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Textbook 4

Course: Spectral Graph Theory from Yale.
Textbooks include:

I Spectral and Algebraic Graph Theory (Daniel A.
Spielman)

I Scalable Algorithms for Data and Network Analysis
(Shang-Hua Teng)

http://www.cs.yale.edu/homes/spielman/462/syllabus.html
http://cs-www.cs.yale.edu/homes/spielman/sagt/sagt.pdf
https://viterbi-web.usc.edu/~shanghua/teaching/Fall2019-670/networkDataAnalysisPrintedBook.pdf


About the Course 5

Objective of the course:

I To explore what eigenvalues and eigenvectors of graphs can
tell us about their structure.

Prerequisites:

I Linear algebra, graphs, etc.



Content This Week 6

Textbook chapters:

I Spectral and Algebraic Graph Theory (Daniel A.
Spielman) Chap 1 ∼ 3

I Scalable Algorithms for Data and Network Analysis
(Shang-Hua Teng) Chap 2.4

Supplementary Materials:

I Prof. Cho’s additional explanations on the matrices;

I The points Prof. Sun brought up on the random walk
matrix WG and the Courant-Fischer Theorem;

I Yewen’s note related to Courant-Fischer Theorem
https://www.overleaf.com/read/bsbwwbckptpk.

http://cs-www.cs.yale.edu/homes/spielman/sagt/sagt.pdf
https://viterbi-web.usc.edu/~shanghua/teaching/Fall2019-670/networkDataAnalysisPrintedBook.pdf
https://www.overleaf.com/read/bsbwwbckptpk


Problems 7

Problems listed in Prof. Teng’s book Chap 2.4

I Significant Nodes: Ranking and Centrality

I Coherent Groups: Clustering and Communities

I Interplay between Networks and Dynamic Processes

I Multiple Networks: Composition and Similarity

https://viterbi-web.usc.edu/~shanghua/teaching/Fall2019-670/networkDataAnalysisPrintedBook.pdf


Significant Nodes: Ranking and Centrality 8

Identifying nodes of relevance and significance. e.g.:

Which nodes are the most significant nodes in a net-
work or a sub-network? How quickly can we identify
them?

Significance could be measured either numerically, or by
ranking the nodes.

Network centrality is a form of “dimensionality reduc-
tion” from “high dimensional” network data to “low di-
mensional” centrality measures or rankings.

e.g. PageRank



Coherent Groups: Clustering and Communities 9

Identifying groups with significant structural properties.
Fundamental questions include:

I What are the significant clusters in a data set?

I How fast can we identify one, uniformly sample one, or
enumerate all significant groups?

I How should we evaluate the consistency of a clustering or
community-identification scheme?

I What desirable properties should clustering or community
identification schemes satisfy?



Interplay between Networks and Dynamic Processes 10

Understanding the interplay between dynamic processes and
their underlying networks.

A given social network can be part of different dynamic
processes (e.g. epidemic spreading, viral marketing), which can
potentially affect the relations between nodes. Fundamental
questions include:

I How should we model the interaction between network
nodes in a given dynamic process?

I How should we characterize node significance and group
coherence with respect to a dynamic process?

I How fast can we identify influential nodes and significant
communities?



Multiple Networks: Composition and Similarity 11

To understand multiple networks instead of individual
networks.

I network composition, e.g. multi-layer social network,
multi-view graphs

I network similarity
I similarity between two different networks
I construct a sparser network that approximates a known one



Graph 12

G = (V,E) (Friendship graphs, Network graphs, Circuit graphs,
Protein-Protein Interaction graphs, etc.)

I G: a graph/network

I V : its vertex/node set

I E: its edge set (pair of vertices); edges have weight 1 by
default, could assign other weights optionally.

By default (unless otherwise specified), a graph to be discussed
will be:

I undirected (unordered vertices pairs in E)

I simple (having no loops or multiple edges)

I finite (V and E being finite sets)



Matrices for Graphs 13

Why we care about matrices?
Given a vector x ∈ Rn and a matrix M ∈ Rm×n

I M could be an operator: Mx ∈ Rn

I M could be used to define a quadratic form: xTMx ∈ R
(here it has to be m == n)



Matrices for Graphs 14

Adjacency matrix MG of G = (V,E):

MG(a, b) =

{
1 if (a, b) ∈ E
0 otherwise

I most natural matrix to associate with a graph

I least “useful” (means directly useful, but useful in terms of
generating other matrices)

This statement is made because it is only a spread-
sheet, neither a natural operator or a natural
quadratic form.



Matrices for Graphs 15

Diffusion operator DG of G = (V,E) is a diagonal matrix,
probably the most natural operator associated with G:

DG(a, a) = d(a)

where d(a) is the degree of vertex a.

I unweighted case: number of edges attached to it

I weighted case: weighted degree

d
def
= MG1



Matrices for Graphs 16

There is a linear operator WG defined as:

WG = MGD−1G

regarded as an operator denoting the changes of the graph
between time steps.
Recall that diffusion operator DG is a diagonal matrix, WG is
merely a rescaling of MG if the graph is regular 1.

With vector p ∈ Rn denoting the values of n vertices (called
“distribution of how much stuff ” in the textbook), the
distribution of stuff at each vertex will be WGp.

1Regular graph’s vertices have the same degree.



Matrices for Graphs 17

This matrix is called a random-walk Markov matrix: 2

WG = MGD−1G

The next time step is:

WGp = MGD−1G p

Think about the case where p is a one-hot vector δa where only
δa(a) = 1 and all other elements are 0.

