Dynamic Graph Representation Learning

Zhiping (Patricia) Xiao
University of California, Los Angeles
Paper References

Dynamic Graph Embedding
 Motivation
 Self-Attention Mechanism

The Works in Details
 Overview
 DyRep
 DySAT
 DyGNN
 TGAT
 Conclusion
Paper References
<table>
<thead>
<tr>
<th>Model Name</th>
<th>Paper</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>DyRep</td>
<td>DyRep: Learning Representations over Dynamic Graphs (ICLR’19)</td>
<td>unofficial code</td>
</tr>
<tr>
<td>DySAT</td>
<td>DySAT: Deep Neural Representation Learning on Dynamic Graphs via Self-Attention Networks (WSDM’20)</td>
<td>on Github</td>
</tr>
<tr>
<td>DyGNN</td>
<td>Streaming Graph Neural Networks (SIGIR’20)</td>
<td>(not yet ready)</td>
</tr>
<tr>
<td>TGAT</td>
<td>Inductive Representation Learning on Temporal Graphs (ICLR’20)</td>
<td>on Github</td>
</tr>
</tbody>
</table>
Based on discrete screenshot:

- **DynamicGEM** (DynGEM: Deep Embedding Method for Dynamic Graphs, IJCAI’17): adopted *Net2WiderNet* and *Net2DeeperNet* approaches ($G^t = (V^t, E^t), t \in \{1, 2, \ldots, T\}$) (code on Github)

- **DynamicTriad** (Dynamic Network Embedding by Modeling Triadic Closure Process, AAAI’18): based on Triadic closure process etc. ($G^t = (V, E^t, W^t), t \in \{1, 2, \ldots, T\}$) (code on Github)
Based on continuous interaction:

- **HTNE** (Embedding Temporal Network via Neighborhood Formation, KDD’18): using Hawkes process to model neighborhood formation (event). \(G = (V, E, A) \)

- **CTDNE** (Continuous-Time Dynamic Network Embeddings, WWW’18): using Temporal Random Walk to select edges. \(G = (V, E_T, T) \) (code on Github)

- **NetWalk** (NetWalk: A Flexible Deep Embedding Approach for Anomaly Detection in Dynamic Networks, KDD’18): encoding network streams. \(G(t) = (V(t), E(t)) \)
Dynamic Graph Embedding
Problem & Challenges

Problem: Learning dynamic node representations.

Challenges:

- Time-varying graph structures: links and node can emerge and disappear, communities are changing all the time.
 - requires the node representations capture both structural proximity (as in static cases) and their temporal evolution.
 - Time intervals of events are uneven.
- Causes of the change: can come from different aspects, e.g. in co-authorship network, research community & career stage perspectives.
 - requires modeling multi-faceted variations.
Static graphs are often defined as:

$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$

However, there isn’t an unified way of defining the dynamic graphs.
Reference: Attention Is All You Need (NeurIPS’17)

An **attention mechanism** has a set of keys and a set of values; it receives a sets of queries.

- (key, value) are paired up, one key matched to one value.
- queries compared to keys, seek for the corresponding values. (e.g. dictionary)

Does not require an exact match; estimate the strength of the query-key match (e.g., cosine similarity)

Assumption: more similar keys provide more reliable values.
Idea:

1. Compute the similarities between each query and all of the keys.

2. Compute a weighted average of the corresponding values, as the result.

Normally we use dot-product attention, say,

$$\text{Att}(Q, K, V) = \text{softmax} \left(\frac{QK^T}{\sqrt{d_k}} \right) V.$$

When the key, the value, the query are exactly the same, $K = Q = V$, the attention is “self-attention”.
In practice we want more flexible self-attention.

We want different dimensions of a vector to have different importance when calculating the attention.

For example, we can apply the linear transformation

\[
K = XW_K, \quad Q = XW_Q, \quad V = XW_V,
\]

to the key, query and value of a self-attention mechanism.

