
Bit Blasting Probabilistic Programs

POORVA GARG, University of California, Los Angeles, USA

STEVEN HOLTZEN, Northeastern University, USA

GUY VAN DEN BROECK, University of California, Los Angeles, USA

TODD MILLSTEIN, University of California, Los Angeles, USA

Probabilistic programming languages (PPLs) are expressive means for creating and reasoning about probabilis-

tic models. Unfortunately hybrid probabilistic programs, involving both continuous and discrete structures, are

not well supported by today’s PPLs. In this paper we develop a new approximate inference algorithm for hybrid

probabilistic programs that first discretizes the continuous distributions and then performs discrete inference

on the resulting program. The key novelty is a form of discretization that we call bit blasting, which uses a

binary representation of numbers such that a domain of 2
𝑏
discretized points can be succinctly represented as

a discrete probabilistic program over poly(𝑏) Boolean random variables. Surprisingly, we prove that many

common continuous distributions can be bit blasted in a manner that incurs no loss of accuracy over an explicit

discretization and supports efficient probabilistic inference. We have built a probabilistic programming system

for hybrid programs called HyBit, which employs bit blasting followed by discrete probabilistic inference. We

empirically demonstrate the benefits of our approach over existing sampling-based and symbolic inference

approaches.

CCS Concepts: • Mathematics of computing→ Probabilistic inference problems.

Additional Key Words and Phrases: discretization, bit blasting, probabilistic inference

1 INTRODUCTION
Probabilistic programming languages (PPLs) are an expressive means for creating and reasoning

about probabilistic models. Many such models are naturally hybrid, involving both continuous (e.g.,

Gaussian distributions) and discrete structures (e.g., Bernoulli random variables, if statements and

other control flow). For example, hybrid models arise in applications such as medical diagnosis,

gene expression and cyber-physical systems [Chen et al. 2020; Lee and Seshia 2017].

Unfortunately, hybrid programs are not well supported by today’s PPLs. The primary analysis

task in probabilistic programming languages is probabilistic inference, computing the probability

that an event occurs according to the distribution defined by the program. Existing inference

algorithms employ forms of sampling to perform approximate inference. Some approaches, notably

HamiltonianMonte Carlo used in the PPLs Pyro and Stan [Bingham et al. 2018a; Gorinova et al. 2021],

do not support discrete random variables, instead requiring them to be (manually or automatically)

marginalized out. However, this approach has numerous fatal cases that explode exponentially

in the number of discrete variables.
1
Other sampling-based approaches are universal and so can

1
Indeed, the Pyro documentation states that it cannot support more than 25 discrete variables in CUDA and 64 discrete

variables on a CPU [Bingham et al. 2018b].
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Table 1. Distributions with sound and efficient bit blasting subsumed by mixed-gamma densities.

Distribution Density Distribution Density

Uniform 1 Gamma
𝛽𝛼𝑥𝛼−1𝑒−𝛽𝑥

Γ (𝛼 )
Linear 𝑥 Laplace

1

2𝑏
𝑒

−|𝑥−𝜇 |
𝑏

Polynomial 𝑥𝑛 Chi-squared
1

2

𝑘
2 Γ ( 𝑘

2
)
𝑥

𝑘
2
−1𝑒

−𝑥
2

Exponential 𝜆𝑒−𝜆𝑥 Student-T 𝑐 (1 + 𝑥2

𝜈
)
− 𝜈+1

2

handle discreteness, such as importance sampling, Markov Chain Monte Carlo and Sequential

Monte Carlo, etc. [Koller and Friedman 2009]. However, these algorithms are known to struggle

with multimodal distributions [Yao et al. 2021], which arise through discreteness, as well as with

programs that condition on low-probability events.

In this paper we develop a new inference algorithm for hybrid probabilistic programs via

discretization: we convert the continuous distributions in a hybrid program to discrete distributions.

This yields a fully discrete probabilistic program on which existing algorithms for discrete inference

can be used. Discretization approximates a continuous distribution as a sequence of intervals,
with each interval associated with the probability of the value falling in that interval. Forms of

discretization have been used in prior work [Albarghouthi et al. 2017; Beutner et al. 2022; Claret

et al. 2013; Huang et al. 2021] but they all scale linearly in the number of intervals. This imposes a

clear tradeoff: one needs many small intervals in order to avoid losing too much precision, but the

cost of inference quickly becomes prohibitive as the number of intervals grows.

We introduce a new approach to discretization that we call bit blasting, by analogy with the

technique of the same name in verification [Bruttomesso and Sharygina 2009]. The key property of

a bit blasted discretization is that it uses only poly(log𝑛) Boolean random variables to represent a

discretization on 𝑛 intervals. This is achieved by employing a binary representation of numbers

and representing discretizations as discrete probabilistic programs over this binary representation.