WGδa = MGD−1G δa = MG(D−1G δa)

We find the vector D−1G δa has value 1/d(a) at vertex a and 0
everywhere else; MGD−1G δa has value 1/d(a) at all a’s
neighbors and 0 otherwise.

2Reference from www.cmm.ki.si.

https://www.cmm.ki.si/~FAMNIT-knjiga/wwwANG/Special_Matrices-17.htm


Matrices for Graphs 18

A commonly-seen form of WG is sometimes more convenient:

W̃G = I/2 + WG/2

describing a lazy random walk (1/2 chance stay, 1/2 chance go).

One of the purposes of spectral theory is to understand
what happens when a linear operator like WG is repeat-
edly applied.

That is why it is called a random walk Markov matrix.



Matrices for Graphs: Markov Matrix (*) 19

WG = MGD−1G

has each column summing up to 1. WG(a, b), the value on the
ath row bth column, is d(b) if (a, b) ∈ E else 0.

In fact, what WGp resulting in is a “random walk” based on
the neighbors’ degree.

WT
Gp will be the random walk based on the degree of each node

itself. (An example in the upcoming page.) It could be
computed as:

WT
G = D−1G MG



Matrices for Graphs: Markov Matrix (*) 20

An example:

MG =

0 1 1
1 0 0
1 0 0

 DG =

2 0 0
0 1 0
0 0 1



D−1G =

1/2 0 0
0 1 0
0 0 1

 WG =

 0 1 1
1/2 0 0
1/2 0 0



WGp =

p2 + p3
p1/2
p1/2

 WT
Gp =

(p2 + p3)/2
p1
p1





Matrices for Graphs 21

Laplacian matrix LG, the most natural quadratic form
associated with the graph G:

LG
def
= DG −MG

Given a vector x ∈ Rn, who could also be viewed as a function
over the vertices, we have: 3

xTLGx =
∑

(a,b)∈E

wa,b

(
x(a)− x(b)

)2
representing the Laplacian quadratic form of a weighted graph
(wa,b is the weight of edge (a, b)), could be used to measures the
smoothness of x (it would be small if x is not changing
drastically over any edge).

3Note that G has to be undirected



Matrices for Graphs 22

An example (wa,b = 1):

MG =

0 1 1
1 0 0
1 0 0

 DG =

2 0 0
0 1 0
0 0 1



LG = DG −MG =

 2 −1 −1
−1 1 0
−1 0 1


xTLGx = x1(2x1 − x2 − x3) + x2(−x1 + x2) + x3(−x1 + x3)

= 2x21 + x22 + x23 − 2x1x2 − 2x1x3 = (x1 − x2)2 + (x1 − x3)2

Intuitively, LG, DG and MG could be viewed as the sum of
many subgraphs, each containing one edge.



Matrices for Graphs (*) 4
23

Incidence Matrix: IG, where each row corresponds to an edge,
and columns to vertices indexes.

A row, corresponding to (a, b) ∈ E, sums up to 0, with only 2
non-zero elements: the ath column being 1 and bth being −1, or
could be the opposite (ath column −1 and bth column 1).
Following the previous example:

MG =

0 1 1
1 0 0
1 0 0

 IG =

[
1 −1 0
1 0 −1

]

In the case of weighted graph, ±1 should be ±wa,b instead.
There’s very interesting relation:

LG = ITGIG

4This part comes from Prof. Cho’s explanations.



Matrices for Graphs (*) 24

Explanation on the reason why:

LG = ITGIG

could be from the perspective that, LG is associated with
Hessian and IG be associated with Jacobian.

Also note that the introduction of the Incidence Matrix
immediately makes this proof obvious:

xTLGx =
∑

(a,b)∈E

wa,b

(
x(a)− x(b)

)2
xTLGx = xT ITGIGx = ‖IGx‖2 =

∑
(a,b)∈E

wa,b

(
x(a)− x(b)

)2



Matrices for Graphs: Laplacian Normalization (*) I 25

In practice we always use normalized Laplacian matrices.
Intuitively, we want all diagonal entries to be 1. In a way, that
is somewhat “regularize” of the matrix.

There are many ways of normalizing a Laplacian matrix. Two
of them are:

I (symmetric)

Ls = D−
1
2 LD−

1
2

I (random walk)

Lrw = LD−1 = (D−M)D−1 = I−MD−1



Matrices for Graphs: Laplacian Normalization (*) II 26

Ls preserves every property of L. Such as being positive
semidefinite:

xTLsx =
∑

(a,b)∈E

wa,b

( x(a)√
d(a)

− x(b)√
d(b)

)2
Recall that MD−1 is the random walk Markov matrix W.
Lrw = I−W. Therefore, W and Lrw have the same
eigenvectors, while the corresponding eigenvalues sum up to 1:

Ax = µx ⇐⇒ (A− kI)x = (µ− k)x

Wψ = λψ ⇐⇒ (I−W)ψ = (1− λ)ψ



Matrices for Graphs: Laplacian Normalization (*) III27

Additional comments on λ and 1− λ:

Sometimes, for 0 ≤ λ ≤ 1, after some operations, such as
multiplying the matrix (say, A) for multiple times, small
eigenvalues will become close to zero.

However, if we consider a trick:

I−A

the corresponding eigenvalue will be 0 ≤ 1− λ ≤ 1. After power
iteration, the smallest eigenvalue becomes the largest.



Spectral Theory 28

Review: the spectral theory for symmetric matrices (or those
similar to symmetric matrices).

A is similar to B if there exists non-singular X such
that X−1AX = B.