Free parameters \(W_K, W_Q, W_V\) bring a lot of randomness to the attention mechanism. Normally, we want to simultaneously try multiple sets of weights. That makes a “multi-head self-attention”.
Given h sets of weights (which constitute h heads), we write

$$K_1 = XW_{K_1}, \quad Q_1 = XW_{Q_1}, \quad V_1 = XW_{V_1},$$
$$K_2 = XW_{K_2}, \quad Q_2 = XW_{Q_2}, \quad V_2 = XW_{V_2},$$
$$\vdots$$
$$K_h = XW_{K_h}, \quad Q_h = XW_{Q_h}, \quad V_h = XW_{V_h},$$

and we obtain h sets of results. h is called the “head number”, and each set of result comes from a head.

Using the h results together, we can improve the reliability of the self-attention mechanism (e.g., by taking an average).
The Works in Details
Overview of the Models

<table>
<thead>
<tr>
<th>Model</th>
<th>time steps</th>
<th>directed</th>
<th>relation types</th>
</tr>
</thead>
<tbody>
<tr>
<td>DyRep</td>
<td>Continuous</td>
<td>No</td>
<td>Homogeneous (*)</td>
</tr>
<tr>
<td>DySAT</td>
<td>Discrete</td>
<td>No</td>
<td>Homogeneous</td>
</tr>
<tr>
<td>DyGNN</td>
<td>Discrete</td>
<td>Yes</td>
<td>Homogeneous</td>
</tr>
<tr>
<td>TGAT</td>
<td>Continuous</td>
<td>Yes</td>
<td>Homogeneous</td>
</tr>
</tbody>
</table>
Two kinds of events: (1) association (2) communication.

\[\mathcal{G}^t = (\mathcal{V}, \mathcal{E}^t) \]

is the denotation of undirected graph \(\mathcal{G} \) at time \(t \in [t_0, T] \). An event \((u, v, t, k)\) has \(u, k \) being the involved nodes, \(t \in \mathbb{R}^+ \) be the time and \(k = \{0, 1\} \) be the event type (0 for association, 1 for communication). The stream of event-observations are (evolution of graph):

\[\mathcal{O} = \{(u, v, t, k)_p\}^{P}_{p=1} \]

Embedding of node \(v \) at time \(t \) is denoted as \(z^v(t) \in \mathbb{R}^d \). \(z^v(\bar{t}) \) represents the most recently updated embedding of node \(v \) just before \(t \).

Idea: learn functions to compute node embeddings.
Examples of the two kinds of events:

- association: being academic friends
- communication: meeting at a conference
Given an event $p = (u, v, t, k)$, the conditional intensity function $\lambda_{k}^{u,v}$ is defined as:

$$\lambda_{k}^{u,v}(t) = f_k(g_{k}^{u,v}(\bar{t}))$$

where \bar{t} signifies the time point just before current event, and

$$g_{k}^{u,v}(\bar{t}) = \omega_k^{T}[z_u^{u}(\bar{t}); z_v^{v}(\bar{t})]$$

is a function of node representations learned through GNN.

$$f_k(x) = \psi_k \log(1 + \exp(x/\psi_k))$$

$\psi_k > 0$ is scalar time-scale parameter to learn, corresponding to the rate of events. ω_k is also a parameter to learn.
DyRep: $f_k(x)$

Figure: The plot of $f_k(x)-x$.
\[
 z^v(t_p) = \sigma(\text{Localized Embedding Propagation} + \text{Self-Propagation} + \text{Exogenous Drive})
\]

where \(h^u_{\text{struct}}(\bar{t}_p) \in \mathbb{R}^d \) is obtained from aggregating node \(u \)'s neighbors, \(W^{\text{struct}}, W^{\text{rec}} \in \mathbb{R}^{d \times d}, W^t \in \mathbb{R}^d \).

