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Papers 4

Diffusion-LM Improves Controllable Text Generation
(NeurIPS’22)

▶ Build a Language Model eligible for fine-grained
controllable text generation, by applying diffusion model
on continuous latent space.

▶ Code: https://github.com/XiangLi1999/Diffusion-LM

https://arxiv.org/abs/2205.14217
https://arxiv.org/abs/2205.14217
https://github.com/XiangLi1999/Diffusion-LM


Generative Models 5

Figure: Overview of different types of generative models.1

1lilianweng.github.io 2021 post on diffusion models

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/


Language Models 6

Given a sequence of discrete words w = [w1, w2, . . . wn].

A language model plm(w) denotes the probability distribution
over sequences of words.

A language model assigns a probability
plm(w) = P (w1, . . . , wm) to the whole sequence.



Generative Models for LMs 7

Controllable Text Generation is to compute p(w|c), aiming
at generate w that satisfies the control target c, where c is a
control variable (e.g. syntax tree, sentiment, topic, politeness,
to gender, persona).

Plug-and-Play Controllable Generation: aims to keep the
LM frozen and steer its output using potential functions (e.g.,
classifiers). In this setting:

▶ plm(w) pre-trained and frozen, encouraging fluent;

▶ For each task, train p(c|w) on small amount of data,
encourage w to fulfill the control.

▶ Posterior p(w|c) approximated from Bayes rule:

p(w|c) ∝ p(c|w) · plm(w)



Quick Recap: Bayes Rule 8

P (A|B) =
P (B|A)P (A)

P (B)

In this case, p(c) can be regarded as a unchanged.

Therefore:
p(w|c) ∝ p(c|w) · plm(w)



Diffusion-LM





Diffusion LM: Motivation 10

Focusing on a language models (LMs) offering controllable
generation for text without re-training.

Recent works succeed on controlling simple attributes e.g.,
sentiment, while little progress is made on complex, fine-grained
controls (e.g., syntactic structure).

Solution: a new non-autoregressive language model based on
continuous diffusions.

▶ continuous data domains: images, audio, etc. (enables
efficient gradient-based controllable generation)

▶ previous text diffusion models: on discrete state spaces,
defines a corruption process on discrete data (e.g., each
token has some probability to be corrupted to an absorbing
or random token).



PPLM: the Closest Related Work to Diffusion LM 11

Plug and play language models: A simple approach to
controlled text generation (ICLR’20)

▶ It runs gradient ascent on an autoregressive LM’s hidden
activations make the following tokens satisfy the control
while maintaining fluency.

▶ Drawback 1: PPLM is based on autoregressive model, it
can only generate left-to-right, thus can never repair
previous errors.

▶ Drawback 2: Work well on simple attribute (e.g. topic)
control tasks, fail on more complex control tasks (e.g.
syntactic structure).

https://arxiv.org/abs/1912.02164
https://arxiv.org/abs/1912.02164


Diffusion Models (DMs) 12

Recall that, the case of image:

LDM = Ex,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(xt, t)∥22

]
.

The case of text: to maximize Ex0∼pdata

[
log pθ(x0)

]
View as modeling latent variables of the data x0 ∈ Rd as a
Markov chain xT , . . . ,x0 ∈ Rd where xT is a Gaussian.
The initial state pθ(xT ) ≈ N (0, I), and noise to reduce at step t:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) ,

where µθ and Σθ may be computed by a U-Net or a
Tranformer. (Ablation Studies in Sec 7.4 and Appendix H)



Diffusion Models (DMs) 13

To train pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)):

▶ Forward Process q: incrementally adds Gaussian noise to
data x0, until at diffusion step T , samples xT are
approximately Gaussian.

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) ,

where βt is the amount of noise added at step t. q is
pre-defined and contains no trainable parameter.

▶ Reverse Process pθ: reconstruct the data (i.e.
xT → . . .x0), denoiser U-Net or Transformer.

▶ The diffusion model is trained to maximize the marginal
likelihood of the data

Ex0∼pdata

[
log pθ(x0)

]



Diffusion LM: Measurement Criteria 14

Measurement of lm: Feed generated text to a teacher LM (i.e.,
a carefully fine-tuned GPT-2 model) and report the perplexity.
This metric is called lm-score (lm), a lower lm-score indicates
better sample quality.



Diffusion LM: Architecture 15

Figure: Iteratively denoises a sequence of Gaussian vectors into word
vectors, yielding a intermediate latent variables of decreasing noise
level xT . . . x0. For controllable generation: iteratively perform
gradient updates on these continuous latents to optimize for fluency
(parametrized by Diffusion-LM) and satisfy control requirements
(parametrized by a classifier).