At first blush, this succinct representation would appear to lose too much accuracy to be a viable

strategy, but we present both theoretical and empirical results to the contrary.

First, we prove that a large class of common continuous densities can be bit blasted soundly,
that is with no loss of accuracy versus a naive discretization. Table 1 lists example distributions

that are in this class; we refer to the entire class as mixed-gamma distributions.
For instance, consider discretizing a continuous uniform distribution between 0 and 1. Naïve

discretization to 2
32

intervals requires enumeration of 2
32

values. Instead, this distribution can

be represented in binary as a tuple of 32 Bernoulli random variables of the form flip(0.5), i.e.,
coin tosses that are equally likely to have the value 0 or 1. This observation is not new, and a

similar result holds for exponential distributions as well [Marsaglia 1971]. However, the bit blasted

discretizations of other mixed-gamma densities are novel. Further, unlike the case for uniforms

and exponentials, these discretizations are not defined as simply a tuple of independent Bernoulli

random variables but rather require full-fledged discrete probabilistic programs over such variables.

A succinct representation does not necessarily imply efficient inference, which is hard in general.

As our second contribution, however, we prove that bit blasted mixed-gamma distributions are not

only sound and succinct, but they also support polynomial-time inference in the number of bits of

precision. Specifically, we prove that the knowledge compilation approach to discrete probabilistic

inference [Chavira and Darwiche 2008; Chavira et al. 2006; Fierens et al. 2015; Holtzen et al. 2020;

Raedt et al. 2007], which reduces inference to weighted model counting on a boolean formula, has
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Bit Blasting Probabilistic Programs 3

this property for bit blasted mixed-gamma distributions. Therefore, the process of bit blasting a

mixed-gamma distribution followed by discrete inference via knowledge compilation is guaranteed

to take time that is polynomial in the bitwidth used for discretization.

Third, we have used the above theoretical results to design a new PPL called HyBit that performs

non-stochastic approximate inference for hybrid probabilistic programs via bit blasting. Given a

hybrid probabilistic program, HyBit first obtains a purely discrete program by replacing continuous

distributions with their bit blasted discrete approximations. Mixed-gamma distributions are replaced

with their sound bit blasted discrete distributions. Other distributions are replaced with piece-wise

discrete approximations, where each piece is a bit blasted mixed-gamma distribution. HyBit then

leverages knowledge compilation to perform exact inference on the resulting discrete probabilistic

program. We empirically demonstrate the benefits of our approach over existing sampling-based

and symbolic inference approaches on hybrid probabilistic programs.

Overall, we present the following contributions in this paper:

(1) We describe and motivate the challenges for inference on hybrid probabilistic programs in

Section 2.

(2) We present a new form of discretization called bit blasting that is characterized by its

succinctness in the number of discrete intervals in Section 3.

(3) We present a class of continuous distributions, namely mixed-gamma distributions, for

which a sound bit blasted representation exists. We formalize this construction and prove

its properties in Section 3. We further prove that knowledge compilation based inference

scales polynomially in the bitwidth for these distributions.

(4) We describe the HyBit PPL and its new inference algorithm via bit blasting in Section 4.

(5) In Section 5, we empirically compare HyBit with other PPLs on benchmarks obtained

from the existing literature. We also characterize the behavior of HyBit with respect to its

hyperparameters, i.e. number of bits and pieces.

2 MOTIVATING EXAMPLES
This section motivates the challenge of inference for hybrid probabilistic programs using three

examples. First, we present an example from computational biology with inherent logical structure.

Next, we show an example from the literature with a multimodal posterior arising due to discrete

control flow. Finally, we show an example of low probability observations through conjugate

Gaussians. We then investigate the performance of various inference algorithms, including HyBit.

2.1 Logical Structure
We present a simplified example from computational biology which relates genetic expression with

blood sugar levels. Figure 1 shows the probabilistic program, where the task is to get the updated

belief of a gene’s occurrence in a patient given their blood sugar levels.

The first four lines of the probabilistic program in Figure 1 use a beta distribution as the prior

probability of each of 𝑇 genes occurring in the general population. The syntax flip(𝜃 ) denotes
a Bernoulli random variable with success probability 𝜃 . On line 5, the program uses the syntax

reduce(|, gene) to denote the expression
∨𝑇

𝑖=1 gene[i]. In other words, the patient is considered

to have diabetes if at least one of the genes is expressed. What follows is multiple readings of

the patient’s blood sugar level. For each reading a random variable first defines the blood sugar

depending on whether they have diabetes. Then we use the syntax observe (𝑦, 𝑣) to condition on

the random variable 𝑦 having the value 𝑣 — in the program this is used to condition on actual

blood-sugar readings from the patient. Finally, on line 12, the program queries for the expectation

of the posterior distribution of the occurrence of the first gene.