It also inherits the GAT-style multi-head attention.
DyRep: Temporal Point Process based Self-Attention

Figure: DyRep computes the temporally evolving attention based on events. \(q \) is an attention coefficient function, parameterized by \(S \), which is computed using the intensity of events between connected nodes.

Temporal Point Process Self-Attention:

\[
\begin{align*}
\hspace{1em} h^u_{\text{struct}}(\bar{t}) &= \max(\{\sigma(q_{ui}(\bar{t}) \ast h^i(\bar{t}))\}) \\
\hspace{1em} h^i(\bar{t}) &= W^h z^i(\bar{t}) + b^h
\end{align*}
\]

where \(i \in N_u(\bar{t}) \) is the node in neighborhood of node \(u \).

\[
q_{ui}(\bar{t}) = \frac{\exp(S_{ui}(\bar{t}))}{\sum_{i' \in N_u(\bar{t})} \exp(S_{ui'}(\bar{t}))}
\]
Algorithm 1 Update Algorithm for S and A

Input: Event record $o = (u, v, t, k)$, Event Intensity $\lambda_{k}^{uv}(t)$ computed in (1), most recently updated $A(t)$ and $S(t)$. **Output:** $A(t)$ and $S(t)$

1. Update $A : A(t) = A(t)$
 if $k = 0$ then $A_{uv}(t) = A_{vu}(t) = 1$ ← {Association event}

2. Update $S : S(t) = S(t)$
 if $k = 1$ and $A_{uv}(t) = 0$ return $S(t)$, $A(t)$ ← {Communication event, no Association exists}
 for $j \in \{u, v\}$ do
 $b = \frac{1}{|N_j(t)|}$ where $|N_j(t)|$ is the size of $N_j(t) = \{i : A_{ij}(t) = 1\}$
 $y \leftarrow S_j(t)$
 if $k = 1$ and $A_{uv}(t) = 1$ then { ← {Communication event, Association exists}}
 $y_i = b + \lambda_{k}^{ji}(t)$ where i is the other node involved in the event. ← {\(\lambda \) computed in Eq. 2}
 else if $k = 0$ and $A_{uv}(t) = 0$ then { ← {Association event}}
 $b' = \frac{1}{|N_j(t)|}$ where $|N_j(t)|$ is the size of $N_j(t) = \{i : A_{ij}(t) = 1\}$
 $x = b' - b$
 $y_i = b + \lambda_{k}^{ji}(t)$ where i is the other node involved in the event ← {\(\lambda \) computed in Eq. 2}
 $y_w = y_w - x$; $\forall w \neq i, y_w \neq 0$
 end if
 end for
 Normalize y and set $S_j(t) \leftarrow y$
 return $S(t)$, $A(t)$
This model obtains two set of parameters to be updated:

- $\mathbf{A}(t) \in \mathbb{R}^{n \times n}$, the adjacency matrix of \mathcal{G}_t. $\mathbf{A}_{uv}(t) \in \{0, 1\}$. Updated only in association events.

- $\mathbf{S}(t) \in \mathbb{R}^{n \times n}$, the stochastic matrix, denoting the likelihood of communication between each pair of nodes. $\mathbf{S}_{uv}(t) \in [0, 1]$. Updated according to $\lambda_{k,uv}(t)$.

$$L = - \sum_{p=1}^{P} \log (\lambda_p(t)) + \int_0^T \Lambda(\tau) d\tau$$

where $\lambda_p(t) = \lambda_{k,p,uv}(t)$, and to represent the total survival probability for un-happened events we use: 1

$$\Lambda(\tau) = \sum_{u=1}^{n} \sum_{v=1}^{n} \sum_{k \in \{0,1\}} \lambda_{k,uv}(\tau)$$

1In practice, mini-batches are applied (see their Appendix).
DyRep experiments focus on the dynamic feature of the model.

- **Dynamic Link Prediction:** given v, k, t fixed, which is the most likely u?

\[
f_{k}^{u,v}(t) = \lambda_{k}^{u,v}(t) \exp \left(\int_{\bar{t}}^{t} \lambda(s) ds \right)
\]

is the conditional density used to find the most likely node, where \bar{t} is the time of the most recent event on u or v.