A vector ψ is an eigenvector of a matrix M with eigenvalue λ if:

Mψ = λψ

λ is an eigenvalue if and only if λI−M is a singular matrix
(∴ det(λI−M) = 0). The eigenvalues are the roots of the
characteristic polynomial of M:

det(xI−M)

in other words, being a solution to the characteristic equation:

det(xI−M) = 0



Spectral Theory 29

Additional explanation on why “λ is an eigenvalue if and only if
λI−M is a singular matrix”: 5

Mψ = λψ

(λI−M)ψ = 0

is a homogeneous linear system for ψ, with a trivial zero
solution (ψ = 0).
A homogeneous linear system has a nonzero solution ψ 6= 0 iff
its coefficient matrix (in this case, λI−M), is singular.

5https://www-users.math.umn.edu/~olver/num_/lnv.pdf

https://www-users.math.umn.edu/~olver/num_/lnv.pdf


Spectral Theory 30

Theorem (1.3.1 The Spectral Theorem)

If M is an n-by-n, real, symmetric matrix, then there exist
real numbers λ1, . . . , λn and n mutually orthogonal unit
vectors ψ1, . . . ,ψn and such that ψi is an eigenvector of M
of eigenvalue λi, for each i.

If the matrix M is not symmetric, it might not have n
eigenvalues. And, even if it has n eigenvalues, their eigenvectors
will not be orthogonal (linearly independent). Many studies will
no longer apply to it when the matrix is not symmetric.



Eigenvalues and Eigenvectors I 31

Review: solving the eigenvalues and eigenvectors. 6

M =

[
0 1
−2 −3

]
Mψ = λψ

(M− λI)ψ = 0

The determinant value of M− λI is 0 (by definition of the
singular matrix, etc.).

det(M− λI) = 0

det
([−λ 1
−2 −3− λ

])
= λ2 + 3λ+ 2 = (λ+ 1)(λ+ 2) = 0



Eigenvalues and Eigenvectors II 32

The eigenvalues are:

λ1 = −1, λ2 = −2

Next we want to find the corresponding eigenvectors ψ1 and
ψ2, by solving:

(M− λI)ψ = 0

which means, [
−λi 1
−2 −3− λi

] [
ψi,1

ψi,2

]
=

[
0
0

]
ψi,2 − λiψi,1 = 0

2ψi,1 + (3 + λi)ψi,2 = 0



Eigenvalues and Eigenvectors III 33

With λ1 = −1, we have:

ψ1,2 + ψ1,1 = 0

2ψ1,1 + 2ψ1,2 = 0

so the only constraint is that ψ1,2 = −ψ1,1. We can choose any
arbitrary constant k1 and make it:

ψ1 = k1

[
1
−1

]



Eigenvalues and Eigenvectors IV 34

With λ2 = −2, we have:

ψ2,2 + 2ψ2,1 = 0

2ψ2,1 + ψ2,2 = 0

again, we need an arbitrary constant k2 and we have:

ψ2 = k2

[
1
−2

]



Eigenvalues and Eigenvectors V 35

We can also come up with an example where λ1 = λ2. For
example:

M =

[
0 1
−1 2

]
det(M− λI) = 0

det
([−λ 1
−1 2− λ

])
= λ2 − 2λ+ 1 = (λ− 1)2 = 0

Then we have λ1 = λ2 = 1.

6lpsa.swarthmore.edu/MtrxVibe/EigMat/MatrixEigen.html

https://lpsa.swarthmore.edu/MtrxVibe/EigMat/MatrixEigen.html


Eigenvalues and Eigenvectors 36

Eigenvalues are uniquely determined (but the values can be
repeated), while eigenvectors are NOT.

I Specifically, if ψ is an eigenvector, then kψ is as well, for
any arbitrary constant real number k.

I If λi = λi+1, then ψi +ψi+1 will also be an eigenvector of
eigenvalue λi. The eigenvectors of a given eigenvalue are
only determined up to an orthogonal transformation.

∵(λiI−M)ψi = (λiI−M)ψi+1 = 0

∴(λiI−M)(ψi +ψi+1) = 0



Eigenvalues and Eigenvectors 37

Definition (1.3.2)

A matrix is positive definite if it is symmetric and all of its
eigenvalues are positive. It is positive semidefinite if it is
symmetric and all of its eigenvalues are nonnegative.

When a real n× n matrix X being positive definite: a

∀y ∈ Rn, yTXy > 0

ahttps://mathworld.wolfram.com/PositiveDefiniteMatrix.html

Fact (1.3.3)

The Laplacian matrix of a graph is positive semidefinite.

https://mathworld.wolfram.com/PositiveDefiniteMatrix.html


Eigenvalues and Eigenvectors 38

Proof (Fact 1.3.3)

Recall that previously we have that, for the Laplacian LG of
(undirected) graph G, given a vector x ∈ Rn:

xTLGx =
∑

(a,b)∈E

wa,b

(
x(a)− x(b)

)2
when the weights wa,b are all non-negative, the value is
non-negative as well.



Eigenvalues and Eigenvectors 39

In practice, we always number the eigenvalues of the Laplacian
from smallest to largest.

0 = λ1 ≤ λ2 · · · ≤ λn

We refer to λ2, . . . λk (k is small) as low-frequency eigenvalues.
λn is a high-frequency eigenvalue.

High and low frequency eigenmodes can be thought of as
analogous to high and low frequency parts of the Fourier
transform. 7

The second-smallest eigenvalue of the Laplacian matrix of a
graph is zero (λ2 = 0) iff the graph is disconnected. λ2 is a
measure of how well-connected the graph is. (See Chap 1.5.4
The Fiedler Value.)