Diffusion LM: Architecture 16

Figure: The forward and reverse diffusion processes. In addition to
the original diffusion models, Diffusion-LM add a Markov transition
between x0 and w, defining embedding (w → x0) and rounding
(x0 → w).



Diffusion LM: Non-Autoregressive 17

Autoregressive LMs: plm(w)

plm(w) = plm(w1)

n∏
i=2

plm(xi|x<i) ,

where the next-token prediction plm(xi|x<i) is often
parametrized by Transformer architecture.

Claim: Most large pre-trained LMs are left-to-right
autoregressive. (e.g. GPT-3, PaLM)

▶ Fixed generation order (i.e., left to right) limits the
flexibility of models.

▶ For more: https://huggingface.co/transformers/v3.
1.0/model_summary.html

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2204.02311
https://huggingface.co/transformers/v3.1.0/model_summary.html
https://huggingface.co/transformers/v3.1.0/model_summary.html


Diffusion LM: Non-Autoregressive 18

Non-autoregressive LMs:

Claim: Most of the existing models in this category are
task-specific, such as machine translation and speech-to-text
(e.g. CTC and Imputer, NAT))

▶ It has been shown that these models fail for language
modeling in CoMMA paper.

▶ A Study of Non-autoregressive Model for Sequence
Generation (ACL’20)

Claim: Diffusion-LM can condition on arbitrary classifiers,
which could utilize complex, global properties of the sentence.

https://arxiv.org/abs/2004.07437
https://openreview.net/forum?id=B1l8BtlCb
https://aclanthology.org/2020.acl-main.15/
https://arxiv.org/abs/2004.10454
https://arxiv.org/abs/2004.10454


Why Diffusion LM uses Non-Autoregressive arch? 19

According to my personal opinion:

▶ Diffusion Models are often expensive.
▶ Many steps needed for training and generation.
▶ In this case, the denoiser – a U-Net or a Transformer.

▶ Non-autoregressive models generate a whole sequence at a
time.



Diffusion LM: Diffusion Noise Schedule 20

The noise scheduler / variance schedule is an important
hyper-parameter to be determined.

▶ Elucidating the Design Space of Diffusion-Based
Generative Models (NeurIPS’22)

▶ The scheduler decide how much noise we add at each step.

Problem: Standard noise schedules for continuous diffusion
models are not robust for text data.

Hypothesis: discrete nature of text involves rounding, making
the model insensitive to noise near t = 0.

Solution: introduce a new sqrt noise schedule suits for text
better.

https://huggingface.co/docs/diffusers/v0.3.0/en/api/schedulers
https://arxiv.org/abs/2206.00364
https://arxiv.org/abs/2206.00364
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Diffusion LM: Noise Schedule α, β Explained 21

Recall that during the forward process q incrementally adds
Gaussian noise to data x0, until at diffusion step T , samples xT

are approximately Gaussian.

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) ,

with βt to be scheduled, which is equivalent to:

xt =
√

1− βtxt−1 +
√
βtϵ ,

where ϵ ∼ N (0, I). In practice, they find re-parametrization
helps with model training. By having αt =

∏t
s=1(1− βs), we

have the closed-form expression of xt−1 =
√
αtx0 +

√
1− αtϵ.

We estimate xt as:

xt−1 =
√
αtfθ(xt, t) +

√
1− αtϵ ,

where fθ(xt, t) estimates x0 directly.



(*) The Re-Parametrization 22

Proposed in Auto-Encoding Variational Bayes (ICLR’14)

▶ The combination of forward process q and backward
process pθ can be seen as a variational auto-encoder
(VAE), hence the variational lower bound (i.e. ELBO) can
be used to minimize the negative log-likelihood with
respect to ground truth data sample x0.

▶ The ELBO in this case is the sum of losses at each step:

L = L0 + L1 + · · ·+ LT

▶ By the construction of q, we observe each Lt (t = 1, 2, . . . T )
is the KL divergence between 2 Gaussian distributions.

∥ϵ− ϵθ(xt, t)∥2 = ∥ϵ− ϵθ(
√
αtx0 +

√
(1− αt)ϵ, t)∥2

https://arxiv.org/abs/1312.6114
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(*) The Re-Parametrization 23

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI)

Note that: sum of Gaussians is still Gaussian. As is shown by
Deep Unsupervised Learning using Nonequilibrium
Thermodynamics (ICML’15):

▶ It means that we do not have to apply q repeatedly to
sample xt from x0. Instead we have:

q(xt|x0) = N (xt;
√
αtx0, (1− αt)I) ,

with αt = 1− βt and αt =
∏t

s=1 αs

▶ This then allows optimizing random terms of Lt of a
randomly sampled t during training.

