
UCLA CS130 Software Engineering Fall21 Review Note: Final
By Patricia Xiao

Static / Structure Modeling: fixed, code-level

• Class Diagrams

• etc. (e.g. Component Diagrams)

Dynamic / Behavioral Modeling: capturing execution
of the system

• Use Case Diagrams

• Sequence Diagrams

• State Chart Diagrams

• etc. (e.g. Activity Diagrams)

UML Diagrams

Models: high-level class relations
Components:

• Class (rectangle)

– Upper section: name of the class

– Middle section: attributes (type, visibility)

– Bottom section: methods (type, visibility)

• Relations (links between classes): Dependency,
Association, Aggregation, Composition, Gene-
ralization, Realization

Class Diagrams

Public (+) Private (−) Protected (#)
Package (∼) Derived (/) Static (underlined)

Class Diagram: Visibility Symbols

Multiplicity (Cardinality)
Of a class: A number in the upper right corner of the
component; the number of objects at runtime; usually
omitted and by default > 1.
Of a relation: Placed near the ends of an edge, indi-
cating the number of instances of one class linked to
an instance of the other class on the other side of the
edge.

Class Diagram: Multiplicity Definition

n exactly n m..n at least m, at most n

∗ many 1..∗ at least one, could be more

0..1 zero or one 0..0 must be empty

Class Diagram: Multiplicity Symbols

From weak to strong, from general to specific:

• Dependency (uses) — A uses B (dashed line
pointing from A to B)

• Association (has-a) — A has a field of B object
(solid line pointing from A to B)

• Aggregation (owns) — satisfies iff

– A has a field that is a list of B objects

(solid line pointing to B with an unfilled dia-
mond at the A end / association end)

• Composition (part-of) — satisfies iff

– A has a field that is a list of B objects

– B object can’t live outside A

(solid line pointing to B with an filled diamond
at the A end / association end)

• Generalization (is-a) — B extends A / sub-
classing (close-headed solid line pointing to A)

• Realization — B implements A / sub-typing
(close-headed dashed line pointing to A)

Class Diagram: Relations

Specify: Actors, System (scenario), Goals
Models: high-level interactions
Components:

• Actors (stick figures) – role (one user can have
multiple roles)

• Use Cases (ovals) – scenario

• Relations (edges): association, inclusion, exten-
sion, generalization

Actors are not directly interacting with each other.

Use Case Diagram

Association

• actor – case (undirected solid line)

• case – case (dashed line with arrow)

– inclusion (e.g. ride ≪ include ≫ push but-
ton, arrow pointing to push button)

– extension – exceptional variation (e.g. de-
rail is an ≪ exception ≫ of ride, arrow
pointing to ride)

Generalization/Specialization (close-headed arrow
pointing to more general one); e.g. Synchronize Data
generalize Synchronize Data Wirelessly

Use Case Diagram: Relations

Models: communication between elements
Belongs to Interaction Diagrams (include: Se-
quence diagrams, Communication diagrams, Interac-
tion overview diagrams, Timing diagrams)
Components:

• Class Roles / Participants (top-row) / Actors

– instance name : Class Type

– not necessarily an object in the system, e.g.
can be human actors.

• Activation or Execution Occurrence (dispatch:
solid black dot, destroy ≪ destroy ≫)

• Messages (horizontal arrows)

– Method Invocation (solid line with arrow)

– e.g. a:A point to b:B with text exe-
cute(0), then it means a (of class A) calls
b.execute(0), b is of class B.

– Return value via dashed line pointing back

• Lifelines (dashed vertical lines)

– Invocation Lifetime: vertical rectangles

– can be nested across actors, and threads
within a single actor

• Loop (while / for, [condition]) / Alt (if-then-
else, [if-condition] – horizontal dashed line –
[else]) / Opt (if-then, [if-condition]) / Par / Re-
gion; All shown as wrapped in a rectangle.

