting the structure of that calculus, we choose three core349



Migeed, Reed, Ansel, and Palsberg 11:9

operations that present different challenges for tool support, and then extend our support350

to 50 PyTorch operations.351

Fourth, we require our language to be minimal so we can focus on our core problems.352

First, we do not introduce branches to our core grammar since, in practice, all tools on which353

we ran our experiments either do not accept programs with branches or aim to eliminate354

branches. As [17] noted, many non-trivial tensor programs do not contain branches or355

statements. In Section 5 we extend the core language with branches and we show how to356

eliminate them.357

Second, we do not consider runtime checks to support gradual types. Those checks are358

often a bottleneck for the performance of gradually typed programs [25, 8]. There has been359

extensive research to alleviate performance issues by weakening these checks. As shown by360

[7], the notion of soundness in gradual types is not an all-or-nothing concept. [7] discuss361

three notions of soundness at different levels of strength and how they relate to performance:362

higher-order embedding of [26], first-order embedding, as seen in Reticulated Python [28]363

and erasure embedding, as seen in TypeScript [4]. Similar to [18] and [17], we observe that364

a language free from higher-order constructs represents a large subset of programs that are365

written in the machine learning area. As such, runtime errors are not as interesting when366

compared to those that arise in languages with constructs such as branches and lambda-367

abstraction. Furthermore, runtime checks impose a computation cost on already costly368

tensor computations. A key goal of tensor programming is high performance so adding369

run-time checks seems undesirable. Thus, we leave out runtime aspects in this paper.370

Figure 1 shows our core calculus. A program consists of a list of declarations followed371

by a return statement that evaluates an expression. We use ϵ to denote the empty list372

of declarations. The program takes its input via those declarations. The dynamic type is373

denoted by Dyn. A dimension can be Dyn, and a tensor can also be Dyn. A tensor is denoted374

by the constructor TensorType(σ1, . . . , σn) where σ1, . . . , σn are dimensions. However, if we375

denote a dimension by U or D, it means the dimension is a number and cannot be Dyn. Our376

language has four kinds of expressions. A variable x refers to one of the declared variables.377

The expression add(e1, e2) adds two tensors e1 and e2. The expression reshape(e, τ) takes an378

expression e and a shape τ and reshapes e to a new tensor of shape τ if possible. Reshaping379

can be thought of as a re-arrangement of a tensor’s elements. That requires the initial380

tensor to have the same number of elements as the reshaped tensor. We require that τ381

can have a maximum of one Dyn dimension. Finally the expression Conv2D(cin, cout, κ, e)382

applies a convolution to e, given a number representing the input channel cin, a number383

representing the output channel cout, and a pair of numbers representing the kernel κ. For384

example, in Listing 2, we had self.conv1(x), which in our calculus can be expressed as385

Conv2D(2, 2, (2, 2), x). The full version of convolution in PyTorch has more parameters. We386

have accounted for those parameters in our implementation, but because they create no new387

problems for us, our quest for minimality led us to leaving them out.388

The operational semantics in Figure 1 evaluates an expression in an environment Σ that389

maps each declared variable to a tensor constant. Specifically, if e is an expression, R is390

a tensor constant, and E an error state (0 for success, 1 for failure), then the judgment391

Σ, e→∗ R,E means that e evaluates to R in error state E.392

The semantics uses the helper functions Add, Reshape, and Conv2D that each pro-393

duces both a tensor constant and an error state. In Appendix C, we give full details of394

those functions and we state their key properties. Here we summarize what they do. The395

function Add extracts shapes from T1 and T2 and pads them such that they match, and396

then checks if the tensors are broadcastable based on the updated shapes. If they are not397
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Consistency
τ ∼ τ (c-refl-t) d ∼ d (c-refl-d) d ∼ Dyn (d-refl-dyn) τ ∼ Dyn (t-refl-dyn)

t ∼ τ
τ ∼ t (c-sym-t) d ∼ σ

σ ∼ d (c-sym-d)

∀i ∈ {1, . . . , n} : di ∼ d′
i

TensorType(d1, . . . , dn) ∼ TensorType(d′
1, . . . , d

′
n)

(c-tensor)

Type Precision

τ ⊑ τ (refl-t) d ⊑ d (c-refl-d) Dyn ⊑ d (refl-dyn-1) Dyn ⊑ τ (refl-dyn-2)
∀i ∈ {1, . . . , n} : di ⊑ d′

i

TensorType(d1, . . . , dn) ⊑ TensorType(d′
1, . . . , d

′
n)

(p-tensor)

Program and Expression Precision

∀i ∈ {1, . . . , n} : decl′
i ⊑ decli e′ ⊑ e

decl′
1, . . . , decl′

n return e′ ⊑ decl1, . . . , decln return e
(p-prog) τ ′ ⊑ τ

x : τ ′ ⊑ x : τ
(p-decl)

e ⊑ e (p-refl)
Matching

TensorType(τ1, . . . , τn) �n TensorType(τ1, . . . , τn)
Dyn �n TensorType(l) where l = [Dyn, . . . , Dyn] and |l| = n

Static context formation

ϵ ⊢ ∅
(s-empty)

decl∗ ⊢ Γ x /∈ dom(Γ)
decl∗ x : τ ⊢ Γ, x : τ (s-var)

Figure 2 Auxiliary functions

broadcastable, it returns the empty tensor with E = 1. Otherwise, it expands the tensors398

T1 and T2 according to the broadcasting rules of PyTorch that we omit here. It initial-399

izes a resulting tensor with the broadcasted dimensions and perform element-wise addition400

between the broadcasted tensors and return that tensor with E = 0. The function Reshape401

performs dimension checks to ensure that reshaping is possible, returning the empty tensor402

and E = 1 if the checks fails. Otherwise, it performs reshaping and returns the reshaped403

tensor with E = 0. The function Conv2D extracts the dimensions of the input tensor I,404

as well the dimensions for the kernel κ and uses them to determine the size of the output405

tensor. It then performs convolution and populates the output tensor one element at a time406

and return the updated tensor along with E = 0.407

The semantics satisfies the following theorem, which says that in an environment, an408

expression evaluates to a tensor but may end with failure.409

▶ Theorem 1. ∀Σ, e : ∃ a tensor constant R : ∃E ∈ {0, 1} : Σ, e→∗ R,E.410

Figure 2 contains gradual typing relations that are used in our gradual typechecking, as411

well as the static context formation rules. Those relations allow the typechecker to reason412

about the Dyn type. Matching, denoted by �, and consistency, denoted by ∼, are standard413

in gradual typing and are lifted from equality in the static counter part of the system.414

Matching and consistency are both weaker than equality because they account for absent415
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decl∗ ⊢ Γ Γ ⊢ e : τ
⊢ decl∗ return e ok

(ok-prog) x : τ ∈ Γ
Γ ⊢ x : τ (t-var)

Γ ⊢ e : TensorType(D1, . . . , Dn)
∏n

1 Di =
∏m

1 Ui

Γ ⊢ reshape(e, TensorType(U1, . . . , Um)) : TensorType(U1, . . . , Um)
(t-reshape-s)

Γ ⊢ e : TensorType(σ1, . . . , σm)
m∏
1
σi mod

n∏
1
di = 0 ∨

n∏
1
di mod

m∏
1
σi = 0 ∀di, σi ̸= Dyn and

Dyn occurs exactly once in d1, . . . ., dm, σ1, . . . , σn, or
Dyn occurs more than once in d1, . . . ., dm,

Γ ⊢ reshape(e, TensorType(d1, . . . , dn)) : TensorType(d1, . . . , dn)
(t-reshape-g)

Γ ⊢ e : τ where either τ = Dyn, or τ = TensorType(σ1 . . . σn) and
Dyn occurs more than once with at least one occurrence in δ and σ1, . . . ., σm,

Γ ⊢ reshape(e, δ) : δ
(t-reshape)

Γ ⊢ e : t t�4 TensorType(σ1, σ2, σ3, σ4) τ = calc-conv(t, cout, κ) cin ∼ σ2

Γ ⊢ Conv2D(cin, cout, κ, e) : τ
(t-conv)

Γ ⊢ e1 : t1 Γ ⊢ e2 : t2 (τ1, τ2) = apply-broadcasting(t1, t2) τ1 ∼ τ2

Γ ⊢ add(e1, e2) : τ1 ⊔∗ τ2
(t-add)

Figure 3 Type rules

type information. Thus, if some type information is missing, matching and consistency416

apply. Matching is a relation that pattern-matches two types. It is useful for arrow types417

in traditional type systems. Specifically, an arrow type t1 → t2 matches itself. Type Dyn418

matches Dyn → Dyn. The ability to expand Dyn to become a function type Dyn → Dyn is419

valid in gradual types because it allows the system to optimistically consider the type Dyn420

to be Dyn → Dyn. We have adapted this definition to our system. First, we annotated421

matching with a number n to denote the number of dimensions involved. So we have that422

TensorType(τ1, . . . , τn) �n TensorType(τ1, . . . , τn) because any type matches itself. Similar423

to how traditionally, Dyn�Dyn→ Dyn, we have that Dyn�nTensorType(Dyn, . . . , Dyn), where424

Dyn, . . . , Dyn are exactly n dimensions. Throughout this paper, we will only use matching425

with i = 4 so we may use matching as � instead of �4. Consistency is a symmetric, reflexive,426

and non-transitive relation that checks that two types are equal, up to the known parts of427

the types. For example, the type Dyn contains no information, so it is consistent with any428

type, while the dimensions 3 and 4 are inconsistent because they are unequal. Figure 2429

contains the formal definitions for matching and consistency. The judgment decl∗ ⊢ Γ says430

that from the declarations decl∗ we get the environment Γ. We do static context formation431

with the rules (s-empty) and (s-var).432

Figure 3 shows our type rules. We use shorthands that are defined in Appendix B. Let433

us go over each type rule in detail. ok-prog and t-var are standard.434

t-reshape-s is the static type rule for reshape. It models that for reshape to succeed, the435

product of the dimensions of the input tensor shape must equal the product of dimensions436

of the desired shape. t-reshape-g assumes we have one missing dimension. Here we are437

ECOOP 2024



11:12 Generalizing Shape Analysis with Gradual Types

modeling that PyTorch allows a programmer to leave one dimension as unknown (denoted438

by -1) because the system can deduce the dimension at runtime, see https://pytorch.439

org/docs/stable/generated/torch.reshape.html. We can still determine if reshaping is440

possible using the modulo operation instead of multiplication. In this approach, we admit441

a program if we cannot prove it is ill-typed statically. t-reshape admits the expression if too442

many dimensions are missing.443

To maintain minimality, t-conv deals with only the rank-4 case of convolution. t-conv444

expects a rank-4 tensor, so it uses matching (�4) to check the rank. Next, cin should be445

equal to the second dimension of the input, so the rule uses a consistency (∼) check. Since446

the output of a convolution should also be rank-4, then apply calc-conv which, given a447

rank-4 input and the convolution parameters, computes the dimensions of the output shape.448

If a dimension is Dyn, then the corresponding output dimension will also be Dyn.449

Finally, t-add adds two dimensions. Unlike scalar addition, the types of the operands do450

not have to be consistent. The reason is that broadcasting may take place. Broadcasting451

is a mechanism that considers two tensors and matches their dimensions. Two tensors are452

broadcastable if the following rules hold:453

1. Each tensor has at least one dimension454

2. When iterating over the dimension sizes, starting at the trailing dimension, the dimension455

sizes must either be equal, one of them is 1, or one of them does not exist456

That tensors involved in broadcasting do not actually get modified to represent the mod-457

ified shapes. This implies that the input shapes are not always consistent. Instead, the458

broadcasted result is only reflected in the output of the operation. Therefore, we have459

defined apply-broadcasting to simulate broadcasting on the inputs and consider what460

the types for these inputs would be, if broadcasting was to actually modify the inputs.461

In a static type system, the types of the modified inputs should be equal for addition to462

succeed. In gradual types, the types of the modified inputs should be consistent because463

equality lifts to consistency. We accomplish these requirements in our type rule. In par-464

ticular, apply-broadcasting takes care of broadcasting the dimensions. Suppose that we465

are adding a tensor of shape TensorType(Dyn, 2, Dyn) to a tensor of size TensorType(1, 2, 2).466