, Vol. 1, No. 1, Article . Publication date: December 2023.



4 Poorva Garg, Steven Holtzen, Guy Van den Broeck, and Todd Millstein

1 for i in 1:T
2 gene_occurrence[i] = beta(1, 1)
3 gene[i] = flip(gene_occurrence[i])
4 end
5 diabetes = reduce(|, gene)
6 blood_sugar1 = if diabetes normal(80, 2)
7 else normal(135, 2) end
8 observe(blood_sugar1, 79)
9 blood_sugar2 = if diabetes normal(80, 2)
10 else normal(135, 2) end
11 observe(blood_sugar2, 136)
12 return Expectation(gene_occurrence[1])

Figure 1. Example 1: Gene Expression

Figure 2 shows the results of in-

ference with a timeout of 20 minutes

on this program using different in-

ference algorithms, as the number of

genes (T) increases. Stan uses Hamil-

tonian Monte Carlo, which does not

directly support the discrete random

variables. Instead, they are marginal-

ized out, either manually or automati-

cally using variable elimination [Gori-

nova et al. 2020]. As shown in the fig-

ure, Stan times out when there are

more than 15 genes — as its strategy

scales exponentially in T. The same

issue of exponential blowup plagues

Psi [Gehr et al. 2016], which employs a symbolic approach to perform exact inference. As the figure

shows, the universal sampling methods MCMC with Metropolis Hastings kernel (WebPPL MH)

and Sequential Monte Carlo (WebPPL SMC) can scale and provide reasonable accuracy. AQUA

discretizes hybrid programs [Huang et al. 2021] but does not support this program.

10 20 30 40 50
Number of Discrete Variables (T)

0.000

0.001

0.002

0.003

0.004

0.005

Ab
so
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Psi Timeout
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Figure 2. Scaling on Logical Constraints. HyBit
scales to 50 genes with the least absolute error.

Our system and approach, HyBit, scales to 50

genes and has the least absolute error. It first re-

places all continuous distributions (specifically on

Lines 2, 6, 9 in Figure 1) with their bit blasted dis-

crete approximations, obtaining a discrete bit-level

abstraction of the program. In the experiment shown

we use a bitwidth of 27 — each continuous distri-

bution is discretized as a program over a tuple of

27 bits interpreted as a fixed-point number. Further,

we approximate each continuous distribution using

1024 pieces, each of which is a bit blasted exponen-

tial distribution. Naive discretization with 27 bits

would be prohibitively slow, as it yields 2
27
intervals

— 589M continuous intervals to be precise. How-

ever, our bit blasted program only uses 70K coin

flips (Boolean random variables) to represent them.

Moreover, knowledge compilation based inference [Fierens et al. 2015; Holtzen et al. 2020] auto-

matically identifies and exploits conditional independences in the program’s logical structure and

helps to scale inference. More details of this experiment can be found in the appendix.

2.2 Handling Multimodality
This section presents an example of a multimodal distribution to highlight another challenge for

inference on hybrid probabilistic programs. Multimodal distributions have multiple peaks separated

by low probability regions. These distributions commonly emerge in various applications such

as sensor network localization, cosmology and many more [Shaw et al. 2007; Tak et al. 2018]. We

adapt an example from the existing literature [Yao et al. 2021], as shown in Figure 3.

The probabilistic program shown in Figure 3 is hard for existing probabilistic inference ap-

proaches. The datapts on Line 3 are drawn independently from the mixture
2

3
normal(5, 1) +

, Vol. 1, No. 1, Article . Publication date: December 2023.
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(a) (b) (c) (d)

Figure 4. Posterior from different baselines compared with that of HyBit for Figure 3. HyBit and WebPPL
SMC are able to identify the both the modes in the posterior distribution. (a) Different runs of WebPPL
MCMCwithMetropolis Hastings kernel converge to different modes. (b) Different runs of Stan HMC converge
to different modes. (c) Different runs of WebPPL SMC are able to find both the modes. (d) AQUA with its
adaptive interval strategy only finds the more probable mode

1

3
normal(−5, 1). Since there are limited data points, the posterior for (𝜇1, 𝜇2) is bimodal around

(5,−5) and (−5, 5). As the number of data points increase, the posterior of (𝜇1, 𝜇2) converges to
(5,−5). But in presence of 9 data points (Figure 3), the posterior for 𝜇1 is bimodal around 5 and −5.