Sequence Diagram

1



When a:A create an instance of b:B at run time,
we draw the rectangle with text content b:B at the
height where a:A invokes it.
Then it starts to live. When a:A create an instance
of B named b, we depict it by letting a:A pointing to
a newly-created b:B column via dashed line and text:
create(params); where params are the parameters ne-
eded for instantiate an object of class B.
Invocation Lifetime is not Lifetime.
Lifetime is represented by the dashed line, invocation
lifetime is represented by the thin vertical rectangle
along the dashed line.

Seq Diagram: Invocation Lifetime v.s. Lifetime

If name of an object of class A is unknown, it is okay
to leave it blank, e.g. : A.

Seq Diagram: Class Name and Type

Models: high-level state behaviors of objects
Components:

• Initial State (black filled circle) – start

• Transition (solid arrow)

– trigger [guard] / effect

– trigger if guard, make effect

– e.g. Somewhere is a Door’s State Machine:
use key [door locked] / [door → unlock]

• State (rounded rectangle) – of object

• Fork (rounded solid rectangular bar) – 1 inco-
ming arrow, n outgoing arrows; represent split-
ting into concurrent states.

• Join (rounded solid rectangular bar) – n inco-
ming arrows from the joining states, m outgoing
arrow towards the common goal states; multiple
states concurrently converge into one on the oc-
currence of an event or events.

• Self transition (solid line w. arrow pointing
back to itself) – the state of the object does
not change upon the occurrence of an event

• Composite State (rounded rectangle) – wrap-
ping around a lot of other states

• Final state (black filled circle within a circle) –
the final state in a state machine diagram

State Chart Diagram

format Class UC Seq State Code

Class N/A ✗ ✗ ✗ ✓

UC ✗ N/A ✗ ✗ ✗

Seq ✗ ✗ N/A ✗ ✓

State ✗ ● ✗ N/A ●

Code ✓ ● ✓ ✓ N/A

UC represents Use Case Diagram, Seq represents Se-
quence Diagram. Code refers to Java-style pseudo
code. The meaning of the marks are listed below:

✓ sufficient (for the row) to transform to (the
column)

● transformation (from row to column) is do-
able but needs some extra clarification

✗ very unlikely to directly transform (the
row) to (the column)

UML Diagram: Translations

• Information Hiding (IH)

• Low Coupling (LC): Reduce the dependencies
between modules (classes, packages, etc)

• High Cohesion (HC): A module contain functi-
ons that logically belong together.

• Separation of Concerns (SoC): a single concern
is easily separated from the rest of concerns.

• etc. (e.g. Law of Demeter (LoD), Abstraction,
Liskov Substitution Principle, ...)

There are many different principles. In this class we
focus on information hiding.

Software Design Principles

• Decomposition of a software system into multi-
ple independent modules.

• Easy to interpret & maintain & code-reuse, etc.

Modularization

• A principle for breaking program intomodules.

• API should (1) only contain design decisions un-
likely to change (2) do not reveal any volatile
information.

• Makes anticipated changes affect modules in an
isolated and independent way.

Parnas’ Information Hiding (IH) Principle

Information hiding principle is:

• an analysis of how changes will affect existing
code

• and assessment of changeability.

Information Hiding (IH) Principle: Conclusion

Identify the Modules’: name, role, input, output.
Changeability Assessment: for different scenarios,
which module / which module’s API(s) need to be
changed.
Code Critique:

1. What information is hidden (by XXX Module)?

2. Changes you anticipate? (any new features you
may want for the system)

3. Readability and comprehensibility? (e.g. con-
sistent arguments, self-explanatory coding, etc.)

4. Capability to support independent work assign-
ment? (low coupling)

Modularization: Practice

Functional decomposition (Flowchart approach)

• Each module corresponds to each step in a flow
chart.

Information Hiding (IH)

• Each module corresponds to a design decision
that are likely to change and that must be hid-
den from other modules.

• Interfaces definitions were chosen to reveal as
little as possible.

Modularization: Different Ways to Achieve

2



Creational Design Pattern

• Factory Method: defines an interface for cre-
ating an object but lets subclasses decide which
class to instantiate; lets a class defer instantia-
tion to subclasses.

• Abstract Factory: provides an interface for
creating families of related or dependent objects
without specifying their concrete classes.