Then the output must be TensorType(Dyn, 2, 2). The reason is that the first Dyn could467

be any number as per the broadcasting rules. So we cannot assume its value. The last468

dimension; however, must be 2 according to the rules. We have that:469

apply-broadcasting(TensorType(Dyn, 2, Dyn), TensorType(1, 2, 2)) =470

(TensorType(Dyn, 2, Dyn), TensorType(Dyn, 2, 2))471

After simulating broadcasting, we may proceed as if we are dealing with regular addition.472

In other words, we check that the modified dimensions are consistent and get the least upper473

bound: TensorType(Dyn, 2, Dyn) ⊔ TensorType(Dyn, 2, 2) = TensorType(Dyn, 2, 2).474

We will cover one last special case for addition. Simply applying the least upper bound475

to the modified input types of addition is not general enough to cover the following case.476

Suppose we are adding a tensor of shape Dyn to a tensor of shape TensorType(1, 2), then477

we must output Dyn because the output type could be a range of possibilities. In this case,478

apply-broadcasting does not modify the types because the tensor of shape Dyn could479

range over many possibilities. We then apply our modified version of the least upper bound480

denoted by ⊔∗, which behaves exactly like ⊔ except when one of the inputs is Dyn, where it481

returns Dyn to get that: TensorType(1, 2) ⊔∗ Dyn = Dyn.482

We prove that our type system satisfies the static criteria from [23]. First, we prove the483

static gradual guarantee, which describes the structure of the migration space. Second, we484

https://pytorch.org/docs/stable/generated/torch.reshape.html
https://pytorch.org/docs/stable/generated/torch.reshape.html
https://pytorch.org/docs/stable/generated/torch.reshape.html
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prove the conservative extension theorem, which shows that our gradual calculus subsumes485

its static counter-part in Appendix A. This result is no coincidence: we first designed the486

statically typed calculus in Appendix A and then we gradualized it according to [6]. We487

denote a well-typed program in the statically typed tensor calculus by ⊢st p : ok. The full488

definitions and proofs can be found in Appendix D.489

▶ Theorem 3.1 (Monotonicity w.r.t precision). ∀p, p′ : if ⊢ p : ok ∧ p′ ⊑ p then ⊢ p′ : ok.490

▶ Theorem 3.2 (Conservative Extension). For all static p, we have: ⊢st p : ok iff ⊢ p : ok491

4 The Migration Problem as a constraint satisfiability problem492

A migration is a more static, well-typed version of a program. We can define that P ′ is a493

migration of P (which we write P ≤ P ′) iff (P ⊑ P ′ ∧ ⊢ P ′ : ok). Given P , we define494

the set of migrations of P : Mig(P ) = {P ′ | P ≤ P ′}. Our goal is to use constraints to495

capture the migration space. Every solution to our constraints for a program must map to496

a corresponding migration for the same program. In other words, one satisfying assignment497

to the constraints results in one migration.498

Our approach involves defining constraints whose solutions are order-isomorphic with499

the migration space. However, due to the arithmetic nature of our constraints, our solution500

procedure uses an SMT solver to find a satisfying assignment, which would equate to finding501

a migration. Later in this paper, we will show how to use this framework to answer our502

three key questions.503

We have two grammars of constraints, see Figure 4: one for source constraints and one504

for target constraints. We will generate source constraints and then map them to target505

constraints (as explained in Appendix E), and finally process the target constraints by an506

SMT solver. Having two grammars is not strictly necessary, but it makes the constraint507

generation process more tractable and simplifies the presentation. We can view the source508

grammar as syntactic sugar for the target grammar.509

Our source constraint grammar has fourteen forms of constraints, the most interesting of510

which we will introduce here. A precision constraint is of the form τ ⊑ x. Here, x indicates a511

type variable for the variable x from the program. Thus, x in the constraint τ ⊑ x captures512

all types that are more precise than τ . Because we prioritize tractability of the migration513

space, we set the upper bound of tensor ranks to 4, via a constraint of the form |[[e]]| ≤ 4.514

We make this decision because all benchmarks we considered had only tensors with ranks515

that are upper-bounded by this number. We also have consistency constraints of the form516

D ∼ δ, ⟨e⟩ ∼ ⟨e⟩, matching constraints of the form [[e]]� TensorType(δ1, δ2, δ3, δ4), and least517

upper bound constraints of the form ⟨e⟩ ⊔∗ ⟨e⟩. Those are gradual typing constraints that518

we use to faithfully model our gradual typing rules. Our constraint grammar also contains519

short-hands such as can-reshape([[e]], δ) and apply-broadcasting([[e]], [[e]]). Those short-520

hands are good for representing the type rules as well. can-reshape expands to further521

constraints which evaluate to true if [[e]] can be reshaped to δ. Similarly, when expanded,522

apply-broadcasting([[e]], [[e]]) captures all possible ways to broadcast two types.523

In our target constraint grammar, we use n to range over integer constants. We use v as524

a meta variable that ranges over variables that, in turn, range over TensorType(list(ζ)) ∪525

{Dyn} and we use ζ as a meta variable that ranges over variables that range over IntConst∪526

{Dyn}. This grammar is useful for our constraint resolution process. In particular, the first527

step of solving our constraints is to translate them to low-level constraints, drawn from our528

target grammar, before feeding them to an SMT solver.529
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(Source Constraints) ψ ::= ψ ∧ ψ | ψ ∨ ψ | True | [[x]] = x | [[e]] = τ | τ ⊑ x |
|[[e]]| ≤ 4 | D ∼ δ | ⟨e⟩ ∼ ⟨e⟩ |
[[e]] � TensorType(ζ1, ζ2, ζ3, ζ4) |
[[e]] = ⟨e⟩ ⊔∗ ⟨e⟩ | can-reshape([[e]], δ) |
[[e]] = calc-conv([[e]], cout, κ) |
⟨e⟩, ⟨e⟩ = apply-broadcasting([[e]], [[e]])

(Target Constraints) ψ ::= ψ ∧ ψ | ψ ∨ ψ | ¬ψ | True |
v = TensorType(ζ, . . . , ζ) |
v = Dyn | v = v | ζ = n | ζ = Dyn | ζ = ζ |
ζ = ζ · n+ n | (ζ1 · . . . · ζm) mod (ζ ′

1 · . . . · ζ ′
n) = 0

Figure 4 Source constraints and target constraints

Since our constraints involve gradual types, let us describe how we encoded types so that530

they can be understood by an SMT solver. Because we fixed the upper bound for tensor531

ranks to be 4, we chose to encode tensor types as uninterpreted functions, which means532

that we have a constructor for each of our ranks, of the form TensorType1, TensorType2,533

TensorType3, and TensorType4. Each of the functions take a list of dimensions. Moving534

on to the dimensions, we have that dimensions are either Dyn or natural numbers. We can535

easily represent natural numbers in an SMT solver but we must also represent Dyn. One536

way to encode a Dyn dimension d is as a pair (d1, d2). If d1 = 0, then d = Dyn. Otherwise, d537

is a number, and its value is in d2. Let us formalize the constraint generation process next.538

From p, we generate constraints Gen(p) as follows. Let p have the form decl∗ return e.539

Let X be the set of declaration-variables x occurring in e, and let Y be a set of variables540

disjoint from X consisting of a variable [[e′]] for every occurrence of the subterm e′ in e. Let541

Z be a set of variables disjoint from X and Y consisting of a variable ⟨e1⟩, ⟨e2⟩ for every542

occurrence of the subterm add(e1, e2) in e. Finally, let V be a set of variables disjoint from543

X, Y , and Z consisting of dimension variables ζ. The notations [[e]] and ⟨e⟩ are ambiguous544

because there may be more than one occurrence of some subterm e′ in e or some subterm545

e′′ in e. However, it will always be clear from context which occurrence is meant. For every546

occurrence of ζ, it is implicit that we have a constraint 0 ≤ ζ to ensure that the solver547

assigns a dimension in N. We omit writing this explicitly for simplicity. With that in mind,548

we generate the constraints in Figure 5. Let us go over the rules in Figure 5. The rules use549

judgments of the form ⊢ x : τ : ψ for declarations, and it uses judgments of the form ⊢ e : ψ550

for expressions. In both cases, ψ is the generated constraint.551

t-decl uses the precision relation ⊑ to insure that a migration will have a more precise552

type, while t-var propagates the type information from declarations to the program.553

t-reshape considers all possibilities of reshaping any tensor e with rank, at most 4, via554

the constraint [[e]] ≤ 4. This restriction constraint captures all rank possibilities for [[e]] in555

addition to [[e]] being Dyn. For each possibility, the number of occurrences of Dyn in δ and556

[[e]] varies. This impacts the arithmetic constraints that make reshaping possible, as we can557

see from the typing rules. As such, can-reshape simulates all such possibilities and generates558

the appropriate constraints.559
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⊢ x : τ : τ ⊑ x ∧ |x| ≤ 4
(t-decl)

⊢ x : x = [[x]]
(t-var)

⊢ e : ψ

⊢ reshape(e, δ) : ψ ∧ [[reshape(e, δ)]] = δ ∧ can-reshape([[e]], δ) ∧ |[[e]]| ≤ 4
(t-reshape)

⊢ e : ψ
⊢ Conv2D(cin, cout, κ, e) : ψ ∧ [[e]] � TensorType(ζ1, ζ2, ζ3, ζ4) ∧ cin ∼ ζ2 ∧

[[Conv2D(cin, cout, κ, e)]] = calc-conv([[e]], cout, κ)

(t-conv)

⊢ e1 : ψ1 ⊢ e2 : ψ2

⊢ add(e1, e2) : ψ1 ∧ ψ2 ∧ [[add(e1, e2)]] = ⟨e1⟩ ⊔∗ ⟨e2⟩ ∧
(⟨e1⟩, ⟨e2⟩) = apply-broadcasting([[e1]], [[e2]]) ∧ ⟨e1⟩ ∼ ⟨e2⟩ ∧

|[[e1]]| ≤ 4 ∧ |[[e2]]| ≤ 4 ∧ |[[add(e1, e2)]]| ≤ 4

(t-add)

Figure 5 Constraint generation

t-conv contains matching and consistency constraints, to model matching and consistency560

in convolution’s typing rule. We have a constraint calc-conv, which generates the appro-561

priate arithmetic constraints for the output of the convolution, based on the convolution562

typing rule, again accounting for the possibility of the input e having a gradual type.563

t-add contains least upper bound constraints and consistency constraints, similar to the564

add typing rule. We constrain the inputs e1 and e2, as well as the expression itself, add(e1, e2)565

to all be either Dyn or tensor of at most rank-4, via a ≤ constraint. We use the function566

apply-broadcasting, which simulates broadcasting on the shapes, on dummy variables ⟨e1⟩567

and ⟨e2⟩ (notice that the real shapes of e1 and e2 are represented by [[e1]] and [[e2]]). We568

check ⟨e1⟩ and ⟨e2⟩ for consistency and obtain the least upper bound.569

Let φ be a mapping from tensor-type variables to TensorType(list(ζ))∪{Dyn}, and also570

from dimension-type variables to IntConst ∪ {Dyn}. We define that a target constraint ψ571

has solution φ, written φ |= ψ, in the following way:572

The following is true: Provided:
φ |= ψ ∧ ψ′ φ |= ψ and φ |= ψ′

φ |= ψ ∨ ψ′ φ |= ψ or φ |= ψ′

φ |= ¬ψ not (φ |= ψ)
φ |= True always
φ |= v = TensorType(ζ1, . . . ζn) φ(v) = TensorType(φ(ζ1), . . . φ(ζn))
φ |= v = Dyn φ(v) = Dyn
φ |= v = v′ φ(v) = φ(v′)
φ |= ζ = n φ(ζ) = n

φ |= ζ = Dyn φ(ζ) = Dyn
φ |= ζ = ζ ′ φ(ζ) = φ(ζ ′)
φ |= ζ = ζ · n+ n′ φ(ζ) = φ(ζ ′) · n+ n′

φ |= (ζ1 · . . . · ζm)mod (ζ ′
1 · . . . · ζ ′

n) = 0 (φ(ζ1) · . . . · φ(ζm))mod (φ(ζ ′
1) · . . . · φ(ζ ′

n)) = 0

573

▶ Definition 2. φ ≤ φ′ iff dom(φ) = dom(φ′) ∧ ∀x ∈ dom(φ) : φ(x) ⊑ φ′(x)574

Let Gen(P ) be the constraint generation function and Sol(C) be the set of solutions to575

constraints C. Then we can state the order-isomorphism theorem as follows:576
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▶ Theorem 4.1 (Order-Isomorphism).577

∀P : (Mig(P ),⊑) and (Sol(Gen(P )),≤) are order-isomorphic.578

The order-isomorphism theorem states that we have captured the migration-space with579

our constraints such that, for a given program, the solution space and the migration-space580

are order-isomorphic. For the proof, see Appendix F.581

Our algorithm for code annotation is shown in Algorithm 1.582

Algorithm 1 Code annotation

Input: Program P

Output: Annotated program P ′

1: Constraint Generation. Generate constraints C = Gen(P ).
2: Constraint Solving. Solve C and get a solution φ that maps variables to types.
3: Program Annotation. In P , replace each declaration x : τ with x : φ(x), to get P ′.