7From a discussion on stackexchange.

https://math.stackexchange.com/questions/2629649/understanding-high-and-low-frequency-eigenmodes


λ and µ 40

In this textbook, eigenvalues are sometimes denoted as λ and
sometimes denoted as µ.

To my observation, they tend to use λ when the eigenvalues are
ordered from the smallest to the largest, and µ when ordered
from the largest to the smallest.

e.g., in the later chapters we’ll see: eigenvalues of the adjacency
matrix is denoted as µ (recall that we use λ for Laplacian’s
eigenvalues) and µ1 ≥ µ2 · · · ≥ µn. This is to make µi
corresponds to λi.



Eigenvalues and Frequency 41

Eigenvalues and eigenvectors are very useful to solving
vibrating system problems.

In practice, eigenvalues are often associated with frequency.

An example 8 have shown that, in A Two-Mass Vibrating
System, they defined λ = −ω2.

ω values are then used to express the general solution:

x(t) =
∑
i

ci,1vi cos(ωit) + ci,2vi sin(ωit)

where vi are the corresponding eigenvector of ωi.

8lpsa.swarthmore.edu/MtrxVibe/EigApp/EigVib.html

https://lpsa.swarthmore.edu/MtrxVibe/EigApp/EigVib.html


Examples 42

(a) The original points sampled from
Yale logo, with coordinates omitted
and transformed into graph.

(b) Plot of vertices at (ψ2(a), ψ3(a))
coordinate.

Figure: An example showing the use of eigenvectors. More examples
are listed in the textbook, Chap 1.



Example: Why Eigenvectors as Coordinates (*) 9
43

Intuitively, using eigenvalues and eigenvectors could be regarded
as mapping the nodes onto sine and cosine function curves.

The sine and cosine functions generally preserve the distances
between a pair of nodes, but for some disturbance brought by
the periods (can have the same value again at another point).
However, the use of multiple sets of eigenvalue-eigenvectors,
could be viewed as having multiple frequencies to measure.

Therefore, a pair of nodes that is far away might seem to be
close measured by sine or cosine value on a certain frequency,
but won’t be always close to each other under different
frequencies.

9A summary of Prof. Cho’s comments.



Example: Why Eigenvectors as Coordinates (*) 44

Figure: Plot of a length-4 path graph’s (i.e. only (i, i+ 1) are edges)
Laplacian’s eigenvectors v2, v3, v4, where λ1 ≤ λ2 ≤ λ3 ≤ λ4.



Eigenvalues and Optimization: The
Courant-Fischer Theorem

q



Why Eigenvalues? 46

One reason why we are interested in eigenvalues of matrices is
that, they arise as the solution to natural optimization
problems.

The formal statement of this is given by the Courant-Fischer
Theorem. And this Theorem could be proved by the Spectral
Theorem.



The Courant-Fischer Theorem 47

It has various other names: the min-max theorem, variational
theorem, Courant–Fischer–Weyl min-max principle.

It gives a variational characterization of eigenvalues of
compact Hermitian operators on Hilbert spaces.

I In the real-number field, a Hermitian matrix means a
symmetric matrix.

I The real numbers Rn with 〈u,v〉 defined as the vector dot
product of u and v is a typical finite-dimensional Hilbert
space. 10

10https://mathworld.wolfram.com/HilbertSpace.html

https://mathworld.wolfram.com/HilbertSpace.html


The Courant-Fischer Theorem 48

Theorem (2.0.1 Courant-Fischer Theorem)

Let M be a symmetric matrix with eigenvalues
µ1 ≥ µ2 ≥ · · · ≥ µn. Then,

µk = max
S⊆Rn

dim(S)=k

min
x∈S
x 6=0

xTMx

xTx
= min

T ⊆Rn

dim(T )=n−k+1

max
x∈T
x 6=0

xTMx

xTx

where the maximization and minimization are over
subspaces S and T of Rn.



The Courant-Fischer Theorem: Proof I 49

Using the Spectral Theorem to prove the Courant-Fischer
Theorem.

Theorem (1.3.1 The Spectral Theorem)

If M is an n-by-n, real, symmetric matrix, then there exist
real numbers λ1, . . . , λn and n mutually orthogonal unit
vectors ψ1, . . . ,ψn and such that ψi is an eigenvector of M
of eigenvalue λi, for each i.

Main Steps:

I expanding a vector x in the basis of eigenvectors of M

I use the properties of eigenvalues and eigenvectors to prove
it



The Courant-Fischer Theorem: Proof II 50

M ∈ Rn×n: a symmetric matrix, with eigenvalues
µ1 ≥ µ2 ≥ · · · ≥ µn. The corresponding orthogonal
eigenvectors are ψ1,ψ2, . . . ,ψn.
Then we may write x ∈ Rn as:

x =
∑
i

ciψi, ci = ψT
i x

Why x can be expanded in this way? (Intuitively obvious, but
we need a mathematical explanation.)



The Courant-Fischer Theorem: Proof III 51

Let Ψ be a matrix whose columns are {ψ1,ψ2, . . . ,ψn} —
orthogonal vectors. By definition, Ψ is an orthogonal matrix.