• Singleton: ensures a single object creation, and
it must be globally accessible.

• etc. (e.g. Prototype)

Structural Design Pattern

• Adaptor: adapts legacy code to a target inter-
face.

• Façade: simplifies complex interfaces of multi-
ple subsystems.

• Flyweight: share common resources by sepa-
rating usage contexts from used objects.

• etc. (e.g. Composite)

Behavioral Design Pattern

• Strategy: defines a family of algorithms, en-
capsulates each one, and makes them interchan-
geable at runtime; lets the algorithm vary inde-
pendently from clients that use it.

• Observer: defines one-to-many dependency
between objects, when the subject changes
state, all of its observers are notified and up-
dated.

• Mediator: defines an object that encapsula-
tes how a set of objects interact, encapsulates
many to many dependencies between objects,
centralizing control logic, reduces the variety of
messages.

• Command: decouples a receiver object’s acti-
ons from invokers.

• Template Method: set a common workflow
where sub steps may vary at subclass.

• State: encode complex state transitions.

• etc. (e.g. Interpreter)

Design Patterns: Categories

• Book: Head First Design Patterns

• SourceMaking:
https://sourcemaking.com/design patterns/

• ReactiveProgramming:
https://reactiveprogramming.io/blog/en/design-
patterns/factory-method

• Refactoring.Guru:
https://refactoring.guru/design-patterns

Design Patterns: References

• Factory / Creator: include a factory method

• Concrete Factories / Concrete Creators: imple-
ment factory method

• Product

• Concrete Products

Factory Method Pattern

Factory Method: Class Diagram Draft

• Not an accurate Sequence Diagram.

Factory Method: Sequence Diagram Draft

• Abstract Factory / Abstract Creator: include
makeProductOne, makeProductTwo, etc.

• Concrete Factories / Concrete Creators: imple-
ment factory method

• ProductOne, ProductTwo, etc.

• Concrete ProductOneA, Concrete ProductO-
neB; Concrete ProductTwoA, etc.

When adding new products to the abstract factory,
the interface has to be changed.

Abstract Factory Pattern

3

https://sourcemaking.com/design_patterns/
https://reactiveprogramming.io/blog/en/design-patterns/factory-method
https://reactiveprogramming.io/blog/en/design-patterns/factory-method
https://refactoring.guru/design-patterns


Abstract Factory: Class Diagram Draft

• Not an accurate Sequence Diagram.

Abstract Factory: Sequence Diagram Draft

• The class of the single instance is responsible
for access and “initialization on first use”. The
single instance is a private static attribute, ac-
cessed via a public static method.

Singleton Pattern

Singleton: Class Diagram Draft

• Not an accurate Sequence Diagram.

Singleton: Sequence Diagram Draft

• Adapter: represents the implementation of the
Target, hide details of Adaptee; e.g. Rectangle

• Adaptee: represents the class with the incom-
patible interface; e.g. LegacyRectangle

• Target: e.g. Shape

Adapter Pattern

Adapter: Class Diagram Draft

• Not an accurate Sequence Diagram.

Adapter: Sequence Diagram Draft

Adapter: a.k.a. Wrapper

4



• The Façade defines a unified, higher level inter-
face to a subsystem that makes it easier to use.

• IFacade: high-level interface, hiding the comple-
xity of interacting with multiple systems.

• DefaultFacadeImpl: implementation of IFacade,
in charge of communicating with all the subsys-
tems.

• Subsystems: represents all the modules or
subsystems with interfaces for communication.

• As an example, the customer-service system
could be incredibly complex without Façade.

Façade Pattern Façade: Class Diagram Draft

• Not an accurate Sequence Diagram.

Façade: Sequence Diagram Draft

Flyweight Pattern

• FlyweightFactory: factory class for building the
Flyweight objects.

• Flyweight: the objects we want to reuse in order
to create lighter objects.

Flyweight Pattern

Flyweight: Class Diagram Draft

• Not an accurate Sequence Diagram.

Flyweight: Sequence Diagram Draft

5



• Strategy Interface: define the common interface
of all strategies that must implement.