- **Event Time Prediction:** what is the next time point when a particular type of event occur?

\[
\hat{t} = \int_{t}^{\infty} tf_{k}^{u,v}(t) dt
\]
A dynamic graph G is defined as a series of observed static graph snapshots:

$$G = \{G^1, G^2, \ldots, G^T\}$$

where each snapshot G^t is defined as:

$$G^t = (V, E^t)$$

it is a **weighted undirected** graph with a shared node set V. The corresponding weighted adjacency matrix at time t is A^t.

Idea: to learn $e^t_v \in \mathbb{R}^d$, the node representations, preserving (1) the local graph structures centered at v, (2) its temporal evolutionary behaviors at time t (e.g. link connection and removal)
DySAT: Self-attention

Self-attention mechanism used in DySAT:

- **Structural:**
 - At each G^t ($t = 1, 2, \ldots, T$)
 - Exactly the same as what a standard GAT does (link)

 $$z_v = \sigma \left(\sum_{u \in \mathcal{N}_v} \alpha_{uv} W^s x_u \right)$$

 where W^s is shared by all nodes, attention weight α_{uv} is computed upon $W^s x_u$.

- **Temporal:**
 - Over the sequence $G = \{G^1, G^2, \ldots, G^T\}$

 $$Z_v = \beta_v (X_v W_v)$$

 this time, attention weight $\beta_v \in \mathbb{R}^{T \times T}$ is computed upon $X_v W_q, X_v W_k$ and $M \in \mathbb{R}^{T \times T}$.
We define $M \in \mathbb{R}^{T \times T}$ as:

$$
M_{ij} = \begin{cases}
0 & i \leq j \\
-\infty & \text{otherwise}
\end{cases}
$$

The linear projection matrices to generate queries, keys, and values: $\mathbf{W}_k, \mathbf{W}_q, \mathbf{W}_v \in \mathbb{R}^{D' \times F'}$. $\beta_v \in \mathbb{R}^{T \times T}$ is computed as:

$$
\beta_{ij}^v = \frac{\exp(e_{ij}^v)}{\sum_{k=1}^{T} \exp e_{ik}^v}
$$

where $e_{ij}^v \in \mathbb{R}$ is computed as:

$$
e_{ij}^v = \left(\frac{(X_v \mathbf{W}_q)(X_v \mathbf{W}_k)^T}_{\sqrt{F'}}_{ij} + M_{ij} \right)
$$

2M forces the model to attend to previous time steps only.
DySAT Overall Structure

Figure: Multi-Faceted Graph Evolution is modeled by applying multiple attention heads to both structural and temporal attention.
DySAT: objective function

Designed for: preserving the local structure around a node across multiple time steps.

\[
L = \sum_{t=1}^{T} \sum_{v \in \mathcal{V}} \left(\sum_{u \in \mathcal{N}_{\text{walk}}^t(v)} - \log \sigma \langle \mathbf{e}_u^t, \mathbf{e}_v^t \rangle \right. \\
\left. - w_n \sum_{u' \in P_n^t(v)} \log(1 - \sigma \langle \mathbf{e}_{u'}^t, \mathbf{e}_v^t \rangle) \right)
\]

Intuition: binary cross-entropy loss at each time step, with negative sampling, to encourage close \(^3\) nodes to have similar representations.

\(^3\)Close nodes are co-occurring in fixed-length random walks.
The experiments are focusing on link prediction.

- Single and multiple step link-prediction performances
- Link-prediction involving unseen nodes and links
- Ablation studies on the attention layers

Significantly outperforms the SOTA models, and found that within the range of $(1, 16)$, the more attention heads, the better. More findings are in their paper.
A dynamic graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is directed in this case, and it involves N nodes:

$$\mathcal{V} = \{v_1, v_2, \ldots, v_N\}$$

and a directed edge e could be represented as (v_s, v_g, t), meaning an edge linked from v_s to v_g at time t.