ΨΨT = ΨTΨ = I

Therefore we have:∑
i

ciψi =
∑
i

ψici =
∑
i

ψiψ
T
i x =

(∑
i

ψiψ
T
i

)
x = ΨΨTx = x

and thus, since ψT
i ψj = 1 when i = j and 0 otherwise,

xTx =
(∑

i

ciψi

)T(∑
i

ciψi

)
=
∑
i,j

c2iψ
T
i ψj =

n∑
i=1

c2i



The Courant-Fischer Theorem: Proof IV 52

Let’s revisit the theorem to prove (Now we have xTx, to prove
it we need to consider xTMx):

Theorem (2.0.1 Courant-Fischer Theorem)

Let M be a symmetric matrix with eigenvalues
µ1 ≥ µ2 ≥ · · · ≥ µn. Then,

µk = max
S⊆Rn

dim(S)=k

min
x∈S
x 6=0

xTMx

xTx
= min

T ⊆Rn

dim(T )=n−k+1

max
x∈T
x 6=0

xTMx

xTx

where the maximization and minimization are over
subspaces S and T of Rn.



The Courant-Fischer Theorem: Proof V 53

In the textbook, Lemma 2.1.1 suggests that, in the previous
example, for any x =

∑
i ciψi:

xTMx =

n∑
i=1

c2iµi



The Courant-Fischer Theorem: Proof VI 54

Again, ψT
i ψj = 1 when i = j and 0 otherwise, also because

Mψi = µiψi,

xTMx =
(∑

i

ciψi

)T
M
(∑

i

ciψi

)
=
(∑

i

ciψi

)T(∑
i

ciµiψi

)
=
∑
i,j

c2iµiψ
T
i ψj

=
∑
i

c2iµi



The Courant-Fischer Theorem: Proof VII 55

Take a look again:

Theorem (2.0.1 Courant-Fischer Theorem)

Let M be a symmetric matrix with eigenvalues
µ1 ≥ µ2 ≥ · · · ≥ µn. Then,

µk = max
S⊆Rn

dim(S)=k

min
x∈S
x 6=0

xTMx

xTx
= min

T ⊆Rn

dim(T )=n−k+1

max
x∈T
x 6=0

xTMx

xTx

where the maximization and minimization are over
subspaces S and T of Rn.



The Courant-Fischer Theorem: Proof VIII 56

We need the value of xTMx
xTx

. In particular, we care about µk
and subspace S where dim(S) = k. Also recall that we put
{µi}ni=1 in the non-increasing order.

x =

k∑
i

ciψi, ci = ψT
i x

xTMx

xTx
=

∑k
i c

2
iµi∑k

i c
2
i

≥
∑k

i c
2
iµk∑k

i c
2
i

= µk

Therefore,

min
x∈S
x 6=0

xTMx

xTx
≥ µk



The Courant-Fischer Theorem: Proof IX 57

To prove the theorem, we also need to show that for all
subspace S ⊆ Rn where dim(S) = k,

min
x∈S
x 6=0

xTMx

xTx
≤ µk

For this part we bring up the subspace T of dimension
n− k + 1, whose basis vectors are ψk, . . . ,ψn. Similarly, for
x ∈ T , we have:

max
x∈T
x 6=0

xTMx

xTx
= max

x∈T
x 6=0

∑n
k c

2
iµi∑n

k c
2
i

≤
∑n

k c
2
iµk∑n

k c
2
i

= µk



The Courant-Fischer Theorem: Proof X 58

Every subspace S of dimension k has an intersection with T
(dimension n− k + 1), the intersection has dimension at least 1
((n− k + 1) + k = n+ 1).

min
x∈S
x 6=0

xTMx

xTx
≤ min

x∈S∩T
x 6=0

xTMx

xTx
≤ max

x∈S∩T
x 6=0

xTMx

xTx
≤ max

x∈T
x 6=0

xTMx

xTx
= µk

The theorem is proved this way.



Counterexample in the non-Hermitian case 59

This example shows that when M is not symmetric, the
properties is no longer guarantee to exist.

M =

[
0 1
0 0

]
det(λI−M) = λ2 = 0

xTMx

xTx
=

x1x2
x21 + x22

We can easily make it larger than 0, by, say, x = 1. Then
xTMx
xTx

= 1
2 .



The Second Proof Overview 60

We prove the Spectral Theorem in a form that is almost
identical to Courant-Fischer.

Main Steps:

I showing that the Rayleigh quotient and eigenvectors,
eigenvalues have certain relation, starting from µ1;

I use the conclusion in the first step to prove that a vector is
an eigenvector, prove the Spectral Theorem by generalizing
this characterization to all of the eigenvalues of M



Rayleigh quotient 61

The Rayleigh quotient of a vector x with respect to a matrix
M is defined to be:

xTMx

xTx

The Rayleigh quotient of an eigenvector is its corresponding
eigenvalue: if Mψ = µψ, then (by default, ψ 6= 0)

ψTMψ

ψTψ
=
ψT (Mψ)

ψTψ
=
ψT (µψ)

ψTψ
=
µψTψ

ψTψ
= µ
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The first step is to prove the following theorem:

Theorem (2.2.1 (Rayleigh quotient and eigenvectors))

Let M be a symmetric matrix and let vector x 6= 0
maximize the Rayleigh quotient with respect to M:

xTMx

xTx

Then, Mx = µ1x, where µ1 is the largest eigenvalue of M.
Conversely, the minimum is achieved by eigenvectors of the
smallest eigenvalue of M.
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Observe that:

I the Rayleigh quotient is homogeneous (being homogeneous
of degree k means:)

f(αv) = αkf(v)

I it suffices to consider unit vectors x, the set of unit vectors
is a closed and compact set

Rayleigh quotient’s maximum is achieved, on the set of unit
vectors.

Recall that: a function at its maximum and minimum has
gradient 0 (zero vector).
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We can compute the gradient of the Rayleigh quotient.