• Concrete Strategy: inherit from Strategy Inter-
face, they implement concrete strategies.

Strategy Pattern

Strategy: Class Diagram Draft

• Not an accurate Sequence Diagram.

Strategy: Sequence Diagram Draft

• Subject: interface of all observable subject clas-
ses, in it, methods that (1) keep track of obser-
vers listening to itself (2) notify the observers
when change happens, are defined.

• Concrete Subject: the observable class; it imple-
ments all methods defined in Subject interface.

• Observer: interface observing the changes on
Subject.

• Concrete Observer: Concrete class watching the
changes on Subject, inherits from Observer, im-
plements its methods.

It defines a one-to-many dependency between objects
so that when one object (a concrete observable sub-
ject) changes state, all of its dependents (correspon-
ding concrete observers) are notified and updated au-
tomatically.

Observer Pattern

Observer: Class Diagram Draft

• Not an accurate Sequence Diagram.

Observer: Sequence Diagram Draft

• Mediator: defines the interface for communica-
tion between colleague objects.

• Concrete Mediator: implements the media-
tor interface and coordinates communication
between colleague objects.

• Colleague (Peer): defines the interface for com-
munication with other colleagues

• Concrete Colleague: implements the colleague
interface and communicates with other collea-
gues through its mediator only; e.g. Producer,
Consumer in the figure.

Centralize many-to-many complex communications
and control between related objects (colleagues).

Mediator Pattern

6



Mediator: Class Diagram Draft

• Not an accurate Sequence Diagram.

Mediator: Sequence Diagram Draft

• Command: interface describing the structure of
the commands, defining the generic execution
method for all of them (e.g. execute, undo).

• Concrete Command: inheriting from Com-
mand, each of these classes represents a com-
mand that can be executed independently.

• Receiver: informed by the Concrete Command
and take actions.

• Invoker: the action triggering one of the com-
mands, hold a command and at some point exe-
cute it.

• (optional) Command Manager: manage all the
commands available at runtime, from here we
create / request commands.

The Command pattern allows requests to be encap-
sulated as objects, thereby allowing clients to be pa-
rameterized with different requests.

Command Pattern

Command: Class Diagram Draft

• Not an accurate Sequence Diagram.

Command: Sequence Diagram Draft

• Abstract Template: an abstract class including
a series of operations which define the necessary
steps for carrying out the execution of the algo-
rithm; e.g. Framework Class in the figure.

• Implementation: the class inherits from Abs-
tract Template and implements its methods to
complete the algorithm; e.g. Application Class
One / Two in the figure.

The Template Method Pattern defines the skeleton
of an algorithm in a method, deferring some steps to
subclasses; subclasses may redefine certain steps of an
algorithm without changing its overall structure.

Template Method Pattern

7



Template Method: Class Diagram Draft

• Not an accurate Sequence Diagram.

Template Method: Sequence Diagram Draft

• Context: the component subject to changing
states, it has its current state as one of its pro-
perties; e.g. in a vending machine example, this
would represent the machine.

• State: abstract base class used for generating
different states, usually works better as an abs-
tract class, instead of as an interface, because it
allows us to set default behaviors.

• Concrete State: inherit from State, each one of
these represent a possible state the application
could go through during its execution.

State Pattern

State: Class Diagram Draft

• Not an accurate Sequence Diagram.

State: Sequence Diagram Draft

8



• Semantic-preserving program transformations,
made to the internal structure, without chan-
ging its observable behavior.

• Could involve changing implementation details,
e.g. reorganization class hierarchies.

• Always guided by design patterns.

• Not formally defined, no way to check semantics
preservation in practice. But it is a common vo-
cabulary.

• Ref: https://refactoring.guru/refactoring

Refactoring

The symptoms of bad software design. Categories:

• Bloaters (complexity accumulates over time
as the program evolves): long method, large
class, primitive obsession, long parameter
list, data clumps

• Object-Orientation Abusers: switch state-
ments, temporary field, refused bequest, alter-
native classes with different interfaces

• Change Preventers (make change difficult):
divergent change, shotgun surgery, paral-
lel inheritance hierarchies

• Dispensables (pointless, unneeded parts):
comments, duplicate code, lazy class, data
class, dead code, speculative generality

• Couplers (causes excessive coupling): fea-
ture envy, inappropriate intimacy, message
chains, middle man

• etc.