Let us now revisit Listing 1 but this time with variable x annotated by Dyn. We will583

show how to migrate a calculus version of the program by generating constraints and passing584

them to an SMT solver. Let us recall that this listing had two expressions that map to the585

following expressions in our calculus: Conv2D(2, 2, (2, 2), x) and Conv2D(4, 2, (2, 2), x).586

The first step is to generate high-level constraints:587

Dyn ⊑ v1 (1)588

v1 ≤ 4 (2)589

v1 � TensorType(ζ3, ζ4, ζ5, ζ6) (3)590

2 ∼ ζ4 (4)591

v2 = calc-conv(v1, 2, (2, 2), (2, 2), (2, 2), (2, 2)) (5)592

v1 � TensorType(ζ9, ζ10, ζ11, ζ12) (6)593

4 ∼ ζ10 (7)594

v8 = calc-conv(v1, 2, (2, 2), (2, 2), (2, 2), (2, 2)) (8)595

Let us go over what each equation is for. Constraint (1) denotes that the type annotation596

for the variable x must be as precise or more precise than Dyn. Constraint (2) denotes that597

the type annotation for x could either be Dyn or a tensor with at most four dimensions. We598

use the ≤ notation to denote this. Notice that the type variable for x is v1. Constraints599

(3), (4), and (5) are for Conv2D(2, 2, (2, 2), x), while constraints (6), (7), and (8) are for600

Conv2D(4, 2, (2, 2), x). More specifically, constraints (3) and (6) determine the input shape601

of a convolution while constraints (5) and (8) determine the output shape of a convolution.602

The main differences between the constraints for our core calculus and the ones in our603

implementation is that calc-conv takes some additional parameters in our implementation604

because we have implemented the full version of convolution.605

The constraints above are high-level constraints which are yet to be expanded. For606

example, � and ≤ constraints get transformed to equality constraints. We will skip writing607

out the resulting constraints for simplicity. After expanding these constraints and running608

them through an SMT solver, we get a satisfying assignment. In case multiple satisfying609

assignments exist, we use the one that the SMT solver picks. The fact that we got a610

satisfying assignment lets us know that the migration space is non-empty, which means that611
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the program is well-typed. Let us go through some of relevant assignments:612

φ(v1) = Dyn613

φ(v2) = TensorType(Dyn, 2, Dyn, Dyn)614

φ(v8) = TensorType(Dyn, 2, Dyn, Dyn))615

Here, v1 is the type of x, v2 is the type of the first convolution and v8 is the type of the second616

convolution. We can see that these assignments are a valid typing to the program because617

the outputs of both convolutions should be 4-dimensional tensors with the second dimension618

being 2, which stands for the output channel. And since the input x has been assigned Dyn619

by our SMT solver, we cannot determine the last two dimensions of a convolution output.620

While this is a reasonable output, it may not be helpful to the programmer. Furthermore,621

this program would not accept any concrete output. We know this from our constraints.622

From constraints (3) and (7), we have that ζ4 = ζ10. Then from (4), (8), which are 2 ∼623

ζ4 and 4 ∼ ζ10, we can see that the only satisfying solution is Dyn. This means that the624

program cannot be statically typed. Next, we will see how to prove this formally.625

Let us discuss how to extend our approach to solve Q(1) and Q(2). In the example626

above, the migration space is non-empty and we may want to know if we can statically type627

the program. We have established that we cannot. As a first step, we may want to take628

our core constraints above, which we will call C, and restrict the input to a rank-4 tensor.629

So we can consider the constraint C ∧ x = TensorType(ζ ′
1, ζ

′
2, ζ

′
3, ζ

′
4) where ζ ′

1, . . . , ζ
′
4 are630

fresh variables. We can begin to impose restrictions on ζ ′
1, . . . , ζ

′
4 to make them concrete631

variables. For example, if we restrict the last dimension to be a number, we can add the632

constraint ζ ′
4 ̸= Dyn. After running our constraints through the solver, we get the following633

assignments:634

φ(v1) = TensorType(Dyn, Dyn, Dyn, 28470)635

φ(v2) = TensorType(Dyn, 2, Dyn, 14236)636

φ(v8) = TensorType(Dyn, 2, Dyn, 14236)637

To prove that no concrete assignment to the second dimension of x is possible, we simply638

add ζ ′
2 ̸= Dyn to our original constraints and the constraints will be unsatisfiable, so we639

conclude that the second dimension of x can only be Dyn.640

We can also answer Q(2) by feeding the solver additional arithmetic constraints about641

dimensions. In our example, if we want the first dimension of x to be between 3 and 10, we642

can add the constraint ζ ′
1 <= 3 ∧ ζ ′

1 >= 10 to C ∧ x = TensorType(ζ ′
1, ζ

′
2, ζ

′
3, ζ

′
4) and rerun643

our solver.644

Our migration solution is based on a satisfiability problem: is our migration problem645

decidable? If so, what is the time complexity? The migration problem is decidable if the646

underlying constraints are drawn from a decidable theory. Those underlying constraints are647

the ones given by the grammar in Section 4. Let us for a moment ignore constraints of the648

form (ζ1 · . . . · ζm) mod (ζ ′
1 · . . . · ζ ′

n) = 0. We observe that all the other constraints are drawn649

from a well-known decidable theory. Specifically, the other constraints are drawn from650

quantifier-free Presburger arithmetic extended with uninterpreted functions and equality.651

The satisfiability problem for this theory is NP-complete [21]. Once we add constraints of652

the form (ζ1 · . . . · ζm) mod (ζ ′
1 · . . . · ζ ′

n) = 0, the decidability-status of the satisfiability653

problem is unknown, to the best of our knowledge. Fortunately, only three operations654

need this additional constraint: Reshape, View, or Flatten. All the other 47 operations655

that our implementation supports need only constraints in the NP-complete subset. Our656
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implementation translates all of the constraints to Z3 format, and while our benchmarks657

do need constraints outside the NP-complete subset, our experiments terminated. In every658

case, Z3 terminated with either sat or unsat. Thus, the generated constraints are simple659

enough for Z3 to solve, even if the general case is undecidable.660

The complexity of migration depends on the size of the constraint we generate. The661

bottleneck is the ≤ constraint; let us see how to expand it.662

From: |[[e]]| ≤ 4663

To: [[e]] = Dyn ∨ [[e]] = TensorType(ζ1) ∨ . . . ∨ [[e]] = TensorType(ζ1, ζ2, ζ3, ζ4)664

where ζ1, . . . , ζ4 are fresh variables. This yields a complexity of 4n in the number of ≤665

constraints. So assuming that any additional constraints are drawn from the NP-complete666

subset, the problem will still be decidable. Note that if we are working with a fixed rank,667

then these constraints will be generated in polynomial time in the size of the program. Below668

we will see how solving the problem for a fixed rank has practical benefits.669

5 Extending our approach to do Branch Elimination670

We introduce our approach to branch elimination via the following example.671

672
1 class ReshapeControlFlow(torch.nn.Module):673

2 def __init__(self):674

3 super().__init__()675

4676

5 def forward(self, x: Dyn):677

6 if x.reshape(100).size()[0] < 100:678

7 return torch.dropout(x, p=0.5, train=False)679

8 else:680

9 return torch.relu(x)681682

Listing 7 An example of graph-break elimination

In contrast to listing 5, where the conditional depends of the rank of the input, listing683

7 has a conditional that depends on the value of one of the dimensions in the input shape.684

Listing 7 uses the reshape function, which takes a tensor and re-arranges its elements ac-685

cording to the desired shape. In this case, we reshape x to have the shape TensorType([100]).686

For reshaping to succeed, the initial tensor must contain the same number of elements as687

the reshaped tensor. Notice that since x is typed as Dyn, the program will type check. In688

the expression x.reshape(100).size(), the expression size() will return the shape of689

x.reshape(100), which is [100]. We are then getting the first dimension of the shape in the690

expression x.reshape(100).size()[0], which is 100. Thus, by inspecting the conditional691

if x.reshape(100).size()[0] < 100, we can see that the conditional should always eval-692

uate to false. Thus, we can remove the true branch from the program and produce listing 8.693

In contrast, TorchDynamo breaks Listing 7 into two different programs: one for when the694

condition evaluates to true, and another for when the condition evaluates to false.695

696
1 class ReshapeControlFlow(torch.nn.Module):697

2 def __init__(self):698

3 super().__init__()699

4700

5 def forward(self, x: Dyn):701

6 return torch.relu(x)702703

Listing 8 An example of graph-break elimination
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Let us see an example of how to extend our constraint-based solution to eliminate the704

extra branch. For listing 7, here are the constraints for x.reshape(100).size()[0] in line705

6. The variable ζ4 is for the result of the entire expression. Note that the PyTorch expression706

x.reshape(100) is the same as the calculus expression reshape(x, TensorType(100)).707

Dyn ⊑ v1 ∧ v1 ≤ 4 (1)708

v2 = TensorType(100) ∧ can-reshape(v1, TensorType(100)) (2)709

v2 = v3 (3)710

(v3 = Dyn ∧ ζ4 = Dyn) ∨ ((ζ4 = GetItem(v3, 1, 0) ∨ ζ4 = GetItem(v3, 2, 0) ∨711

ζ4 = GetItem(v3, 3, 0) ∨ ζ4 = GetItem(v3, 4, 0)) (4)712

Above, the constraint (1) is for x. Notice that v1 is the type variable for x. Constraint713

(2) is for reshape(x, TensorType(100)). Next, when encountering the size function in714

a program, we simply propagate the shape at hand with an equality constraint, which is715

seen in equation (3). If we are indexing into a shape, we consider all the possibilities for716

the sizes of that shape and generate constraints accordingly. In particular, we have that717

(v3 = Dyn ∧ ζ4 = Dyn) because a shape could be dynamic, which means that if we index718

into it, we get a Dyn dimension. But since we restricted our rank to 4, we can consider the719

possibilities of the index being 1, 2, 3 or 4, which is what the remaining constraints do.720

We extend our constraint grammar with constructs that enable us to represent size()721

and indexing into shapes. This includes constraints of the form ζ = GetItem(v, c, i), where722

v is the shape we are indexing into, c is the assumed tensor rank, and i is the index of the723

element we want to get. We can map the new constraints to Z3 constraints easily.724

Next we generate a constraint (ζ4 < 100) for the condition and a constraint ¬(ζ4 < 100)725

for its negation. If C are the constraints for the program up to the point of encountering a726

branch, then we generate both C ∧ ζ4 < 100 and C ∧ ¬(ζ4 < 100).727

We evaluate both sets of constraints. One set must be satisfiable while the other must be728

unsatisfiable for us to remove the branch. If we are unable to remove the branch. this means729

that the input set is still too general such that for some inputs, the branch may evaluate730

to true and for other inputs, the branch may evaluate to false. In such case, we can ask731

the user to capture a stricter subset of the input by further constraining it. We can then732

re-evaluate our constraints again to see if we are able to remove the branch.733

We extend our grammar with conditional expressions if cond then e1 else e2. Algorithm 2734

describes how to eliminate a single branch.735

Algorithm 2 Branch elimination

Input: Program p.
Output: A possibly modified p with a branch eliminated.