∇xTx = 2x ∇xTMx = 2Mx

also recall the derivative rule:(f
g

)′
=
gf ′ − fg′

g2

∇
(xTMx

xTx

)
=

(xTx)(2Mx)− (xTMx)(2x)

(xTx)2
, x 6= 0

when it is 0, (xTx)Mx = (xTMx)x, Mx = xTMx
xTx

x.
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Mx =
xTMx

xTx
x

Recall that: the Rayleigh quotient of an eigenvector is its
corresponding eigenvalue.

Also recall the definition of eigenvalues and eigenvectors.

The above equation holds iff x is an eigenvector of M, with
corresponding eigenvalue xTMx

xTx
.

xTMx
xTx

has to be selected from the eigenvalues of M.

Proved.
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Theorem (2.2.2 (almost identical to the CF Theorem))

Let M be an n-dimensional real symmetric matrix. There
exist numbers µ1, . . . , µn and orthonormal vectors
ψ1, . . . ,ψn such that Mψi = µiψ1. Moreover,

ψ1 ∈ arg max
‖x‖=1

xTMx

and for 2 ≤ i ≤ n,

ψi ∈ arg max
‖x‖=1

xTψj=0,j<i

xTMx,

similarly, ψi ∈ arg min
‖x‖=1

xTψj=0,j>i

xTMx
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To start with, we want to reduce to the case of positive definite
matrices. In order to do that, we first modify M a bit.

µn = min
x

xTMx

xTx

we know µn exists from Theorem 2.2.1 we’ve just proved. Now
we consider:

M̃ = M + (1− µn)I

For ∀x such that ‖x‖ = 1, we have:

xTM̃x = xTMx + 1− µn = 1 +
(
xTMx−min

x
xTMx

)
≥ 1

Therefore M̃ is positive definite.
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Besides,

M̃x = Mx + (1− µn)x

For ∀ψ, µ where Mψ = µψ,

M̃ψ = Mψ + (1− µn)ψ = (µ+ 1− µn)ψ

thus M̃ and M have the same eigenvectors.

Thus it suffices to prove the theorem for positive definite
matrices. In other words, we treat M as if it is positive definite.
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We proceed by induction on k. We construct ψk+1 base on
eigenvalues ψ1, . . . ,ψk satisfying:

ψi ∈ arg max
‖x‖=1

xTψj=0,j<i

xTMx

And define:

Mk = M−
k∑

i=1

µiψiψ
T
i

For j ≤ k we have (because all the previous eigenvectors are all
orthogonal to each other):

Mkψj = Mψj −
k∑

i=1

µiψiψ
T
i ψj = µjψj − µjψj = 0
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Hence, for vector x that are orthogonal to ψ1, . . . ,ψk,

Mx = Mkx +

k∑
i=1

µiψiψ
T
i x = Mkx, xTMx = xTMkx

and,

arg max
‖x‖=1

xTψj=0,j<i

xTMx ≤ arg max
‖x‖=1

xTMkx

For convenience we define y = arg max‖x‖=1 xTMkx. From
Theorem 2.2.1 we know that y is an eigenvector of Mk. Let’s
say that the corresponding eigenvalue is µ. Mk and M have the
same eigenvectors, thus y is an eigenvector of M.
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Now we will prove that we can set ψk+1 = y and µk+1 = µ.

We prove it by showing y must be orthogonal to each
ψ1, . . . ,ψk.

ỹ = y −
k∑

i=1

ψi(ψ
T
i y)

is the projection of y orthogonal to ψ1, . . . ,ψk. Since
Mkψj = 0 for j ≤ k,

ỹTMkỹ = yTMky = yTMy

If y is not orthogonal to ψ1, . . . ,ψk, some ψT
i y 6= 0, then

‖ỹ‖ < ‖y‖. Because we assume positive definite of M, there
comes a contradiction.
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ỹTMkỹ = ỹTMỹ > 0

and also note that ‖ỹ‖ < ‖y‖ (previous conclusion), for
normalized ỹ, ŷ = ỹ/‖ỹ‖, and y was an unit vector,

ŷTMŷ = ŷTMkŷ =
ỹTMkỹ

‖ỹ‖2

>
ỹTMkỹ

‖y‖2
= ỹTMkỹ = yTMky = yTMy

There’s a conflict with y’s definition:

y = arg max
‖x‖=1

xTMkx

∴ y must be orthogonal to ψ1, . . . ,ψk.



The Laplacian and Graph Drawing
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Chapter 3 shows that Laplacian should reveal a lot about the
structure of graphs, although not always guaranteed to work.

It mentions Hall’s (Kenneth M. Hall) work a lot of times:
An r-dimensional quadratic placement algorithm

The idea of drawing graphs using eigenvectors demonstrated in
Section 1.5.1 was suggested by Hall in 1970.

https://www.jstor.org/stable/2629091
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Recall that weighted undirected graph G = (V,E,w), with
positive weigh w : E → R+, is defined this way:

LG
def
= DG −MG, DG =

∑
b

wa,b

where DG is the diffusion matrix, MG is the adjacency matrix.

Given a vector x ∈ Rn,

xTLGx =
∑

(a,b)∈E

wa,b

(
x(a)− x(b)

)2



Hall’s Idea on Graph Drawing 76

Hall’s idea on graph drawing suggests that we choose the first
coordinates of the n vertices as x ∈ Rn that minimizes:

xTLx =
∑

(a,b)∈E

wa,b

(
x(a)− x(b)

)2
To avoid degenerating to 0, we have restriction:

‖x‖2 =
∑
a∈V

x(a)2 = 1

To avoid degenerating to 1/
√
n, Hall suggested another

constraint:
1
Tx =

∑
a∈V

x(a) = 0

When there are multiple sets of coordinates, say x and y; we
require xTy = 0, to avoid cases such as x = y = ψ2.
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We will minimize the sum of the squares of the lengths of the
edges in the embedding. e.g. 2-D case:∑

(a,b)∈E

∥∥∥ [x(a)
y(a)

]
−
[
x(b)
y(b)

] ∥∥∥2
=
∑

(a,b)∈E

(x(a)− x(b))2 + (y(a)− y(b))2

=xTLx + yTLy

is the objective we want to minimize.
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Here are some of the very interesting properties of a graph that
we would like to prove.