Fowler: Bad Code Smells

Use of primitives instead of small objects for sim-
ple tasks (such as currency, ranges, special strings for
phone numbers, etc.) e.g.:

• Use of constants for coding information;

• Use of string constants as field names for use in
data arrays.

Possible solutions:

• replace data value with object;

• replace type code with class / subclasses.

Primitive Obsession

Bunches of data that hang around together, but ought
to be made into their own object. Possible solutions:

• Extract class

• Introduce parameter objects

– Replace a group of parameters that natu-
rally go together with an object. e.g. start:
Date, end: Date =¿ DateRange

• Preserve whole objects

Data Clumps

• Divergent change: one class, many kinds of
changes;

• Shotgun Survey: one change, alters many
classes.

Solutions: move method or move field, use inline clas-
ses, etc.

Divergent Change v.s. Shotgun Survey

A special case of shotgun surgery: whenever you make
a subclass of one class, you also have to make a sub-
class of another. Solutions: move method or move
field.

Parallel Inheritance Hierarchies

Class not useful enough to pay for the effort of main-
tenance should be eliminated. Possible solutions:

• lazy subclass: Collapse Hierarchy (merge the
subclass to the superclass)

• more general: Inline Class (move all the class’s
features into another class and delete it)

Lazy Class

Over-generated code preserving a lot of “will be use-
ful in the future” components etc., containing unused
class, method, field or parameter. Possible solutions:

• removing unused abstract classes: Collapse Hi-
erarchy;

• unnecessary delegation of functionality: elimi-
nated via Inline Class;

• methods with unused parameters: Remove Pa-
rameter;

• unused fields: simply deleted;

• methods with odd abstract names: Rename
Method.

Speculative Generality

A method accesses the data of another object more
than its own data.

• e.g. a method that frequently invokes getter
methods to another object to calculate some va-
lue. (usually data-related)

Feature Envy

One class uses the internal fields and methods of
another class. Possible Solutions:

• change bi-directional Association to uni-
directional;

• in case of common interests, use Extract Class;

• Hide Delegate to let another class act as go-
between.

– A client class calling a delegate class’s
method (on the server) of an object. (e.g.
client -¿ Person.getDept(), client -¿ De-
partment.getManager(); =¿ client -¿ Per-
son.getManager() )

Inappropriate Intimacy

9

https://refactoring.guru/refactoring


An important refactoring technique.

• Problem: having a conditional that performs va-
rious actions depending on object type or pro-
perties.

• Solution: move each leg of the conditional into
an overriding method in a subclass; make the
original method abstract.

Benefits:

• instead of asking an object about its state and
then performing actions based on this, it’s much
easier to simply tell the object what it needs to
do and let it decide for itself how to do that
(Tell-Don’t-Ask principle)

• remove duplicate code, get rid of many almost-
identical conditionals

• make it much easier to add a new execution va-
riant, by add new subclass instead of changing
conditions in existing code anywhere (Open/-
Closed Principle)

Replace Conditional with Polymorphism

• Data-Level Refactorings

• Statement-Level Refactorings

• Routine-Level Refactorings

• Class Implementation Refactorings

• Class Interface Refactorings

• System Level Refactorings

Refactoring: Categories

Problem:

• Potential of causing new bugs.

Solutions:

• Save the code you start with

• Keep refactorings small

• Do refactorings one at a time

• Make a list of steps you intend to take

• Make a parking lot— for changes that aren’t
needed immediately, make a “parking lot.”

• Make frequent checkpoints

• Use your compiler warnings

• Retest

• Add test cases

• Review the changes

• Adjust your approach depending on the risk le-
vel of the refactoring

• etc.

A lot of research has been done in this field. (ref:
lecture slides)

Refactoring: Safety

10



Overview:

• Testing and code review/inspection are the most
common quality-assurance methods.