1: Let C = the constraints for p up to encountering a branch if cond then e1 else e2.
2: Let ccond = the constraints for cond.
3: if (C ∧ ccond) is satisfiable and (C ∧ ¬ccond) is unsatisfiable then
4: Rewrite the branch to e1
5: else if (C ∧ ccond) is unsatisfiable and (C ∧ ¬ccond) is satisfiable then
6: Rewrite the branch to e2
7: else
8: Require the user to change the shape information
9: end if
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Figure 6 Our core tool and the three tracers

6 Implementation736

PyTorch has three tool-kits that rely on symbolic tracers [3]. Let us go over each one. First,737

torch.fx [17] is a common PyTorch tool-kit and has a symbolic tracer. Symbolic tracing is738

a process of extracting a more specialized program representation from a program, for the739

purpose of analysis, optimization, serialization, etc. torch.fx does not accept programs740

containing branches and the torch.fx authors emphasize that “most neural networks are741

expressible as flat sequences of tensor operations without control flow such as if-statements742

or loops [17]”. HFtracer [29] eliminates branches by symbolically executing on a single input.743

Finally, TorchDynamo [2] handles dynamic shapes by dividing the program into fragments.744

This process is called a graph-break. Specifically, when encountering a condition that depends745

on shape information and where shape information is unknown, the program is broken into746

two parts. One fragment is for when the result of the condition is true, and another is for747

when the result of the condition is false. Graph-breaks result in multiple programs with no748

branches.749

As a technical detail, code annotation for the purpose of program understanding and750

better documentation is meant to be performed on a source language; branch elimination is751

done at trace-time, on an intermediate representation. For the purpose of better readability,752

we presented all the examples in Section 2 in source code syntax. In some of our larger753

benchmarks, the source code is different from the intermediate representation because more754

high-level constructs were used, such as statements. However, statements do not influence755

our theoretical results. We did not include sequences in our theory because they did not756

introduce additional challenges to our problem. Finally, there are some constructs in PyT-757

orch that propagate variable shapes, such as dim() and size(). There are also getters which758

index into shapes. Those constructs were used to write ad-hoc shape-checks. We dealt with759

them in our implementation by propagating shape information accordingly.760

We have implemented approximately 6000 LOC across three different tracers. Figure 6761

summarizes how our implementation works. First, we implement a core constraint gener-762

ator. This generator takes a program (in our benchmarks case, a program is generated via763
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torch.fx), and generates core, source constraints for it. Next is the constraint translator764

which consists of two phases. In the first phase, it encodes the gradual types found in the765

program then translates the source constraints into target constraints. Note that a program766

is annotated, possibly with a Dyn type for every variable. In the second phase, it translates767

the target constraints into Z3 constraints, which is a 1:1 translation.768

Next, we modify each of TorchDynamo and HFtracer to incorporate our reasoning and769

use it for branch elimination. We must incorporate our logic into the tracers because branch770

elimination happens at trace-time, unlike program migration which requires a whole program.771

Our implementation faithfully follows our core logic, although we have made some prac-772

tical simplifications. First, our implementation focuses on supporting 50 PyTorch operations773

that our benchmarks use. Each of those operations has its own constraints and supporting774

all 50 was multiple months of effort. Second, for the view operation (which is similar775

to reshape in terms of types, see https://pytorch.org/docs/stable/generated/torch.776

Tensor.view.html), we have skipped implementing dynamism and required the solver to777

provide concrete dimensions. This allowed us to carry out branch elimination without re-778

quiring an additional constraint that disables dynamism, although the same effect can be779

accomplished in this manner as well. Third, Conv2D may accept rank-3 or rank-4 inputs,780

but we have limited our implementation to the rank-4 case, since this is the case that is781

relevant to most of our benchmarks.782

We ran our experiments on a MacBook Pro with an 8-Core CPU, 14-Core GPU and783

512GB DRAM.784

7 Experimental Results785

We answer the following three questions.786

Q(1): Can our tool determine if the migration space is non-empty? If so, can it determine787

if the migration space contains a static migration and if so, can it find one? Yes. Our788

tool is the first to affirmatively answer all three questions.789

Q(2): Given an arithmetic constraint on a dimension, can our tool determine if there is a790

migration that satisfies it and if so, can it find one? Yes. Our tool is the first to retrieve791

migrations that provably satisfy arbitrary arithmetic constraints.792

Q(3): Can our tool prove that branch elimination is valid for an infinite set of inputs,793

not just for a single input? If so, does it allow us to represent the set of inputs for which794

a branch evaluates to true or false? Yes. We incorporate our logic into two different795

tools and eliminate branches in all benchmarks we considered for infinite classes of input,796

characterized via constraints. Neither tool was able to achieve this without our logic.797

Figure 7 contains our benchmark names, the source of the benchmark, lines of code,798

and the number of flatten and reshape operations in each benchmark. The flatten and799

reshape operations are special because our analysis of them involves multiplication and mod-800

ulo constraints. Our benchmarks are drawn from two well-known libraries, TorchVision and801

Transformers [30, 29], with the exception of two microbenchmarks that we use as examples802

in Section 2. We used different benchmarks for different experiments. The first four models803

do not contain branches, making them suitable for Q(1) and Q(2). They are interesting804

because BmmExample has a shape mismatch, ConvExample cannot be statically migrated,805

and AlexNet and ResNet50 are well-known neural-network models. Our experience is that806

tensor programs are tricky to type, and that our tool offers feedback that helps the user807

narrow down the migration space by adding constraints. The next six models are suitable808
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Benchmark Source LOC Flatten Reshape Used for
BmmExample this paper 4 0 0 Q(1)
ConvExample this paper 6 0 0 Q(1)

AlexNet TorchVision 24 1 0 Q(1)
ResNet50 TorchVision 177 1 0 Q(1)
Electra Transformers 525 0 48 Q(2)
Roberta Transformers 533 0 48 Q(2)

MobileBert Transformers 2103 0 96 Q(2)
Bert Transformers 528 0 48 Q(2)

MegatronBert Transformers 1018 0 96 Q(2)
XGLM Transformers 104 0 14 Q(2) and Q(3)
Marian Transformers 1733 0 315 Q(3)

MarianMT Transformers 1735 0 315 Q(3)
M2M100 Transformers 1762 0 319 Q(3)

BlenderBot Transformers 2380 0 451 Q(3)

Figure 7 Benchmark information

Q(1) Q(2)
Benchmark Static migration? Time(s) Arithmetic constraints? Time(s)

BmmExample No 0.03 No 0.03
ConvExample No 0.05 Yes 0.08

AlexNet Yes 2 Yes 2
ResNet50 Yes 5 Yes 347

Figure 8 Q(1) and Q(2): static migration and migration under arithmetic constraints

for our HFTracer experiments. Those experiments required reasoning about whole programs809

and our tool was able to reason about them in under two minutes. The final four benchmarks810

are of a larger size. We do not support all the operations in those benchmarks. However,811

this did not pose a problem because in TorchDynamo, we were not required to reason about812

entire programs. Instead, we were required to reason about program fragments, which made813

our tool terminate in under three minutes.814

We ran our tool in the following way to answer Q(1).815

1. Generate the core constraints and check if they are satisfiable. If not, stop right away;816

The program is ill-typed.817

2. Determine if the input variable can have a concrete rank by asking the solver for migra-818

tions of concrete ranks from one to four. If none exist, the input variable was used at819

different ranks throughout the program.820

3. If the input variable can be assigned concrete ranks, pick one of them and ask the tool821

to statically annotate all dimensions.822

4. If the solver cannot statically annotate all dimensions, relax this requirement for each823

dimension to determine which one cannot be statically annotated.824

We first traced our benchmarks using torch.fx, then ran the above steps on the output.825

The first step simply involves running our tool, while the second and third steps require the826

user to pass constraints to the tool and rerun it. Determining if a variable has a certain827

rank requires a single run with our tool. Determining if a dimension can be static requires a828

single run with our tool. The final step involves removing constraints. Each time we remove829
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a constraint from a dimension, we can run our tool once to determine a result.830

The first part of Figure 8 summarizes our results. The first column in the figure is the831

benchmark name. The second column asks if the benchmark has a static migration and832

the third column measures the time it took to answer this question and retrieve a static833

migration. For ConvExample, the input can only be rank-4 and the second dimension can834

only be Dyn. BmmExample has a type error. Finally, ResNet50 and AlexNet can be fully835

typed and the inputs can only be rank-4 in both cases.836

We ran our tool in the following way to answer Q(2). First we follow the steps for837

answering Q(1), and if any dimensions can be static, then we apply further arithmetic838

constraints on some of those dimensions and ask for a migration that satisfies them. We ran839

the steps above in our extension of torch.fx. The second part of Figure 8 summarizes our840

results. The fourth column asks if arithmetic constraints can be imposed on at least one841

of the dimensions and the fifth column measures the time it took to answer this question842

and retrieve a migration that satisfies an arithmetic constraint. For ResNet50 and AlexNet,843

we added arithmetic constraints. For ConvExample, we fixed the example like we did in844

Section 2 then added arithmetic constraints. We obtained valid migrations that satisfy our845

constraints for all benchmarks, except for BmmExample which is ill-typed and thus has an846

empty migration space.847

We ran our tool in the following way to answer Q(3). We ran our extension of HFtracer,848

starting with annotating the input with Dyn and then gradually increasing the precision849

of our constraints to provide the solver with more information to eliminate more branches.850

The number of times we run our tool here depends on how much information the user gives851

the tool about the input. If the tool receives static input dimensions, then this will be852

enough to eliminate all branches that depend on shapes. But since we aim to relax this853

requirement, we could start with a Dyn shape then gradually impose constraints, first with854

rank information, then with dimension information.855

We were able to eliminate all branches this way. We followed similar steps in our856

TorchDynamo extension but we faced some practical concerns because TorchDynamo cur-857

rently does not carry parameter information between program fragments. We had to resolve858

this issue manually by passing additional constraints at every new program fragment.859

Figure 9 details our HFtracer experiments on 6 workloads. Figure 9 contains the original860

number of branches in the program, the remaining branches after running our extension,861

without imposing any constraints on the input, and the number of remaining branches after862

running our extension, with the constraints in Figure 9 on the input. The second-to-last863

column of the figure is the time it takes to perform branch elimination with constraints.864

HFtracer also eliminates all branches from the 6 workloads. However, it does this by865

running the program on an input. We can obtain a similar result by giving a constraint866

describing the shape of the input because we observed that for all benchmarks we considered,867

an actual input is not needed to eliminate all branches, and we can relax this requirement868

much further. Specifically, for some benchmarks, no constraints are needed at all to eliminate869

all branches, while for others, it is enough to specify rank information. For one of the870

benchmarks, we can specify a range of dimensions for which branches can be eliminated.871

Figure 9 details the constraints.872

Finally figure 10 represents branch elimination for TorchDynamo. There are two modes873

of operation in TorchDynamo called static and dynamic. In the static mode, the tracer874

traces the program with one input which is provided by the user. Branch elimination is875

therefore valid for a single input. In Dynamic mode, the tracer also takes an input but876

it only records rank information and ignores the values of the dimensions. So if a branch877
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# remaining branches
without with Time

Benchmark original constr. constr. (s) our constraints
Electra 3 3 0 1 T ensor(x, y)
Roberta 3 0 0 3 none