I If and only if the graph is connected, there is only one
eigenvalue of its Laplacian equals to zero.

I When mapping each vertex to a set of coordinates,
choosing the coordinates to be the eigenvectors of the
graph Laplacian is optimal.
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Lemma
Let G = (V,E) be a graph, and let 0 = λ1 ≤ λ2 ≤ · · · ≤ λn be
the eigenvalues of its Laplacian matrix, L. Then, λ2 > 0 if and
only if G is connected.
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First of all, there exists eigenvalue 0, because the all-one vector
1 satisfies:

L1 = 0

To prove, if we view the Laplacian L = D−M as an operator
(D =

∑
(a,b)∈E wa,b), for each x we have its ath entry of Lx

being:

(Lx)(a) = d(a)x(a)−
∑

(a,b)∈E

wa,bx(b) =
∑

(a,b)∈E

wa,b

(
x(a)− x(b)

)
It infers that 1 is an eigenvector corresponds to eigenvalue 0.
Therefore, λ1 = 0.
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Next, we show that λ2 = 0 if G is disconnected.

If G is disconnected, then we can split it into two graphs G1

and G2. Because we can safely reorder the vertices of a graph,
we can have:

L =

[
LG1 0
0 LG2

]
It has at least 2 orthogonal eigenvectors of eigenvalue zero:[

0
1

]
, and

[
1

0

]
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On the other hand, for a eigenvector ψ of eigenvalue 0, Lψ = 0,

ψTLψ =
∑

(a,b)∈E

wa,b

(
ψ(a)−ψ(b)

)2
= 0

For every pair of vertices (a, b) connected by an edge, we have
ψ(a) = ψ(b). In a connected graph, all vertices are directly or
indirectly connected, and thus ψ must be a constant vector.

Contradiction found.

Therefore, G must be disconnected when λ2 = 0.
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Theorem (3.2.1)

Let L be a Laplacian matrix and let x1, . . . ,xk be
orthonormal a vectors that are all orthogonal to 1. Then

k∑
i=1

xT
i Lxi ≥

k+1∑
i=2

λi

and this inequality is tight only when xTψj = 0 for all j
such that λj ≥ λk+1. λi are the eigenvalues, the graph G is
an undirected connected graph.

aorthonormal = both orthogonal and normalized



Property #2: Proof I 84

We can order λ such that:

0 = λ1 ≤ λ2 ≤ · · · ≤ λn

As is proved before, λ1 = 0 and because G is connected, ψ1 is a
constant vector.

Let xk+1 . . .xn be vectors such that x1,x2, . . . ,xn is an
orthogonal basis. It is done by choosing xk+1 . . .xn to be an
orthogonal basis of the space orthogonal to x1,x2, . . . ,xk.
Because they are orthogonal basis, (think of orthogonal matrix)

n∑
j=1

(ψT
j xi)

2 =

n∑
j=1

(xT
i ψj)

2 = 1, i = 1, 2, . . . , n
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Because of that ψT
1 xi ∝ 1

Txi = 0, and that
∑n

j=1(ψ
T
j xi)

2 = 1,

n∑
j=2

(ψT
j xi)

2 = 1

Previously, xTMx =
∑

i c
2
iµi, ci = ψT

i x, x =
∑

i ciψi. Here,

xT
i Lxi =

n∑
j=2

λj(ψ
T
j xi)

2 = λk+1 +

n∑
j=2

(λj − λk+1)(ψ
T
j xi)

2

≥ λk+1 +
k+1∑
j=2

(λj − λk+1)(ψ
T
j xi)

2

It is tight only when ψT
j xi = 0 for λj ≥ λk+1.
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λk+1 +

n∑
j=2

(λj − λk+1)(ψ
T
j xi)

2 ≥ λk+1 +

k+1∑
j=2

(λj − λk+1)(ψ
T
j xi)

2

Quick proof of when the above inequality is tight:

λk+1 +

n∑
j=2

(λj − λk+1)(ψ
T
j xi)

2 = λk+1 +

k+1∑
j=2

(λj − λk+1)(ψ
T
j xi)

2

n∑
j=k+2

(λj − λk+1)(ψ
T
j xi)

2 = 0

That is ψT
j xi = 0 for j > k + 1. When j > k + 1, λj ≥ λk+1.
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To prove the Theorem 3.2.1, we sum up over i:

k∑
i=1

xT
i Lxi ≥ kλk+1 +

k∑
i=1

k+1∑
j=2

(λj − λk+1)(ψ
T
j xi)

2

= kλk+1 +

k+1∑
j=2

(λj − λk+1)

k∑
i=1

(ψT
j xi)

2

≥ kλk+1 +

k+1∑
j=2

(λj − λk+1) =

k+1∑
j=2

λj

because: λj −λk+1 ≤ 0, and,
∑k

i=1(ψ
T
j xi)

2 ≤
∑n

i=1(ψ
T
j xi)

2 = 1.



Conclusion 88

The two properties are saying that:

I Eigenvalues of graphs Laplacian can easily reveal the
graph’s connectivity. The amount of eigenvalue 0 is exactly
the amount of independent components in a graph. For a
connected graph, only λ1 = 0, λ2 > 0. If the graph is
disconnected, λ2 = 0. If the graph contains 3 disconnected
subgraphs, λ3 = 0. etc.