• Can NEVER guarantee bug-free.

• “Adversarial” role of of the rest of develop-
ment activities, assuming you WILL find er-
rors. (Developers will tends to skip more sophis-
ticated kinds of test, and being overly optimis-
tic.)

• Testing by itself does NOT improve software
quality.

Categories:

• Unit Testing: execution of a complete class,
routine, or small program, performed by the de-
velopment team, white box testing of indi-
vidual programs or executable modules.

• Component Testing: the execution of a class,
package, small program, or other program ele-
ment, performed by the testing team, black
box testing on each part separately.

• Integration Testing: the combined execution
of two or more classes / packages / components
/ subsystems etc.

• System Testing: the execution of the software
in its final configuration, including integration
with other software and hardware systems.

• Regression Testing: the repetition of previ-
ously executed test cases for the purpose of fin-
ding defects.

Another way of classification:

• Black-Box Testing: cannot see the inner wor-
kings of the item while being tested.

• White-Box Testing: the inner workings of the
item being tested is visible to the tester.

Bounded Iteration and Infeasible Paths

• Counting the number of loop iterations for
bounded programs;

• Identify infeasible paths through symbolic exe-
cution.

Symbolic execution Test Generation Regression test
selection

Testing

• Testing: detecting / revealing errors.

• Debugging: solving the detected errors.

Testing v.s. Debugging

Necessity:

• We prefer the amount of test being just right
(not too much, not insufficient).

• During software evolution, identifying relevant
tests will help us save time.

Criterion:

• Statement Coverage: Is each statement (each
line of code) executed?

• Branch coverage: Is every branch (if-else)
evaluated on both true and false conditions?

• Path coverage: Is every possible path (note:
each branch can have two paths) exercised by
tests? (much stricter than the other two)

Test Adequacy Criteria

Similar to an activity diagram.
Diamonds for branch (outward lines should specify
conditions), rectangles for statements (steps in the
code), solid-line arrows representing “what’s next”.

Control Flow Graph (CFG)

Often used with a Control Flow Graph.

Table Column Explanation

Input Exact assignment of input (e.g.
{ condition 1 = true, condition
2 = false, . . . })

Exercised Sta-
tements

Statements reached under the
input. (e.g. s1, s2, s5)

Exercised
Branches

Branches selected under the
current input. (e.g. b3, b8, b10)

Exercised
Paths

(usually represented by a com-
bination of the branches’ selec-
tions, e.g. [b3, b8, b10])

Table’s rows: each input row is followed by a cove-
rage row, coverage is accumulated from top to bot-
tom. It is very hard to guarantee 100% coverage for
an arbitrary program.

Code Coverage Table

• Unit Testing: JUnit — automated framework
for unit testing in Java, compare the observed
proram state with the expected ones and reports
the differences.

– Each test case is realized by its own class
derived from TestCase class (provided by
JUnit).

– Each test is realized by its own method
whose name starts with test...

– assertTrue() method inherited from
TestCase means assert.

– Setting Up: the method setUp() is called
before each test of the class.

– Tearing Down: the method tearDown()
is called after each test. Useful for relea-
sing fixture.

• Component Testing: assertions. Should be
able to identify errors and stop execution im-
mediately, reporting which test case is not pas-
sed. Test cases must be individually executed,
independent from each other. Should be able to
group tests into test suites.

Test suite: container for multiple test cases grouped
together.

Testing Tools in Practice

Consider each branch (if-else), if both paths are fea-
sible, it results in 2 paths. With k branches, we have
2k paths if no infeasible path.
In case of loop, we perform loop unrolling to count
paths. If n loops on code with k branches, we have
2nk paths if (1) there is no infeasible path, and (2)
the later branches’ executions are independent from
earlier branches.
Possible questions being asked:

• #times a certain line is executed

• #branch executions (k) in the loop-unrolled
program

• #path

• is there any infeasible path & which?

• draw control flow graph

• symbolic execution e.g. to design concrete input

The Number of Paths

11



Cannot be executed under any inputs.
How to identify:

• Conduct a symbolic execution, to model indi-
vidual paths, in terms of logical constraints.