This time, “right before time t ” is denoted as $t−$.

Idea: to learn an embedding, dynamic is achieved by the Update and Propagation components working together.
There are two major components of the model:

- **Update Component**: based on the long-short term memory (LSTM) unit.

- **Propagation Component**: very similar with a standard GAT layer’s propagation, except some details e.g. the selection of activation function, and:
 - ignoring the very-old neighbors (long-time no interaction) that hasn’t interacted for an interval of $\Delta > \tau$.
Figure: What happened in DyGNN when a new interaction happened at t_7 from v_2 to v_5. v_1, v_3, v_6, v_7, the direct neighbors, are the influenced nodes. For more details please refer to their paper.
The DyGNN model itself serves as an encoder that gives $u_v(t)$ as the node v’s embedding at time t.

Losses are different depending on different downstream tasks in the decoder.

- **Link Prediction**: negative log-sigmoid of the source & target inner product; negative-sampling used.
- **Node Classification**: cross-entropy loss at the last layer (unit = 2).
TGAT: Problem Definition

On a dynamic graph \(G = (\mathcal{V}, \mathcal{E}) \) (can be \textbf{directed} or \textbf{undirected}), all interactions \((e \in \mathcal{E}) \) have time associated with them.

We seek to learn a continuous functional mapping \(\Phi : T \rightarrow \mathbb{R}^{dT} \) to encode time, where time domain \(T = [0, t_{max}] \) (\(t_{max} \) is determined by the observed data).

Idea: learn time-aware embedding, using functional time encoding and the temporal graph attention layer (TGAT layer).

- **TGAT layer:** a local aggregation operator that takes (1) the temporal neighborhood with their hidden representations (or features) and (2) timestamps as input, and the output is the time-aware representation.
For node v_0 at time t, we define its neighborhood as:

$$\mathcal{N}(v_0; t) = \{v_1, v_2, \ldots, v_N\}$$

where, for each $v_i \in \mathcal{N}(v_0; t)$, the interaction between v_0 and v_i took place at $t_i < t$.
Figure: The architect of the l^{th} TGAT layer with $k = 3$ attention heads for node v_0 at time t. Output is $\tilde{h}_i^{(l)}(t)$ where $i = 0$ is the node index. Feature vectors $\tilde{h}_i^{(l-1)}(t)$ and $\Phi(t - t_i)$ are simply concatenated, as the layer’s input. $\Phi(t - t_i) \in \mathbb{R}^{dT}$ takes the place of positional encoding in a standard transformer layer (ref). The remaining parts (masked multi-head self attention etc.) are almost the same as GAT.
It seems that there’s a glitch in their paper writing (if you follow their description of Φ_d, the output dimension will be $2d$ instead of d), the Φ_d implemented in the code is:

$$\Phi_d(t) = [\cos(\omega_1 t + \theta_1), \cos(\omega_2 t + \theta_2), \ldots, \cos(\omega_d t + \theta_d)] \in \mathbb{R}^d$$

where both $\omega = [\omega_1, \ldots, \omega_d]$ and $\theta = [\theta_1, \ldots, \theta_d]$ are parameters to be trained.

In fact, we should consider $\Phi(t_i)$ instead of $\Phi(t - t_i)$ ($i = 1, 2, \ldots, N$). However, we are only interested in the timespan:

$$|t_i - t_j| = |(t - t_i) - (t - t_j)|$$

so it doesn’t matter which way we use it.
Two kinds of tasks:

- **Transductive task:** node classification & link prediction on observed nodes.
- **Inductive task:** node classification & link prediction involving unseen nodes.

It outperforms all SOTA models under all tasks.
1. No agreement at all on how to model dynamic graph.
2. Multi-head self-attention mechanism is very frequently applied.
3. To model a continuous time stream, people usually define a *continuous function* and learn its parameters.
4. etc.