Large Memory Layers with Product Keys \(^1\)
Reading Group Slides

Presenter: Zhiping (Patricia) Xiao

\(^1\)NeurIPS’ 19, Authors: Guillaume Lample, Alexandre Sablayrolles, Marc’Aurelio Ranzato, Ludovic Denoyer, Hervé Jégou
Outline

Introduction
 Background
 Learnable Product Key Memories

Experiments
 Evaluation
 Results
Introduction
Related Work

Memory Network: ²

- Memory Networks (ICLR’ 15)
- End-To-End Memory Networks (NIPS’ 15)
- Learning to Transduce with Unbounded Memory (NIPS’ 15)
- Hybrid computing using a neural network with dynamic external memory (Nature’ 16)
- Scaling Memory-Augmented Neural Networks with Sparse Reads and Writes (NIPS’ 16)

²Thanks to Xingjian for helping with organizing the related works.
MemNN: input feature map I, generalization (update memories by new input) G, output feature map O, response R. Uses $argmax$ over the memories.

End2end Memory Networks: embedding matrices A for input and C for output, resulting in “key-value” pair, and use $softmax$; can be cast as a traditional RNN.

Unbounded Memory: neural Stack, neural Queue, neural DeQue.

DNC: more focus on memory management, controller\(^3\) uses previous inputs.

Sparse Reads and Writes: Sparse Access Memory (SAM), with r/w constrained to a sparse subset, along with a sparse memory management scheme.

\(^3\)Generates interface parameters and output parameters.
1. The paper is available on ArXiv.
2. Code: https://github.com/facebookresearch/XLM
3. A minimalist example: https://github.com/facebookresearch/XLM/blob/master/PKM-layer.ipynb

Enjoy! 😊
General Introduction

Figure: Mr. LeCun’s comments on Twitter.

Figure: The first author’s brief introduction on Twitter.
The general idea and motivation

- A function $m : \mathbb{R}^d \rightarrow \mathbb{R}^n$, acts as a layer in a neural network, offering a large capacity to it.
- Only brings slight computational overhead, in both training and testing; scaling to very large sizes while keeping exact search on the key space.
- Product-key enables fast indexing by reducing the search space dramatically.
- Inspired by the success of BERT and GPT-2, putting the memory layers into transformer.
Figure: x, the input, processed through the query network, produces a query vector q, which is compared to all the $|\mathcal{K}|$ keys, and then output the **sparse** weighted sum of over the memories associated with the selected keys. All parameters of the memory are trainable, while only k selected memory slots are updated for each input.
Query network \((q : x \mapsto \mathbb{R}^{d_q})\)

- Typically linear mapping or multi-layer perceptron.
- Adding a batch normalization layer on top of the query network helps increasing key coverage during training. \(^4\)
- In the paper’s setting, \(d_q = 512\), \(d > d_q\).

\(^4\) Confirmed by experiments in Section 4.5.
Key assignment

Figure: Split query q into q_1, q_2; search in sub-key set 1 and 2 for the k ($k = 2$ in the illustrated example) nearest neighbors (measured by the inner product) of q_1 and q_2 respectively, thus $k \times k$ keys are implicitly selected. The two subsets induce product keys \mathcal{K} ($|\mathcal{K}| = 9$ in this case). The k keys nearest to q in product keys are guaranteed to be included in this $k \times k$ candidate keys.
\[\mathcal{I} = \mathcal{T}_k(q(x)^T k_i) \] # Get k nearest neighbors

\[w = \text{Softmax}\left((q(x)^T k_i)_{i \in \mathcal{I}}\right) \] # Normalize the top-k scores

\[m(x) = \sum_{i \in \mathcal{I}} w_i v_i \] # Aggregate selected values

where \(\mathcal{T}_k \) represents the top-k operator, selecting the top-k indices.
Having two vector codebooks C_1 and C_2, whose keys are the sub-key sets mentioned before. The sub-keys’ dimension is $\frac{d_q}{2}$.

C_1 and C_2’s outer product w.r.t. the vector concatenation operator is defined as the product key set.

$$\mathcal{K} = \{(c_1, c_2) | c_1 \in C_1, c_2 \in C_2\}$$

Get the nearest k neighbors of q_1 in C_1 as \mathcal{I}_{C_1}, and that of q_2 in C_2 as \mathcal{I}_{C_2}.

$$\{(c_1,i, c_2,j) | i \in \mathcal{I}_{C_1}, j \in \mathcal{I}_{C_2}\}$$ is guaranteed to include the most similar k keys from \mathcal{K}.

\footnote{a.k.a. the Cartesian product construction.}
Statement: The candidate set $\mathcal{C} = \{(c_{1,i}, c_{2,j})| i \in \mathcal{I}_{C_1}, j \in \mathcal{I}_{C_2}\}$ is \textbf{guaranteed} to include the most similar k keys from \mathcal{K}.