• i.e. For each branch, examining whether there
exists an input that makes the condition true /
false.

Infeasible Paths / Dead Code

• Use fresh variables (1) in the beginning (2) after
the state updates;

• Loop must be unrolled first;

• Propagate the constraints for both true and
false evaluation of each branch;

• Conservatively estimating the effect of taking
either path.

Symbolic Execution

Term Explanation

Path Condition The condition to exercise each
path.

Effect What happens if executing sta-
tements along one of the possi-
ble paths.

Symbolic Execution: Terms

• Determine a path condition to exercise a parti-
cular path;

• Find concrete input assignments for each path
using symbolic execution.

Test Input Generation

The concept helps reduce the number of test cases
required, formalizing the idea of

“A good test case covers a large part of
the possible input data.”

Equivalence Partitioning

Columns: Edge, Tests on Edge.
Edges are the links in a control flow graph, repre-
sented by the starting node and the ending node this
time.
Tests on Edges indicates the ids of the tests conduc-
ted that has covered the corresponding edge.
If multiple edges are covered by exactly the same set
of tests, we can merge the rows.

(Edge) Coverage Matrix

Happens when code is changed (say, P =¿ P’), aims
to verify whether or not the software hasn’t “taken
a step backward” / “regressed” (= not introducing
known bugs).
Also suppose that T is a test suite for P, and P has
passed all of the tests. The corresponding coverage
matrix of T is C.

Regression Testing (Retesting)

Given: (1) the difference between P and P’ (2) C
Problem: identify a subset of T that can identify all
regression faults. (Safe RTS)
Solution: Harrold & Rothermel’s Regression Test Se-
lection

• A safe, efficient regression test selection techni-
que

• Selection based on traversal of control flow
graphs (CFG) for P and P’.

• Key Idea: select tests exercising dangerous
edges in P’.

– Dangerous Edges: the edges in CFG(P)
where target node is different in CFG(P’);
discovered by traversing CFG(P) and
CFG(P’) in parallel. Edges whose nodes
are changed / removed / new...

– Running all test cases in T that exercised
dangerous edges is as effective as running
entire T.

Key challenge in Java RTS: (1) polymorphism, (2) dy-
namic binding, (3) exception handling, and also han-
dling external libraries & components.

• Solution: JIG (Java Interclass Graph) & adding
dynamic dispatching

Regression Test Selection (RTS)

CFG with Dynamic Dispatching: Example

Prioritization: prioritizing and scheduling test ca-
ses. Provides assistance to regression testing.
Augmentation Methods: e.g. in class we introdu-
ced JIG and the CFG with dynamic dispatching to
make RTS work in Java.
Change Impact Analysis: which tests are affected
by program changes?

Related Concepts

Both used in real life.
Random Testing: randomly sample a huge amount of
test cases inputs.
Systematic Testing: setup is defined, inputs are sam-
pled systematically.

Random Testing v.s. Systematic Testing

Nowadays, problems are complex, forcing a hybrid:

• systematic in exploring search space;

• randomize to explore variation.

And also, prioritize boundary conditions first. e.g.
null array, accessing an out-of-bound range.
White-Box Structural Testing is preferred: tes-
ting base on the structure of the program.

Modern Systematic Testing

12



Control oriented: how much of the control aspect
of the code has been explored?

• e.g. statement coverage, branch coverage, path
coverage (learned in class)

Data oriented: how much of the definition / use re-
lationship between data elements has been explored?

Structural Testing: Categories

Black-Box Testing, based on some abstract test
suits. Model refers to some abstract knowledge of
the behavior of the system (not knowing the exact
code structure). e.g. models could be:

• Decision trees / graphs

• Workflows e.g. for UML Activity Diagrams
(node: activity, edge: state; similar yet different
to state diagrams), adequacy criteria include:

– Node coverage: cover all the nodes (activi-
ties);

– Branch coverage: explore all directions at
all decision nodes;

– Mutations: what if the user does not follow
the activity diagram?