MobileBert 3 3 0 1 T ensor(x, y)
Bert 3 0 0 3 none

MegatronBert 3 0 0 5 none
XGLM 5 4 0 22 T ensor(x, y) ∧ x > 0 ∧ 1 < y < 2000

Figure 9 Q(3): HFtracer number of remaining branches

Benchmark original with constraints Time(s)
XGLM 5 0 45
Marian 44 26 70

MarianMT 44 26 75
M2M100 47 22 130

BlenderBot 35 19 40

Figure 10 Q(3): TorchDynamo number of remaining branches

depends on dimension information, a graph-break will occur. We focused on benchmarks878

where branches depend on dimension information. In figure 10, we impose constraints on879

the dimensions and eliminate branches which decreases the number of times TorchDynamo880

breaks the program when tracing. The first column in the figure indicates the benchmark881

names. Next is the original number of branches with TorchDynamo. Then we have the882

remaining number of branches after incorporating our reasoning. Finally, we measure time883

in seconds. The input constraints are range and rank constraints, as exemplified by the884

constraints for XGLM shown in Figure 9.885

From our experiments, we observed that slowdowns can be due to the kind of constraints886

involved and the number of constraints to solve. Our tool typically handles benchmarks887

that are under 1000 lines of code easily. However, range constraints impose overhead. For888

example, ResNet50 and XGLM contain such constraints and they were the slowest in Figure889

9. For the experiments under Q(1) and Q(2), we let the tools run more than 5 minutes, but890

for Q(3) we limit to 5 minutes. The benchmarks in figure 10 are over 1000 lines, and for891

some branches, branch elimination with TorchDynamo times out after 5 minutes.892

There are two limitations to our TorchDynamo experiments. First, since PyTorch has893

various operations with many layers of abstractions and edge cases, not every edge case was894

implemented. Given that this only affected a few branches, we chose to skip those branches.895

This did not affect our experiments because TorchDynamo does not require all branches to896

be removed. Each branch removed will result in one less graph-break. TorchDynamo induces897

graph-breaks for reasons other than control flow. When graph-breaks happen, we have to898

re-write an input constraint for the resulting fragments because there is currently no clear899

mechanism in passing parameter information from one fragment to another. We manually900

passed input constraints to program fragments until eliminating at least 40% of branches901

and have stopped after that due to the large size of the benchmarks and program fragments.902

We leave parameter preservation during graph-breaks to the TorchDynamo developers.903
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8 Related work904

We first discuss related work about shapes in tensor programs.905

[15] show how to do shape checking based on assertions written by programmers. Their906

assertions can reason about tensor ranks and dimensions, with arithmetic constraints. Our907

work also supports such constraints. Their tool executes a program symbolically and looks908

for assertion violations. The more assertions programmers write, the more shape errors their909

tool can report. Their tool uses Z3 to solve constraints of a size that can be up to exponential910

in the size of the program. Our approach is similar in that it enables programmers to911

annotate a program with types and to type check the program and thereby catch shape912

errors. Another similarity is that we use Z3 to solve constraints of exponential size. Our913

approach differs by going further: we have tool support for annotating any program with914

types and for removing unnecessary runtime shape checks. Additionally, we have proved915

that our type system has key correctness properties.916

[9] define a gradually typed system for tensor computations and, like us, they prove that917

it has key correctness properties. They use refinement types to represent tensor shapes,918

they enable programmers to write type annotations, and they do best-effort shape inference.919

Their refinements share some characteristics with the assertions used by [15], as well as920

with our constraints. They found that, for each of their benchmarks, few annotations are921

sufficient to statically type check the entire program. They focus on shape checking and922

shape inference, while we focus on generalizing shape analysis for various tasks including923

program migration and branch elimination. Their approach adds the traditional gradual924

runtime checks [22] in cases where annotations and shape inference fall short. Our work925

differs by enabling program optimizations through removing runtime checks, while we leave926

out gradual runtime checks. Conceptually, our approach and the one from [9] differ in that927

we define type migration syntactically, while they follow a semantic interpretation of gradual928

types. It is unclear how migration would be defined in their context. Another difference929

is that we have demonstrated scalability: their benchmark programs are up to 258 lines of930

code, while our benchmark programs are up to 2,380 lines of code. We were unable to do931

an experimental comparison because our tool works with PyTorch, while their tool works932

with OCaml-Torch.933

[31] analyzed the root causes of bugs in TensorFlow programs by scanning StackOverFlow934

and GitHub. They identified four symptoms and seven root causes for such bugs. The most935

common symptoms are functional errors, crashes, and build failure, while common root936

causes are data processing errors, type confusion, and dimension mismatches. Our type937

system can help spot those root causes because key parts of such code will have type Dyn,938

even after migration.939

[11] use static analysis to detect shape errors in TensorFlow. Their approach statically940

detects 11 of the 14 TensorFlow bugs reported by [31], but has no proof of correctness. Our941

approach differs from [11] by being able to annotate a program with types and being able to942

remove unnecessary runtime checks. Our work can reason about programs without requiring943

any type annotations and only taking into account the shape information from the operations944

used in the program, while [11] requires a degree of type information. In contrast, we have945

proved that our type system has key migratory properties, such as that our constraints946

represent the entire migration space for a program, allowing us to extract and reason about947

all existing shape information from the program according to the programmer’s needs.948

[10] is a static analysis tool that detects shape errors in PyTorch programs. Their949

approach is different than ours in that it detects errors via symbolic execution. It considers950
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all possible execution paths for a program to reason about shapes. The number of execution951

paths can be large. In contrast, our approach reasons about shapes which can be given in952

the form of type annotations or can be detected from the program.953

[27] consider a dynamic analysis tool for TensorFlow, called ShapeFlow, to detect shape954

errors. The advantage of this approach is that, like our approach, it does not require type955

annotations, but their analysis holds for only particular inputs, in contrast to our approach,956

which reasons about programs across all possible inputs. Unlike our work, their approach957

has not been formalized, but there is empirical evidence to support that it detects shape958

errors in most cases. Because we reason about programs statically, our work is more suitable959

for compiler optimizations and program understanding. Our shape analysis approach can960

be used to annotate programs. In contrast, ShapeFlow is more suitable if a programmer961

desires a light-weight form for error detection that works in most cases.962

[20] designed an intermediate representation called Relay. It is functional, like our calcu-963

lus, but is statically-typed, unlike our gradual type system. Its goals are similar to ours in964

that it aims to balance expressiveness, portability, and compilation. Unlike our system, as965

a static type system, Relay requires type annotations for every function parameter. Similar966

to our approach, their work focuses on the static aspect of the problem and has left the967

runtime aspect to future work.968

[19] extends [20] by using a static polymorphic type system for shapes, which we leave969

to future work. This system has a type named Any, which enables partial annotations, but970

which appears to provide less flexibility than our Dyn type because of the absence of type971

consistency.972

Next we discuss two closely related papers on migratory typing.973

[12] defined the migration space for a gradually typed program as the set of all well-974

typed, more-precise programs. They represented the migration space for a given program975

by generating constraints where each solution represents a migration. The constraint-based976

approach enables them to solve migration problems for a λ-calculus. We adapted their977

definition of type migration and migration space to our context of a tensor calculus and978

rather different types. We use their idea of a migration space and constraints to give an979

algorithm that annotates a program with types and an algorithm that removes unnecessary980

runtime checks. In contrast to their approach, we use an SMT solver (Z3) because it can981

deal with the arithmetic nature of tensor constraints.982

[16] build a tool which extends [12], by providing several criteria for choosing migrations983

from the migration space. Their work is about simple types, while our work is about tensor984

shapes. While their work is specifically focused on reasoning about the migration space for985

program annotation, we reason about the migration space more generally, by using it for986

general tensor reasoning tasks including program annotation and branch elimination. Their987

gradual language contains traditional gradual runtime checks, while we leave out runtime988

aspects.989

9 Conclusion990

We have presented a method that reasons about tensor shapes in a general way. Our991

method involves a gradual tensor calculus with key properties and support for decidable992

shape analysis for a large set of operations. Our algorithm is practical because it works on993

14 non-trivial benchmarks across three different tracers. We expect that our approach to994

branch elimination can be extended to handle other forms of shape-based optimization.995
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A Static Tensor types1110

(Program) P ::= DECL∗ return e

(Decl) DECL ::= id : T
(Terms) e ::= x | add(e1, e2) | reshape(e, T ) | Conv2D(cin, cout, κ, e)

(IntegerTuple) κ ::= (c∗)
(Const) c ::= ⟨Nat⟩

(Tensor Types) S, T ::= TensorType(list(D))
U,D ::= ⟨Nat⟩

(Env) Γ ::= ∅ | Γ, x : T

Figure 11 Tensor Calculus

decl∗ ⊢st Γ Γ ⊢st e : T
Γ ⊢st decl∗ return e ok

(ok-prog-s) x : T ∈ Γ
Γ ⊢st x : T (t-var)

Γ ⊢st e : TensorType(D1, . . . , Dn)
∏n

1 Di =
∏m

1 Ui

Γ ⊢st reshape(e, TensorType(U1, . . . , Um)) : TensorType(U1, . . . , Un)
(t-reshape-s)

Γ ⊢st e : T T = TensorType(D1, D2, D3, D4)
S = calc-conv(T, cout, κ) cin = D2

Γ ⊢st Conv2D(cin, cout, κ, e) : S
(t-conv)

Γ ⊢st e1 : T1 Γ ⊢st e1 : T2 (S1, S2) = apply-broadcasting(T1, T2) S1 = S2

Γ ⊢st add(e1 e2) : S1
(t-add)

Figure 12 Type Rules
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B Gradual Tensor Types: Helper Notation1111

Least Upper Bound:1112

τ ⊔ τ ′ = undefined, if τ ≁ τ ′
1113

τ ⊔ τ = τ Dyn ⊔ τ = τ τ ⊔ Dyn = τ1114

TensorType(d1, . . . , dn) ⊔ TensorType(d′
1, . . . , d

′
n) = TensorType(d1 ⊔ d′

1, . . . , dn ⊔ d′
n),1115

if d1 ∼ d′
1, . . . , dn ∼ d′

n1116

d1 ⊔ d2 = undefined, if d1 ≁ d21117

d1 ⊔ d1 = d1 d1 ⊔ Dyn = d1 Dyn ⊔ d2 = d21118
1119

Least Upper Bound*:1120

τ ⊔∗ τ ′ = undefined, if τ ≁ τ ′
1121

τ ⊔∗ τ = τ Dyn ⊔∗ τ = Dyn τ ⊔∗ Dyn = Dyn1122

TensorType(d1, . . . , dn) ⊔∗ TensorType(d′
1, . . . , d

′
n) =1123

TensorType(d1, . . . , dn) ⊔ TensorType(d′
1, . . . , d

′
n), if d1 ∼ d′

1, . . . , dn ∼ d′
n1124

1125

Apply-Broadcasting:1126

apply-broadcasting(τ1, τ2) is defined as follows:1127

if τ1 = Dyn ∨ τ2 = Dyn return τ1, τ21128

else:1129

let τ1 and τ2 be equal in length by padding the shorter type with 1’s from index 01130

replace occurrences of 1 in τ1 with the type at the same index in τ21131

replace occurrences of 1 in τ2 with the type at the same index in τ11132
1133

Calc-Conv:1134

calc-conv(t, cout, κ) = TensorType(t′0, t′1, t′2, t′3)1135

1136

t′0 = σ0, t′1 = cout,1137

t′2 =

{
σ2 − (κ[0]− 1) if σ2 ∈ N,
Dyn otherwise,

t′3 =

{
σ3 − (κ[1]− 1) if σ3 ∈ N,
Dyn otherwise.