▶ This re-param trick turns the model from a step-t mean
predictor to a total noise predictor.

▶ references: huggingface post, Lilian post.

https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/1503.03585
https://huggingface.co/blog/annotated-diffusion
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/


Diffusion LM: SQRT Noise Schedule 24

For the noise schedule
√
1− αt, sqrt schedule defines αt as:

αt = 1−
√

t

T
+ s ,

where s is a small constant that corresponds to the starting
noise level.

▶ When t = 0, αt = 1−
√
s, the

√
1− αt is 4

√
s.
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Other Noise (/Variance) Schedule 25

Ref: https://huggingface.co/blog/annotated-diffusion

▶ Linear Schedule
▶ Example: original DDPM, set the forward process variances

to constants increasing linearly from β1 = 10−4 to
βT = 0.02.

▶ Denoising Diffusion Probabilistic Models (NeurIPS’20)

▶ Cosine Schedule
▶ The equation (usually divided by α0 to normalize):

αt =
(π
2
×

cos( t
T + s)

1 + s

)2

▶ Shown in Improved Denoising Diffusion Probabilistic
Models (ICML’21) that cosine schedule achieves better
results.

https://huggingface.co/blog/annotated-diffusion
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2102.09672
https://arxiv.org/abs/2102.09672


Diffusion LM: Noise Schedule 26

Figure: Noise Schedule. Visualizing the noise schedule
√
1− αt.

Figure 5 in the paper.



Diffusion LM: Noise Schedule 27

Figure: Noise Schedule, lm score. sqrt is the best. Figure 6 Row 2 in
the paper. No longer salient when applying x0-parametrization trick.



Diffusion LM: Approximation 28

The simplified version of the canonical objective of maximizing

Ex0∼pdata [log pθ(x0)]

is the variational lower bound of log pθ(x0),
2 simplified as (NO

LONGER a valid lower bound but mathematically proved and
empirically more stable):

Lsimple(x0) =

T∑
t=1

Eq(xt|x0)

[
∥µθ(xt, t)− µ̂(xt,x0)∥2

]
,

where µ̂(xt,x0) is the mean of posterior q(xt−1|x0,xt) which is
a closed form Gaussian, and µθ(xt, t) is the predicted mean of
pθ(xt−1|xt), computed by a neural network (Transformer /
U-Net).

Proof in Appendix E of Diffusion-LM. Uses the closed form
solution of the KL divergence of Gaussian.

2the canonical objective comes from ICML’15

https://proceedings.mlr.press/v37/sohl-dickstein15.html


Diffusion LM: Training Objective 29

The simplified version of the canonical objective of maximizing
Ex0∼pdata [log pθ(x0)] is:

Lsimple(x0) =

T∑
t=1

Eq(xt|x0)

[
∥µθ(xt, t)− µ̂(xt,x0)∥2

]
,

where µ̂(xt,x0) is the mean of q(xt−1|x0,xt), and µθ(xt, t) is the
predicted mean of pθ(xt−1|xt). The end2end version objective:

Le2e
simple(w) =Eqϕ(x0:T |w)

[
Lsimple(x0) + ∥EMB(w)− µθ(x1, 1)∥2

− log pθ(x0|w)
]



Diffusion LM: Denoiser 30

Two options:

▶ Transformer: BERT-base model. Performs better, became
the default choice.

▶ U-Net: make only one change to the standard U-Net,
turning all 2D-convolutional layers into 1D-convolutional
layers so that the model handles text sequence instead of
image matrix.

Set diffusion steps to be 2, 000 in practice. When running
multiple (i.e. 3), steps of optimization steps (i.e. Adagrad), for
each diffusion steps, reduce 2, 000 to 200.



Recap: BERT-base 31

Figure: The architecture is the same as BERT-base, but Diffusion LM
trained it from scratch. (link to BERT paper)

https://arxiv.org/abs/1810.04805


Recap: U-Net 32

Figure: In Diffusion LM, we replace all the 2D conv layers with 1D
conv layers. (link to U-Net paper)

https://arxiv.org/abs/1505.04597


Diffusion LM: Transformer v.s. U-Net 33

Figure: Transformer v.s. U-Net. Note that the less lm score, the
better. Therefore, Transformer is better.



Diffusion LM: Embedding & Rounding 34

Embedding:

▶ EMB(wi) ∈ Rd embed discrete word wi into vector space.

▶ EMB(w) = [EMB(w1), . . .EMB(wn)] ∈ Rnd denotes the
embedding of a length-n sequence. A Markov transition is
applied:

qϕ(x0|w) = N (EMB(w), σ0I) ,

which is trained end-to-end with the other components.