• Finite State Machines: Good at describing
interactions in systems with a small number of
modes. e.g. adequacy criteria include:

– Single State Path Coverage: collection of
paths that cover each single state;

– Single Transition Path Coverage: collec-
tion of paths that cover each single state
/ each single transition;

– Boundary Interior Loop Coverage: crite-
rion on number of times loops are exerci-
sed.

– Mutation: how the system responds to
unexpected inputs.

– We can use probabilistic automata to re-
present distributions of inputs if we want
to do randomized testing.

• Grammars: used to describe well-formed inputs
to systems, used to construct sample inputs.
Use coverage criteria on a test set to see that
all constructs are covered.

• etc.

Model-Based Testing

White-Box, Structural Testing method, aimed at
assessing / improving the adequacy of test suites, and
estimating the number of faults present in systems un-
der test. Proved to be able to effectively emulate real
world faults in Is mutation an appropriate tool for
testing experiments? (ICSE’05, Andrews J.H et al.).
Major steps:

1. systematically apply mutations to P , resulting
in a sequence {P1, P2, . . . , Pn}, consisting of mu-
tants of P . Pi is derived by applying a single
mutation operation to P . Pi is expected to exe-
cutable but buggy.

2. Run T on all Pi, where T will kill Pi if it detects
and error.

3. If we kill k out of n mutants, the adequacy of T
is measured by the quotient k

n , which is called a
mutant killing ratio. T is mutation adequate if
k = n.

Kinds of mutations here:

• Value Mutations: changing the values of
constants or parameters (e.g. loop bounds —
being one out on the start or finish)

• Decision Mutations: modifying conditions
(e.g. at a branch — changing greater than to
less than)

• Statement Mutations: might involve deleting
/ duplicating certain lines or permuting the or-
der of lines of code etc. (e.g. in a loop — omit
the increment on some variable) Other possibi-
lities include: changing operations in arithmetic
expressions.

Mutation Testing

Hoare-style Program Verifications, named after Sir
Tony Hoare (British), also known as Hoare logic, is
widely used in communicating Sequential Processes.
In general, Hoare Logic:

• is a formal system with a set of logical rules
for reasoning rigorously about the correctness
of computer programs;

• is a formal inspection technique, good for code
review & pair programming, conveys pre/post-
conditions well.

Hoare Logic: Introduction

The central feature of Hoare logic is the Hoare triple:

{P}S{Q} ,

where P serves as pre-condition, Q is the post-
condition, and S is the corresponding piece of pro-
gram. S is executed if the predicate P is true, then
terminated if the other predicate Q is true.

Hoare Logic: Hoare Triples

wp(S,Q) = P is the most general P such that

{P}S{Q}

Note: Here is how we represent replacing w by E in
R,

wp(w := E,R) ≡ R[w := E]

e.g.

wp(x := x+ 1, x ≤ 10) ≡ {(x ≤ 10)[x := x+ 1]}
= {x+ 1 ≤ 10} = {x ≤ 9}

{P}S{Q} ⇐⇒
(
P ⇒ wp(S,Q)

)
wp(S;T,R) ≡ wp

(
S,wp(T,R)

)
wp(if B then S else T end, R)

≡
(
B ⇒ wp(S,R)

)
∧
(
¬B ⇒ wp(T,R)

)
≡
(
B ∧ wp(S,R)

)
∨
(
¬B ∧ wp(T,R)

)
wp(assert P ,R) ≡ P ∧R

Hoare Triples: Weakest Precondition (wp)

{P}S{Q} ∧ {P}S{R} ⇒ {P}S{Q ∧R}
{P}S{Q} ∧ {Q}S{R} ⇒ {P ∨Q}S{R}
{P}S{Q} ∧ {Q}T{R} ⇒ {P}S;T{R}

{P ∧B}S{R} ∧ {P ∧ ¬B}T{R} ⇒ {P} if B then

S else T endif {R}

If S is a loop body and P is the loop invariant (after
loop it still holds):

{P ∧B}S{P} ⇒ {P} while B do S done {¬B ∧ P}

Hoare Triples: Example

13