1138

1139

ECOOP 2024
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C Components of the Runtime Semantics1140

Algorithm 3 Reshape

1: procedure Reshape(Rin, Sout)
2: Input:
3: Rin: Input tensor
4: Sout: Target shape as tuple
5: Output:
6: Rout: Reshaped tensor with shape Sout, initialized as the scalar 0, which is a tensor of rank

0
7: E: Error state (0 for success, 1 for failure), initialized as 0
8: Validation:
9: if Rin is not a tensor or Sout is not a tuple then

10: E ← 1
11: return (Rout, E)
12: end if
13: if "dyn" occurs in Sout more than once then
14: E ← 1
15: return (Rout, E)
16: end if
17: Sin ← shape(Rin)
18: if a single "dyn" dimension in Sout then
19: Remove "dyn" from Sout

20: sdyn ← (
∏

d∈Sin
d) / (

∏
d∈Sout\{”dyn”} d)

21: Replace "dyn" in Sout with sdyn

22: end if
23: if (

∏
d∈Sin

d) ̸= (
∏

d∈Sout
d) then

24: E ← 1
25: return (Rout, E)
26: end if
27: Reshaping:
28: Flatten Rin into srcFlat
29: Create empty Rout with shape Sout and same data type as Rin

30: indices ← list of zeros for each dimension of Sout

31: for each position in Rout do
32: Assign a value from srcFlat to the position in Rout based on indices
33: Update indices to navigate dimensions, ensuring wrapping when a dimension is exhausted
34: end for
35: return (Rout, E)
36: end procedure
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Algorithm 4 Custom Broadcasted Addition

1: procedure Add(R1, R2)
2: Input:
3: R1, R2: Input tensors
4: Output:
5: Rout: Resultant tensor after addition, initialized as the scalar 0, which is a tensor of rank 0
6: E: Error state (0 for success, 1 for failure), initialized as 0
7: Validation:
8: if R1 is not a tensor or R2 is not a tensor then
9: E ← 1

10: return (Rout, E)
11: end if
12: S1 ← shape(R1)
13: S2 ← shape(R2)
14: L1 ← length(S1)
15: L2 ← length(S2)
16: if L1 < L2 then
17: S1 ← padWithOnes(S1, L2 − L1)
18: else if L2 < L1 then
19: S2 ← padWithOnes(S2, L1 − L2)
20: end if
21: for i = 0 to L1 − 1 do
22: if S1[i] ̸= 1 and S2[i] ̸= 1 and S1[i] ̸= S2[i] then
23: E ← 1
24: return (Rout, E)
25: end if
26: end for
27: Broadcasting and Element-wise Addition:
28: Sout ← the element-wise maximum dimensions of S1 and S2

29: if a dimension in S1 is 1 and the corresponding dimension in S2 is greater than 1 then
30: Expand the dimension in R1 by copying elements to match S2

31: end if
32: if a dimension in S2 is 1 and the corresponding dimension in S1 is greater than 1 then
33: Expand the dimension in R2 by copying elements to match S1

34: end if
35: Rout ← an initialized tensor with shape Sout

36: Perform element-wise addition between the expanded R1 and R2 and store the result in
Rout.

37: return (Rout, E)
38: end procedure

ECOOP 2024
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Algorithm 5 2D Convolution

1: procedure Conv2D(Cin, Cout,K,Rin)
2: Input:
3: Cin: Number of input channels
4: Cout: Number of output channels
5: K: Kernel tensor of shape (Cout, Cin,Hk,Wk)
6: Rin: Input image tensor of shape (B,Cin,Hin,Win)
7: Output:
8: Rout: Output image tensor, initialized as the scalar 0, which is a tensor of rank 0
9: E: Error state (0 for success, 1 for failure), initialized as 0

10: Validation:
11: if Rin is not a 4D tensor or K is not a 4D tensor or
12: Cin is not an integer or Cout is not an integer then
13: E ← 1
14: return (Rout, E)
15: end if
16: if The dimensions of Rin or K are not valid for convolution then
17: E ← 1
18: return (Rout, E)
19: end if
20: Convolution:
21: Hout ← Hin −Hk + 1
22: Wout ←Win −Wk + 1
23: Rout ← tensor of zeros with shape (B,Cout,Hout,Wout)
24: for b ∈ {0, . . . , B − 1} do
25: for cout ∈ {0, . . . , Cout − 1} do
26: for i ∈ {0, . . . ,Hout − 1} do
27: for j ∈ {0, . . . ,Wout − 1} do
28: for cin ∈ {0, . . . , Cin − 1} do
29: Rout[b, cout, i, j]← Rout[b, cout, i, j]+
30:

∑Hk−1
p=0

∑Wk−1
q=0 Rin[b, cin, i+ p, j + q] ·K[cout, cin, p, q]

31: end for
32: end for
33: end for
34: end for
35: end for
36: return (Rout, E)
37: end procedure
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Algorithm 6 Auxiliary Procedures

1: procedure shape(T )
2: Input:
3: T : Input tensor
4: Output:
5: S: Shape of the tensor as a tuple
6: Determine the dimensions of T and store in S

7: return S

8: end procedure
9: procedure padWithOnes(S, n)

10: Input:
11: S: Original shape as a tuple
12: n: Number of ones to pad
13: Output:
14: P : Padded shape
15: P ← tuple of ones of length n concatenated with S

16: return P

17: end procedure

▶ Theorem 3. ∀Rin, Sout : Reshape(Rin, Sout) = (Rout, E) where Rout is a tensor and1141

E ∈ {0, 1}.1142

▶ Theorem 4. ∀R1, R2 : Add(R1, R2) = (Rout, E) where Rout is a tensor and E ∈ {0, 1}.1143

▶ Theorem 5. ∀Cin, Cout,K,Rin : Conv2D(Cin, Cout,K,Rin) = (Rout, E) where Rout is a1144

tensor and E ∈ {0, 1}.1145

ECOOP 2024
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D Static properties1146

▶ Definition 6 (rank). rank(TensorType(d1, . . . , dn)) = n.1147

▶ Theorem D.1 (Monotonicity w.r.t precision). ∀p, p′,Γ : if Γ ⊢ p : ok ∧ p′ ⊑ p then1148

Γ ⊢ p′ : ok.1149

Proof. Proof by induction on the proof structure of p′ ⊑ p.1150

1151

Case decl∗′
return e′ ⊑ decl∗ return e. Then by inspection, we have:1152

1153

∀i ∈ {1, . . . , n} decl′
i ⊑ decli e′ ⊑ e

decl′
1, . . . , decl′

n return e′ ⊑ decl1, . . . , decln return e
(p-prog)

1154

1155

We also have the following rule:1156

1157

decl∗ ⊢ Γ Γ ⊢ e : τ
Γ ⊢ decl∗ return ∗e ok

(ok-prog)
1158

1159

We need to prove that Γ′ ⊢ decl∗′
return e′ ok.1160

1161

We have that decl∗ ⊢ Γ. We consider decl∗′ ⊢ Γ′. Then we know that Γ′ ⊑ Γ.1162

1163

Since Γ ⊢ e : τ , then by lemma 7, we have that Γ′ ⊢ e′ : τ ′ where τ ′ ⊑ τ . So we have that:1164

1165

decl∗′ ⊢ Γ′ Γ′ ⊢ e′ : τ ′

Γ′ ⊢ decl∗′
return e′ ok

(ok-prog)
1166

◀1167

▶ Lemma 7 (Monotonicity of expressions). Suppose Γ ⊢ e : τ . Then for Γ′ ⊑ Γ and Γ′ ⊢ e : τ ′
1168

with τ ′ ⊑ τ .1169

We proceed by induction on e.1170

1171

Case x.1172

We clearly have that Γ ⊢ x : τ and Γ′ ⊢ x : τ ′ and τ ′ ⊑ τ .1173

1174

Case add(e1, e2)1175

We have that:1176

1177

Γ ⊢ e1 : t1 Γ ⊢ e2 : t2 (τ1, τ2) = apply-broadcasting(t1, t2) τ1 ∼ τ2

Γ ⊢ add(e1, e2) : τ1 ⊔∗ τ2
(t-add)

1178

By applying the IH, we have that Γ′ ⊢ e1 : t′1 and Γ′ ⊢ e2 : t′2 where t′1 ⊑ t1 and1179

t′2 ⊑ t2. Note that apply-broadcasting preserves monotonicity, by lemma 8. Further-1180

more, ⊔∗ and ∼ preserve monotonicity. Therefore we can apply (t-add) again to get that1181

Γ′ ⊢ add(e1, e2) : t′ where t′ ⊑ t.1182

1183

Case reshape(e, τ).1184

We will proceed with case analysis on the derivation rules.1185
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Consider:1186

Γ ⊢ e : TensorType(D1, . . . , Dn)
∏n

1 Di =
∏m

1 Ui

Γ ⊢ reshape(e, TensorType(U1, . . . , Um)) : TensorType(U1, . . . , Un)
(t-reshape-s)

1187

By applying the IH, we have that Γ′ ⊢ e : t where t ⊑ TensorType(D1, . . . , Dn). First, if1188

t = Dyn or has more than one occurrence of Dyn then we can either t-reshape or t-reshape-g de-1189

pending on the occurrences to get that Γ′ ⊢ reshape(e, τ) : τ . If t = TensorType(U1, . . . , Un)1190

then it must be the case that D1 = U1, . . . , Dn = Un. Otherwise, we know that
∏n

1 Di =1191 ∏m
1 Ui and that τ ′ is the same as τ except that one dimension is replaced with Dyn. There-1192

fore,
∏n

1 Di is divisible by the product of dimensions of τ ′ so we can apply t-reshape-g or1193

t-reshape depending on the Dyn occurrences.1194

Next, consider:1195

Γ ⊢ e : TensorType(σ1, . . . , σm)
m∏
1
σi mod

n∏
1
di = 0 ∨

n∏
1
di mod

m∏
1
σi = 0 ∀di, σi ̸= Dyn

and Dyn occurs exactly once in d1, . . . , dm, σ1, . . . , σn

or
Dyn occurs more than once in d1, . . . , dm,

Γ ⊢ reshape(e, TensorType(d1, . . . , dn)) : TensorType(d1, . . . , dn)
(t-reshape-g)

1196

From the IH, we have that Γ ⊢ e : t with t ⊑ TensorType(σ1, . . . , σm). Consider t. If1197

t = TensorType(σ1, . . . , σm) then apply t-reshape-g or t-resshape depending on the Dyn1198

occurrences1199

Finally, we consider:1200

Γ ⊢ e : τ where
τ = TensorType(σ1 . . . σn)

and Dyn occurs more than once with at least one occurrence in
δ and σ1, . . . , σm

or τ = Dyn

Γ ⊢ reshape(e, δ) : δ
(t-reshape)

1201

Then by the IH. we have that Γ′ ⊢ e : t where t ⊑ τ . In this case, we will apply t-reshape.1202

Case Conv2D(cin, cout, κ, e).1203

Then we have:1204

1205

Γ ⊢ e : t t�4 TensorType(σ1, σ2, σ3, σ4) τ = calc-conv(t, cout, κ) cin ∼ σ2

Γ ⊢ Conv2D(cin, cout, κ, e) : τ
(t-conv)

1206

From the IH, Γ′ ⊢ e′ : t′ with t′ ⊑ t and e′ ⊑ e. We know that t′ �4 (σ′
1, σ

′
2, σ

′
3, σ

′
4)1207

with σ′
i ⊑ σi for i ∈ {1, . . . , 4}. Since calc-conv preserves monotonicity, by lemma 9, then1208

calc− conv(t′, cout, κ) = τ ′ for τ ′ ⊑ τ so we can apply t-conv and we are done.1209

▶ Lemma 8 (Monotonicity of broadcasting). For t′1 ⊑ t1 and t′2 ⊑ t2, we have that if1210

apply-broadcasting(t1, t2) = τ1, τ2 then apply-broadcasting(t′1, t′2) = τ ′
1, τ

′
2 where τ ′

1 ⊑1211

τ1 and τ ′
2 ⊑ τ2.1212

ECOOP 2024



11:38 Generalizing Shape Analysis with Gradual Types

Proof. If either t1 = Dyn or t2 = Dyn then we return t1 and t2. By the definition of precision,1213

we must have that either either t′1 = Dyn or t′2 = Dyn then we return t′1 and t′2 and we already1214

know that t′1 ⊑ t1 and t′2 ⊑ t′2 so we are done.1215

Otherwise, we know that t1, t2, t′1 and t′2 are tensor types.1216

Consider apply-broadcasting(t1, t2) = τ1, τ2 and apply-broadcasting(t′1, t′2) = τ ′
1, τ

′
2.1217

We know that t1 ∼ t′1 and t2 ∼ t′2. So rank(t1) = rank(t′1) and rank(t2) = rank(t′2).1218

Broadcasting preserves length. Therefore, rank(τ1) = rank(τ ′
1) and rank(τ2) = rank(τ ′