I When visualizing a graph, using its eigenvectors (ψ1

excluded) as vertices’ coordinates, will be an optimal
choice.
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In this part I record the vivid example Prof. Cho provided
during our reading group.

This is a very nice example that helps us understand the
(physical) meaning of a graph’s Laplacian better.

In other words, this is an intuitive explanation of what we’ve
learned from the first three chapters.
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Imagine that we are going to estimate the (absolute) height
h ∈ Rn of some selected points on a mountain. Let’s say that
there are n points to estimate in total.

Climbing up and down in the mountain, we have no clue what
is its exact height, but we know k relative heights (e.g. relative
height between vertices 1 and 2 is ∆1,2 = h1 − h2). We denote
the record of each relative height (the edges) as m ∈ Rk.

We denote the starting and ending of the nodes by an Incidence
Matrix IG ∈ Rk×n.



Illustration 92
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mountain observation #1
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mountain observation #2

#edge: k = 7
#node: n = 8
degree of freedom: 1

#edge: k = 6
#node: n = 8
degree of freedom: 2
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C1
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7
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C2

C3

Figure: Illustration of the examples Prof. Cho brought up.
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m = IGh



m1

m2

m3

m4

m5

m6

m7


=



1 −1 0 0 0 0 0 0
0 1 −1 0 0 0 0 0
0 1 0 −1 0 0 0 0
0 0 0 1 −1 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 1 −1 0
0 0 0 0 0 0 1 −1





h1
h2
h3
h4
h5
h6
h7
h8
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m = IGh



m1

m2

m3

m4

m5

m6

 =



1 −1 0 0 0 0 0 0
0 1 −1 0 0 0 0 0
0 1 0 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 1 −1 0
0 0 0 0 0 0 1 −1





h1
h2
h3
h4
h5
h6
h7
h8
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The problem is formally defined this way:

m = IGh

Knowing m, IG, solving h.

It is solved by minimizing over h:

‖IGh−m‖2

Recall that for any Ax = b the solution is x = (ATA)−1ATb,
since ATAx = ATb.
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ATAx = ATb

In this case, it means that:

ITGIGh = ITGm

Recall that the graph Laplacian LG = ITGIG, therefore we have:

LGh = ITGm

Just for convenience, we introduce a known value
b = ITGm ∈ Rn.

LGh = b
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Now we consider the graph itself:

I #1: The graph is connected, but we will never know the
exact absolute height of the mountain. Because whatever
h value we result in, since we only know the nodes’ relative
height, it makes sense if we move the entire graph up and
down alone the vertical direction. That is, after adding a
constant value C1 to every entry in h, we still result in a
valid solution.

I #2: Similarly, this time we have 2 separate subgraphs,
therefore, each subgraph could be moved up and down
independently. Let’s say that nodes in the two subgraphs
can be shifted alone the vertical direction by C2 and C3

distance respectively.

This is why we say that the degree of freedom in case #1 is 1,
and that in case #2 is 2.
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Here, consider case #1, since we all know that we can add a
constant vector to a solution h and the resulting vector is still a
valid solution, we have:

LGh = b

LG

(
h + C11

)
= b

∴ C11 = 0 = 0× C11

Therefore, It has an eigenvalue 0 with any constant vector being
its corresponding eigenvector ψ1 = C11 where C1 ∈ R. λ1 = 0.
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In case #2, we denote the two subgraphs as A and B
respectively. Where we use 1A ∈ Rn to denote a vector
indicating whether or not a vertex is included in subgraph A (1
for yes, 0 for no). 1B ∈ Rn is defined in the same way, but it is
for subgraph B.

1A =



1
1
1
1
0
0
0
0


1B =



0
0
0
0
1
1
1
1





Eigenvalue Zero: λ2 in case #2 100

LGh = b

LG

(
h + C21A

)
= b

LG

(
h + C31B

)
= b

∴ C21A = 0 = 0× C21

C31B = 0 = 0× C31

Therefore, C21A, C31B are both eigenvectors of eigenvalue
equals to 0, C2, C3 ∈ R. Thus there must be λ1 = λ2 = 0.

We realize that the degree of freedom is directly reflected as
how many eigenvalues (of the graph Laplacian) are 0.
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Prof. Cho also shared some results of plotting a circuit graph
((i, i+ 1) linked and also (1, n)).

There, he shows that we can run Python examples. Some of the
very useful tools are built-in functions in numpy (np) and
matplotlib (plt).

Useful Library Functions

1 np . l i n a l g . e igh ( . . . )
2 p l t . p l o t ( . . . )

https://numpy.org/doc/stable/reference/routines.linalg.html
https://matplotlib.org/
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The results generally agrees with our previous theories. e.g.
Setting number of nodes n = 1000, plot the 2− d graph by
using coordinates: ψ2 = V [:, 998] and ψ3 = V [:, 997], what we
draw ends up in an oval shape.

Example

1 p l t . p l o t (V[ : , 9 9 8 ] , V[ : , 9 9 7 ] )

Moreover, in this case we have λ1 = 0, λ2 = λ3, λ4 = λ5, . . . ;
ψ2i and ψ2i+1 (i = 1, 2, . . . ,floor(n/2)) correspond to the sine
and cosine under the same frequency respectively.

Also observed that λ2 : λ4 ≈ 2 : 3. Note that in code examples
like this, λ1 ≈ 0, but aren’t likely to be exactly 0, could be at
e.g. e−15 level.
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