Rounding: achieved by choosing the most probable word
according to

argmax pθ(w|x0) =

n∏
i=1

pθ(wi|xi) ,

where pθ(wi|xi) is a softmax distribution.



Diffusion LM: Learned v.s. Random Embeddings 35

Figure: Learned v.s. Random Embeddings. Note that the less lm
score, the better. Learned Embedding is better. Figure 6 Row 1 in
the paper. Conclusion: Fixed pre-trained embedding or random
Gaussian embeddings are worse than the embedding trained via
an end-to-end framework.



Diffusion LM: the Learned Embedding 36

Figure: Figure 3 in the paper: A t-SNE plot of the learned word
embeddings. Each word is colored by its POS (part-of-speech).



Diffusion LM: Reducing Rounding Errors 37

Recall that rounding is achieved by choosing argmax of

pθ(w|x0) =

n∏
i=1

pθ(wi|xi) ,

where pθ(wi|xi) is a softmax distribution. Ideally, this rounding
is sufficient to map back to discrete text. The denoising steps
should make x0 lie exactly on the embedding of some word.

But the problem is that, empirically, the model fails to generate
x0 that commits to a single word.
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Diffusion LM: Reducing Rounding Errors 38

One Explanation: not emphasizing single commit on x0 enough.

Lsimple(x0) =

T∑
t=1

Eq(xt|x0)

[
∥µθ(xt, t)− µ̂(xt,x0)∥2

]
▶ The model µθ(xt, t) directly predicts the mean of

pθ(xt−1|xt) at every denoising step t.

▶ The constraint that x0 has to commit to a single word
embedding will only appear in the terms with t near 0, and
require careful tuning to emphasize those terms.
(Appendix H)

▶ Quick Fix: x0-parameterized model

Le2e
x0−simple(x0) =

T∑
t=1

Ext∥fθ(xt, t)− x0∥2 .



Diffusion LM: Result of the Quick Fixation 39

Figure: Figure 4 right half in the paper. Parametrizing by x0

consistently performs well, whereas parametrizing by ϵ works fine for
small dimensions, but quickly collapses for larger dimensions.



Diffusion LM: Reducing Rounding Errors 40

x0-parameterized model:

Le2e
x0−simple(x0) =

T∑
t=1

Ext∥fθ(xt, t)− x0∥2 ,

where our re-parameterized model fθ(xt, t) learns x0 directly.

In the decoding phase, same intuition could be used in
clamping trick:

▶ Maps the predicted fθ(xt, t) to its nearest word
embedding sequence at every step.

▶ Forces the predicted vector to commit to a word for
intermediate diffusion steps, making predictions more
precise and reducing rounding errors.



Diffusion LM: Clamping Trick 41

Before clamping trick:

xt−1 =
√
αtfθ(xt, t) +

√
1− αtϵ ,

After clamping trick:

xt−1 =
√
αt · Clamp

(
fθ(xt, t)

)
+
√
1− αtϵ ,



Diffusion LM: Controllable Text Generation 42

Controlling x0:T over c is equivalent with decoding from the
joint inference problem posterior:

p(x0:T |c) =
T∏
t=1

p(xt−1|xt, c) ,

which can be decomposed to a sequence of control problems at
each diffusion step:

p(xt−1|xt, c) ∝ p(xt−1|xt) · p(c|xt−1,xt)

And according to a Yang Song et al’s paper from ICLR’21
(Section 5), there are conditional independence assumptions
that we can use to simplify:

p(c|xt−1,xt) = p(c|xt−1)

https://arxiv.org/abs/2011.13456


Diffusion LM: Controllable Text Generation 43

Therefore, for the t-th step, we run gradient update on xt−1:

∇xt−1 log p(xt−1|xt, c) = ∇xt−1 log p(xt−1|xt)+∇xt−1 log p(c|xt−1) ,

where the two differentiable terms are parameterized by:

▶ log p(xt−1|xt): Diffusion LM (for fluency);

▶ log p(c|xt−1): an arbitrary neural network classifier (for
control);

respectively.

In practice, we add fluency regularization where λ is a
hyper-param:

λ∇xt−1 log p(xt−1|xt) +∇xt−1 log p(c|xt−1) ,
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Diffusion LM: Minimum Bayes Risk (MBR) Decoding44

Steps:

1. Collect a set of samples S drawn from the Diffusion-LM,
instead of having one single best option.

2. Select the sample that achieves the minimum expected risk
under a given loss function (e.g., negative BLEU score).

ŵ = argmin
w∈S

∑
w′∈S

1

|S|
L(w,w′)

3. A low quality sample would be dissimilar from the
remaining samples, and penalized by the loss function.
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FT refers to fine-tuned GPT-2 without plug-and-play setting.
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