2).1219

Now we must show that each of the elements are related by precision, so let1220

t1 = TensorType(d1, . . . , dn), t′1 = TensorType(d′
1, . . . , d

′
n), t2 = TensorType(k1, . . . , kn),1221

t′2 = TensorType(k′
1, . . . , k

′
n). Then we will have τ1 = TensorType(δ1, . . . , δn),1222

τ ′
1 = TensorType(δ′

1, . . . , δ
′
n), τ2 = TensorType(κ1, . . . , κn), τ ′

2 = TensorType(κ′
1, . . . , κ

′
n).1223

Assume di = 1 then δi = ki and d′
i = 1 so δ′

i = k′
i and we know that k′

i ⊑ ki. Similarly,1224

if ki = 1 then κi = di and k′
i = 1 so κ′

i = d′
i and we have that d′

i ⊑ di. ◀1225

▶ Lemma 9 (Monotonicity of convolution). For tensor types t′, t :1226

if t′ ⊑ t and calc-conv(t, cout, κ) = τ then calc-conv(t′, cout, κ) = τ ′ where τ ′ ⊑ τ .1227

Proof. Consider t = TensorType(d1, . . . , dn) and t′ = TensorType(d′
1, . . . , d

′
n). By applying1228

calc-conv, we have that d1 = d′
1 and d2 = d′

2. By inspection, d′
3 ⊑ d3 and d′

4 ⊑ d4. ◀1229

▶ Lemma 10 (Monotonicity of matching). If t′1 �i t′2 and t′1 ⊑ t1 then t1 �
i t2 and t′2 ⊑ t2.1230

Proof. Straightforward. ◀1231

▶ Theorem 11. Let τ1 ∼ τ2. Then ∃τ3 such that τ1 ⊔∗ τ2 = τ31232

Proof. We proceed by induction on the derivation.1233

Consider τ ∼ τ (c-refl-t). Then τ ⊔∗ τ = τ . Next, consider τ ∼ Dyn. Then we have that1234

τ ⊔∗ Dyn = Dyn.1235

Next, consider1236

∀i ≤ n : τi ∼ τ ′
i

TensorType(τ1, . . . , τn) ∼ TensorType(τ ′
1, . . . , τ

′
n)

(c-tensor)
1237

Then by induction, we have that ∀i ∈ {1, . . . , n} : τ ′
i ∼ τi so we have that τ ′

i ⊔∗ τi = τi”.1238

Then we get that1239

TensorType(τ1, . . . , τn) ⊔∗ TensorType(τ ′
1, . . . , τ

′
n) = TensorType(τ1”, . . . , τn”)1240

◀1241

▶ Theorem 12. Gradual Tensor Types are unique1242

Proof. Straightforward. ◀1243

▶ Theorem 13 (Conservative Extension). For all static Γ, p, we have:1244

Γ ⊢st p : ok iff Γ ⊢ p : ok1245

Forward direction.1246

We proceed by induction on derivation.1247
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Proof. Case ok-prog-s1248

decl∗ ⊢st Γ Γ ⊢st e : T
Γ ⊢st decl∗ return e ok

(ok-prog-s)
1249

so obviously:1250

decl∗ ⊢ Γ Γ ⊢ e : T
Γ ⊢ decl∗ return e ok

(ok-prog)
1251

Case t-var is straightforward.1252

Case t-reshape-s maps directly to a rule in the gradual language so it is also straightfor-1253

ward.1254

Case t-conv1255

Γ ⊢st e : T T = TensorType(D1, D2, D3, D4) S = calc-conv(T, cout, κ) cin = D2

Γ ⊢st Conv2D(cin, cout, κ, e) : S
(t-conv)

1256

So we have:1257

Γ ⊢ e : t T �4 TensorType(D1, D2, D3, D4) T = calc-conv(T, cout, κ) cin ∼ σ2

Γ ⊢ Conv2D(cin, cout, κ, e) : T
(t-conv)

1258

Similarly for:1259

Γ ⊢st e1 : T1 Γ ⊢st e2 : T2 (S1, S2) = apply-broadcasting(T1, T2) S1 = S2

Γ ⊢st add(e1 e2) : S1
(t-add)

1260

we have:1261

Γ ⊢ e1 : S1 Γ ⊢ e2 : S2 (S1, S2) = apply-broadcasting(S1, S2) S1 ∼ S2

Γ ⊢ add(e1, e2) : S1 ⊔∗ S2
(t-add)

1262

Here, note that since S1 and S2 are static and S1 = S2 then S1 ⊔∗ S2 = S11263

Backwards direction.1264

We can proceed by induction on the derivation. We have:1265

decl∗ ⊢ Γ Γ ⊢ e : T
Γ ⊢ decl∗ return e ok

(ok-prog)
1266

From decl∗ ⊢ Γ, we get that decl∗ ⊢st Γ.1267

From the induction on the sub derivation, we get that Γ ⊢st e : T . Therefore, :1268

decl∗ ⊢st Γ Γ ⊢st e : T
Γ ⊢st decl∗ return e ok

(ok-prog)
1269

t-var is straightforward.1270

t-reshape-g and t-reshape do not apply since they all involve the Dyn type.1271

For t-reshape-s we get:1272

Γ ⊢ e : TensorType(D1, . . . , Dn)
∏n

1 Di =
∏m

1 Ui

Γ ⊢ reshape(e, TensorType(U1, . . . , Um)) : TensorType(U1, . . . , Un)
(t-reshape-s)

1273
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we can apply the IH and get that Γ ⊢st e : TensorType(D1, . . . , Dn). Therefore:1274

Γ ⊢st e : TensorType(D1, . . . , Dn)
∏n

1 Di =
∏m

1 Ui

Γ ⊢st reshape(e, TensorType(U1, . . . , Um)) : TensorType(U1, . . . , Un)
(t-reshape-s)

1275

For t-conv we get:1276

Γ ⊢ e : S S �4 TensorType(D1, D2, D3, D4) T = calc-conv(t, cout, κ) cin ∼ D2

Γ ⊢ Conv2D(cin, cout, κ, e) : T
(t-conv)

1277

From the IH, we get that Γ ⊢st e : S. We know that → and ∼ are equality on static types,1278

so we can directly apply t-conv to get1279

Γ ⊢st e : S S = TensorType(D1, D2, D3, D4)
T = calc-conv(t, cout, κ) cin = D2

Γ ⊢st Conv2D(cin, cout, κ, e) : T
(t-conv)

1280

Next, we have:1281

Γ ⊢ e1 : S1 Γ ⊢ e2 : S2 (T2, T2) = apply-broadcasting(S1, S2) T1 ∼ T2

Γ ⊢ add(e1, e2) : T1 ⊔∗ T2
(t-add)

1282

We have that Γ ⊢st e1 : T1 and Γ ⊢st e2 : T2. We know that T1 ∼ T2 so T1 = T2. Therefore,1283

T1 ⊔∗ T2 = T1 so we get:1284

Γ ⊢st e1 : S1 Γ ⊢st e2 : S2 (T2, T2) = apply-broadcasting(S1, S2) T1 = T2

Γ ⊢st add(e1, e2) : T1
(t-add)

1285

◀1286

E From Source Constraints to Target Constraints1287

We define a series of steps that together map source constraints to target constraints.1288

Precision constraints.1289

We transform every Precision constraint into zero, one, or more equality constraints. We1290

leave the set of type variables unchanged and we proceed by repeating the following trans-1291

formation until it no longer has an effect.1292

From To
Dyn ⊑ x (no constraint)

TensorType(D1, . . . , Dn) ⊑ x x = TensorType(D1, . . . , Dn)
TensorType(d1, . . . , dn) ⊑ x x = TensorType(ζ1, . . . , ζn) ∧ ∀i ∈ {1, . . . , n} : di ⊑ ζi

where ζ1, . . . , ζn are fresh type variables
D ⊑ ζ D = ζ

Dyn ⊑ ζ (no constraint)

1293

≤ constraints.1294

We replace every ≤ constraint as follows.1295

From: |[[e]]| ≤ 41296

To: [[e]] = Dyn ∨ [[e]] = TensorType(ζ1) ∨ . . . ∨ [[e]] = TensorType(ζ1, ζ2, ζ3, ζ4)1297

where ζ1, . . . , ζ4 are fresh variables1298
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Consistency constraints.1299

From D ∼ ζ to ζ = Dyn ∨ (D = ζ).1300

From ζ1 ∼ ζ2 to (ζ1 = Dyn) ∨ (ζ2 = Dyn) ∨ (ζ1 = ζ2).1301

From: ⟨e1⟩ ∼ ⟨e2⟩1302

To: ⟨e1⟩ = Dyn ∨ ⟨e2⟩ = Dyn ∨ . . . ∨1303

(⟨e1⟩ = TensorType(ζ1, . . . , ζ4) ∧ ⟨e2⟩ = TensorType(ζ ′
1, . . . , ζ

′
4) ∧1304

ζ1 ∼ ζ ′
1 ∧ . . . ∧ ζ4 ∼ ζ ′

4)1305

Matching constraints.1306

From: [[e]] � TensorType(ζ1, ζ2, ζ3, ζ4)1307

To: ([[e]] = Dyn ∧ ζ1 = Dyn ∧ ζ2 = Dyn ∧ ζ3 = Dyn ∧ ζ4 = Dyn) ∨1308

([[e]] = TensorType(ζ1, ζ2, ζ3, ζ4))1309

⊔∗ constraints.1310

From: [[e]] = ⟨e1⟩ ⊔∗ ⟨e2⟩1311

To: ((⟨e1⟩ = Dyn ∨ ⟨e2⟩ = Dyn) ∧ [[e]] = Dyn) ∨1312

∀i ∈ {1, . . . , 5}(⟨e1⟩ = TensorType(ϵ1, . . . , ϵi) ∧1313

⟨e2⟩ = TensorType(ϵ′1, . . . , ϵi) ∧ [[e]] = TensorType(ζ1, . . . ζi) ∧1314

ζ1 = (ϵ1 ⊔ ϵ′1) ∧ . . . ∧ ζi = (ϵi ⊔ ϵ′i))1315

⊔ constraints1316

From: ϵ = ζ1 ⊔ ζ21317

To: ϵ = ζ1 ∧ (ζ1 = ζ2) ∨ (ϵ = ζ2 ∧ (ζ1 = Dyn)) ∨ (ϵ = ζ1 ∧ (ζ2 = Dyn))1318

Reshape constraints.1319

From: can-reshape([[e]], (D1, . . . , Dm))1320

To: [[e]] = Dyn ∨1321

([[e]] = TensorType(ϵ1) ∧ (ϵ1 = Dyn ∨ ϵ1 ̸= Dyn ∧ ϵ1 = D1 · . . . ·Dn)) ∨ . . . ∨1322

([[e]] = TensorType(ϵ1, . . . , ϵ4) ∧1323

(∃i ∈ {1, . . . , 5} : ϵi = Dyn ∧ ∀ϵj ̸= Dyn : D1 · . . . ·Dm mod
∏

ϵj = 0))1324

1325

From: can-reshape(TensorType([[e]], (D1, . . . , Dyn, . . . , Dm)))1326

To: [[e]] = Dyn ∨1327

([[e]] = TensorType(ϵ1) ∧ ϵ1 = Dyn ∨ ϵ1 ̸= Dyn ∧ ϵ1 mod D1 · . . . ·Dm = 0) ∨ . . . ∨1328

([[e]] = TensorType(ϵ1, . . . , ϵ4) ∧ (∃i ∈ {1, . . . , 5} : ϵi = Dyn)) ∨1329

((∀i ∈ {1, . . . , 5} : ϵi ̸= Dyn) ∧1330

(
5∏
1
ϵi mod D1 · . . . ·Dm = 0 ∨D1 · . . . ·Dm mod

5∏
1
ϵi = 0))1331
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Convolution constraints.1332

[[e]] = calc-conv([[e′]], cout, κ)1333

First, from a previous constraint, we know that [[e′]] � TensorType(ζ1, ζ2, ζ3, ζ4)1334