Proof: The distance is defined by the inner product between vectors, thus $\forall c_1 \in \mathcal{C}_1, c_2 \in \mathcal{C}_2$,

$$(c_1, c_2)^T q = c_1^T q_1 + c_2^T q_2$$

Assume $\exists (c_1^*, c_2^*) \notin \mathcal{C}$, but is one of the k nearest neighbors of q in \mathcal{K}, $\exists (c_1', c_2')$ among the top-k candidates that:

$$c_1'^T q_1 + c_2'^T q_2 \leq (c_1^*)^T q_1 + (c_2^*)^T q_2$$

$$(c_1' - c_1^*)^T q_1 \leq (c_2^* - c_2')^T q_2 \quad (1)$$
For convenience, let’s denote the set of nearest k neighbors of q_1 in C_1 as C_1', and similarly C_2' for q_2 in C_2.

By definition of the k nearest neighbors, $\forall c_1^* \notin C_1', \forall c_2^* \notin C_2'$, and $\forall c_1' \in C_1', \forall c_2' \in C_2'$,

$$(c_1' - c_1^*)^T q_1 \geq 0$$

$$(c_2^* - c_2')^T q_2 \leq 0$$

From (1) we have:

$$(c_1' - c_1^*)^T q_1 = 0 = (c_2^* - c_2')^T q_2$$

As long as $q_1 \neq 0$ and $q_2 \neq 0$, $c_1' = c_1^*$ and $c_2' = c_2^*$, which conflicts the assumption that $\exists (c_1^*, c_2^*) \notin C$.

If $q_1 = 0$ or $q_2 = 0$, the distance will be always 0 thus all keys are the nearest.

The k nearest neighbors of q in \mathcal{K} is guaranteed to be in C.
Multi-head mechanism makes the model more expressive. Increases the key usage and improves the performance.

- H heads, each has its own query network, and own set of sub-keys, but sharing the same values.
- The final output is simply the sum:

$$m(x) = \sum_{i=1}^{H} m_i(x)$$

- Different from *standard multi-head attention*: the input (query) is not split into H heads, create H queries instead.
- In practice: different heads attend to very different keys, and very different values of the memory.
Given the memory with keys \mathcal{K} of size $|\mathcal{K}|$, and latent space dimension d_q ($q \in \mathbb{R}^{d_q}$):

- **Standard key-value memory layer:**
 - Each computation of distance takes d_q operations.
 - $O(|\mathcal{K}| \times d_q)$

- **Product-key memory layer:**
 - $|\mathcal{C}_1| = |\mathcal{C}_2| = \sqrt{|\mathcal{K}|}$
 - Finding $k \times k$ candidates from subsets:
 $2 \times O(\sqrt{|\mathcal{K}|} \times \frac{d_q}{2}) = O(\sqrt{|\mathcal{K}|} \times d_q)$
 - Finding the best k keys from $k \times k$ candidates: $O(k^2 \times d_q)$, since the priority list for $O(k \log k \times d_q)$ is less compliant with GPU architectures.

- **The overall complexity:**
 $O\left((\sqrt{|\mathcal{K}|} + k^2) \times d_q\right) \approx O(\sqrt{|\mathcal{K}|} \times d_q)$
The layer’s role in model

Figure: Typical transformer block with *Feed-Forward Network*. $x = x + FFN(x)$

Figure: Modified transformer block with *Product-Key Memory*. $x = x + PKM(x)$

The product-key memory layer is analogous to a sparse FFN layer with a very large hidden state. In practice, they only replaced $N \in \{0, 1, 2\}$ layers’ FFN layer in the transformer model.
Experiments
Dataset

- Extracted from the public Common Crawl.
- 40 million English news articles in training set, 5000 in validation and test set each.
- Did not shuffle sentences, allowing the model to learn long range dependencies.
To measure performance of the model:

- Perplexity on the test set (the smaller the better).

\[PP(S) = P(w_1w_2 \ldots w_N)^{-\frac{1}{N}} \]

\[= \left(\prod_{i=1}^{N} \frac{1}{p(w_i|w_1w_2 \ldots w_{i-1})} \right)^{-\frac{1}{N}} \]
To evaluate memory usage:

- **Fraction of accessed values**: \(\# \{ z_i \neq 0 \} \)
 - Expect to use as many keys as possible, around 100%.
- **KL (Kullback–Leibler) divergence** between distributions of \(z \) and the uniform distribution
 \[
 \log(|\mathcal{K}|) + \sum z_i \log(z_i)
 \]
 - Given input \(x \) from test set, \(w(x) \) is the **sparse** (at most \(H \times k \) non-zero entries) of the weights of the keys accessed in the memory.
 - \(z'_i = \sum_x w(x)_i \), and \(z' \in \mathbb{R}^{|\mathcal{K}|} \)
 - \(z = \frac{z'}{\|z'\|_1} \)
 - Reflects imbalance in the access patterns to the memory, the lower the better.
Either increasing the *dimension* or increasing *the number of layers* leads to significant perplexity improvements in all models.

Adding memory is more beneficial than increasing the number of layers.

In general, the more memory layers added, the better the performance would be.
Dominant factor for inference time is the number of accessed memory values, which is governed by the number of memory heads h, and the parameter k, NOT the memory size.

Query batch-normalization helps.

The location to insert the memory layer could be tricky. The worst position is at layer 1, right after the input token embeddings; insert right before the softmax output (at layer 6) is also not a good idea. The best position to insert at is an intermediate layer.

Increasing h and/or k help reach better performance and better memory usage, but there’s a trade-off between speed and performance. $h = 4$ and $k = 32$ is good in practice.

Better than flat keys (standard keys) from all aspects.
Thank You

Q & A