From: [[e]] = calc-conv([[e′]], cout, κ)1335

To: [[e]] = TensorType(ϵ1, ϵ2, ϵ3, ϵ4) ∧1336

ϵ1 = ζ1 ∧1337

ϵ2 = cout ∧1338

((ϵ3 = Dyn ∧ ζ3 = Dyn) ∨1339

(ζ3 ̸= Dyn ∧ ϵ3 = ((ζ3 − 1) · (κ[0]− 1)− 1) + 1)) ∧1340

(ϵ4 = Dyn ∧ ζ4 = Dyn) ∨1341

(ζ4 ̸= Dyn ∧ ϵ4 = ((ζ4 − 1) · (κ[0]− 1)− 1) + 1))1342
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Broadcasting constraints.1343

From: ⟨e1⟩, ⟨e2⟩ = apply-broadcasting([[e1]], [[e2]])1344

To: ([[e1]] = Dyn ∧ ⟨e1⟩ = [[e1]] ∧ ⟨e2⟩ = [[e2]]) ∨1345

([[e2]] = Dyn ∧ ⟨e2⟩ = [[e2]] ∧ ⟨e1⟩ = [[e1]]) ∨1346

([[e1]] = TensorType(ϵ1) ∧ . . .) ∨ . . . ∨1347

[[e1]] = TensorType(ϵ2) ∧ [[e2]] = TensorType(σ1, σ2) ∧1348

⟨e1⟩ = TensorType(ϵ′1, ϵ′2) ∧ ⟨e2⟩ = TensorType(σ′
1, σ

′
2) ∧1349

ϵ′1 = σ1 = σ′
1 ∧1350

(σ2 = ϵ2 = σ′
2 = ϵ′2 ∨ σ2 = 1 ∧ ϵ2 ̸= 1 ∧ σ′

2 = ϵ2 = ϵ′2 ∨1351

ϵ2 = 1 ∧ σ2 ̸= 1 ∧ ϵ′2 = σ2 = σ′
2)1352

∨ . . . ∨1353

([[e1]] = TensorType(ϵ1, ϵ2, ϵ3, ϵ4) ∧ [[e2]] = TensorType(σ1, σ2, σ3, σ4) ∧1354

⟨e1⟩ = TensorType(ϵ′1, ϵ′2, ϵ′3, ϵ′4) ∧ ⟨e2⟩ = TensorType(σ′
1, σ

′
2, σ

′
3, σ

′
4) ∧1355

((ϵ1 = σ1 = ϵ′1 = σ′
1) ∨ ((ϵ1 = 1 ∧ ζ1 ̸= 1 ∧ ϵ′1 = ζ1 ∧ ζ ′

1 = ζ1) ∨1356

(ζ1 = 1 ∧ ϵ1 ̸= 1 ∧ ζ ′
1 = ϵ1 ∧ ϵ′1 = ϵ1)) ∨ . . . ∨1357

(ϵ4 = σ4 = ϵ′4 = σ′
4) ∨ ((ϵ4 = 1 ∧ ζ4 ̸= 1 ∧ ϵ′4 = ζ4 ∧ ζ ′

4 = ζ4) ∨1358

(ζ4 = 1 ∧ ϵ4 ̸= 1 ∧ ζ ′
4 = ϵ4 ∧ ϵ′4 = ϵ4))))1359
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F Proof of the Order-Isomorphism1360

We will prove Theorem 4.1:1361

∀P : (Mig(P ),⊑) and (Sol(Gen(P )),≤) are order-isomorphic.1362

Proof. Let P be given; it remains fixed in the remainder of the proof. If φ is a function1363

from type variables to types, then we define the function Gφ from programs to programs:1364

Gφ(x1 : τ1, . . . , xn : τn return e) = x1 : Gφ(x1), . . . , xn : Gφ(xn) return e1365

Now we define the function αP with the help of Gφ:1366

αP : (Sol(Gen(P )),≤)→ (Mig(P ),⊑)1367

αP (φ) = Gφ(P )1368

We will show that αP is a well-defined order-isomorphism. We will do this in four steps: we1369

will show that αP is well defined, injective, surjective, and order-preserving.1370

Well defined.1371

We will show that if φ ∈ Sol(Gen(P )), then αP (φ) ∈ Mig(P ).1372

Suppose φ ∈ Sol(Gen(P )). We must show1373

P ⊑ αP (φ) and ⊢ αP (φ) : ok.1374

In order to show P ⊑ αP (φ), notice that P and αP (φ) differ only in the type annotations1375

of bound variables. If we have no bound variables in P , then P = αP (φ). Otherwise, notice1376

that for every declaration of x : τ in P , we have that φ |= τ ⊑ x and Gφ(x : τ) = x : φ(x).1377

So we know that P ⊑ αP (φ).1378

Suppose P = decl∗ return e. Let Γ be φ restricted to the set of variables declared in1379

decl∗.1380

In order to show ⊢ αP (φ) : ok, we first show the more powerful property:1381

∀e′ subterm of e : Γ ⊢ e′ : φ([[e′]]).1382

We proceed by induction on e′.1383

Case: e′ = x. Notice that φ |= x = [[x]] so use t-var.1384

Case: e′ = reshape(e0, δ). We have1385

φ |= [[reshape(e0, δ)]] = δ1386

and φ |= can-reshape([[e0]], δ). By induction, we have Γ ⊢ e0 : φ([[e0]]). Consider the defini-1387

tion of φ |= can-reshape([[e0]], δ). We have that if Dyndoesnotoccurinδ and φ([[e0]])
∏
δ =1388 ∏

φ([[e0]]) then we can use t-reshape-s. Otherwise, based on the occurrences of Dyn in both1389

φ([[e0]]) and δ, we can use t-reshape-g or t-reshape.1390

Case: Conv2D(cin, cout, κ, e0). We have φ |= [[e0]] � TensorType(ζ1, ζ2, ζ3, ζ4) and φ |=1391

cin ∼ ζ2 and φ |= [[Conv2D(cin, cout, κ, e0)]] = calc-conv([[e0]], cout, κ). By induction, we get1392

that Γ ⊢ e0 : φ([[e0]]). Then we use t-conv.1393

Case: e′ = add(e1, e2). Notice that φ |= [[e1]] = ⟨e1⟩ ⊔∗ ⟨e2⟩ and1394

φ |= (⟨e1⟩, ⟨e2⟩) = apply-broadcasting([[e1]], [[e2]]) and φ |= ⟨e1⟩ ∼ ⟨e2⟩ From the induction1395

hypothesis we have Γ ⊢ e1 : φ([[e1]]) and Γ ⊢ e2 : φ([[e2]]). Now we use T-Add.1396
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Injective.1397

We will show that if αP (φ) = αP (φ′), then φ = φ′.1398

Suppose αP (φ) = αP (φ′). From the definition of αP we see that for every declaration x :1399

τ in P we have φ(x) = φ′(x). We will show that for every declaration x : τ , φ(x) = φ′([[x]]).1400

Note that for every variable declaration x : τ , we have that φ |= τ ⊑ x and φ′ |= τ ⊑ x and1401

since αP (φ) = αP (φ′) then φ(x) = φ′(x).1402

Next we show that for every occurrence of a subterm e′ in the return expression e, we1403

have φ([[e′]]) = φ′([[e′]]), and for every occurrence of a subterm add(e1, e2), we have that1404

φ(⟨e1⟩) = φ(⟨e′
1⟩) and φ(⟨e1⟩) = φ(⟨e′

1⟩). We proceed by induction on E′.1405

Case: e′ = x, where x is bound in E. From φ |= [[e′]] = x and φ′ |= [[e′]] = x, we have1406

φ([[e′]]) = φ(x) = φ′(x) = φ′([[e′]]).1407

Case: e′ = reshape(e0, δ). From the induction hypothesis, we have the property1408

φ([[e0]]) = φ′([[e0]]). From φ |= can-reshape([[e0]], δ) and φ′ |= can-reshape([[e0]], δ) we1409

have φ([[e′]]) = φ′([[e′]]) = δ.1410

Case e′ = Conv2D(cin, cout, κ, e0). From the induction hypothesis, we have the property1411

φ([[e0]]) = φ′([[e0]]). From φ |= [[e0]] � TensorType(ζ1, ζ2, ζ3, ζ4) and1412

φ′ |= [[e0]] � TensorType(ζ1, ζ2, ζ3, ζ4), φ |= cin ∼ ζ2 and φ′ |= cin ∼ ζ2 and1413

φ |= [[Conv2D(cin, cout, κ, e0)]] = calc-conv([[e0]], cout, κ) and1414

φ′ |= [[Conv2D(cin, cout, κ, e0)]] = calc-conv([[e0]], cout, κ) we have φ([[e′]]) = φ′([[e′]]).1415

Case e′ = add(e1, e2). From the induction hypothesis, we have φ([[e1]]) = φ′([[e1]]) and1416

φ([[e2]]) = φ′([[e2]]). Then we have φ |= (⟨e1⟩, ⟨e2⟩) = apply-broadcasting([[e1]], [[e2]]) and1417

φ′ |= (⟨e1⟩, ⟨e2⟩) = apply-broadcasting([[e1]], [[e2]])1418

and φ |= ⟨e1⟩ ∼ ⟨e2⟩ and φ′ |= (⟨e1⟩, ⟨e2⟩) = apply-broadcasting([[e1]], [[e2]]). So we have1419

that φ([[e′]]) = φ′([[e′]]).1420

Surjective.1421

We will show that if P0 ∈ Mig(P ), then ∃φ ∈ Sol(Gen(P )) such that P0 = αP (φ).1422

From P0 ∈ Mig(P ) we have P ⊑ P0 and ⊢ P0 : ok.1423

Suppose P0 = decl∗ return e and consider a derivation D of ⊢ P0 : ok. We define1424

φ as follows. First, for a variable x declared in decl∗ with the declaration x : τ , define1425

φ(x) = τ . Second, for every occurrence of a subterm e′ of the return expression e, find the1426

judgment in D of the form Γ ⊢ e′ : τ ′, and define φ([[e′]]) = τ ′. Then for the subterm e′ of1427

the form add(e1, e2) in e0, find the use of T-Add for e′ and in that use, find the equation1428

((τ1, τ2) = apply-broadcasting(t1, t2) , and define φ(⟨e1⟩) = τ1 and φ(⟨e2⟩) = τ2.1429

We must show that φ ∈ Sol(Gen(P )). First note that for every variable declaration x : τ1430

we have that φ(x) = τ .1431

Next, we will do a case analysis of the occurrences of subterms e′ in the return expression1432

e.1433

Case: e′ = x, where x is bound in E. From (t-var) we have that φ([[e′]]) = φ(x) so1434

φ |= [[e′]] = x.1435

Case: e′ = add(e1, e2) : τ1. The derivation D contains this use of T-Add:1436

Γ ⊢ e1 : t1 Γ ⊢ e2 : t2 (τ1, τ2) = apply-broadcasting(t1, t2) τ1 ∼ τ2

Γ ⊢ add(e1, e2) : τ1 ⊔∗ τ2
(t-add)

1437

So, φ([[e1]]) = τ1 and φ([[e2]]) = τ2. By examining our constraints and the fact that αP (φ) =1438

Gφ(P ) = P0, we are done. We know that αP (φ) = Gφ(P ) = P0 is that P0 differs from P1439

only in the type annotations of variable declarations.1440
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Case e′ = Conv2D(cin, cout, κ, e). We consider the use of T-Conv2D and inspect the1441

constraints and apply the reasoning above.1442

Case e′ = reshape(e′, δ). We consider the use of either T-reshape-s, T-reshape or1443

T-reshape-g and inspect the constraints and apply the reasoning above.1444

Order-preserving.1445

We will show that if φ ≤ φ′, then αP (φ) ⊑ αP (φ′).1446

Suppose that φ ≤ φ′ and let P = x1 : τ1, . . . , xn : τn return e. We have1447

αP (φ) = Gφ(P ) = x1 : Gφ(x1), . . . , xn : Gφ(xn) return e1448

αP (φ′) = Gφ′(P ) = x1 : Gφ′(x1), . . . , xn : Gφ′(xn) return e1449

From φ ≤ φ′ and from p-prog and p-decl, we have αP (φ) ⊑ αP (φ′). ◀1450
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