1 mu1 = uniform(-16, 16)
2 mu2 = uniform(-16, 16)
3 datapts = [5, 5, 5, 5, 5, 5, -5, -5, -5]
4 for data in datapts
5 y = if flip( 2

3
) normal(mu1, 1)

6 else normal(mu2, 1) end
7 observe(y, data)
8 end
9 return mu1

Figure 3. Example 2: Yao-Vehtari-Gelman model

The existence of multiple modes chal-

lenges sampling based algorithms as they

tend to get stuck at one of the modes.

Specifically, WebPPL using MCMC with

Metropolis Hastings kernel and both Stan

andWebPPL using HMC end up arbitrarily

in one of the modes and completely fail to

explore the other mode. Figures 4a and 4b

show the results obtained using WebPPL,

where two different runs get stuck in two

different modes. On the other hand, HyBit
performs exact inference on its discrete

abstraction and so explores the distribu-

tion globally, allowing it to identify both

modes. This is also the case for Sequential Monte Carlo (SMC) (Figure 4c). Finally, to address the

computational challenge of direct discretization, AQUA adapts its discretizing intervals to focus

on high probability regions, and so it ends up identifying the higher probability mode (Figure 4d).

2.3 Handling Low Probability Observations

1 mu = normal(0, 1)
2 observe(normal(mu, 1), 8)
3 observe(normal(mu, 1), 9)
4 return mu

Figure 5. Example 3: Conjugate Gaussians

This section presents conjugate Gaussians (Figure 5) with

low probability observations. In Figure 5, the posterior

distribution for random variable mu is queried after con-

ditioning on low probability data on Lines 2 and 3.

Why are low probability observations hard? Intu-

itively, general-purpose sampling algorithms begin sam-

pling from the prior distribution and struggle to find sam-

ples with considerable weight. Only after a very large

number of samples do these algorithms manage to sam-

ple from the true posterior. On the other hand, HyBit performs a global exploration of the domain

, Vol. 1, No. 1, Article . Publication date: December 2023.



6 Poorva Garg, Steven Holtzen, Guy Van den Broeck, and Todd Millstein

of the posterior distribution, via exact inference on a bit blasted abstraction, and so it is insensitive

to this issue.

Figure 6. Results for Example 3. The HyBit estimated posterior
overlaps closely with the true posterior distribution.

Figure 6 plots the true prior

and posterior distributions along

with results from different infer-

ence algorithms. For the sampling-

based algorithms MCMC with Me-

tropolis Hastings kernel and SMC,

we obtained and plotted 1000 sam-

ples after running the corresponding

WebPPL [Goodman and Stuhlmüller

2014] program. The importance sam-

pling algorithm was not able to

obtain any sample with non-zero

weight for this program. The sam-

plers are shifting the posterior to-

wards the true posterior distribution

but require many more samples to achieve that. Even after sampling about 16 million samples, the

expectation of the samples obtained from MCMC and SMC have absolute error respectively of

0.549798 and 1.520776. On the other hand, the posterior distribution from HyBit overlaps perfectly

with the true posterior distribution. Stan HMC handles low probability observations well and also

obtains high accuracy. Finally, the mean of AQUA’s reported posterior had an error of 5.66 as it

fails to make any update to the prior of 𝜇.

3 BIT BLASTING: KEY INSIGHTS
To scale inference on hybrid probabilistic programs with respect to discrete structure, we need an

algorithm that treats discreteness as first class, and that discretizes away continuous structure. This

section defines the semantic notion of bit blasting and sets it up as a special case of discretization

with desirable properties. Then, we provide bit blasting functions for common classes of continuous

distributions. We provide discretization techniques that are sound (accurate up to 𝑏 bits), succinct,

and amenable to efficient inference.

3.1 Discretization and Bit Blasting
In the standard terminology of probability theory [Rosenthal 2006], a probability space (Ω, Σ, 𝜇)
consists of a sample space Ω, a 𝜎-algebra on Ω denoted Σ, and a probability measure on Σ denoted 𝜇.

In a general sense, a discretization function takes as input such a probability space (Ω, Σ, 𝜇) and
outputs a discrete probability space (Ω𝐷 , Σ𝐷 , 𝜇𝐷 ) where Ω𝐷 is a countable set.

We will study a more specific notion of discretization: one that takes as input a continuous

distribution over a finite interval and outputs a discrete distribution over 2
𝑏
points for some number

of bits 𝑏. Formally, let [𝑙, 𝑢) be an interval with 𝑙, 𝑢 ∈ R. For the input probability space, we use

B([𝑙, 𝑢)) to denote the Borel 𝜎-algebra of subsets of interval [𝑙, 𝑢) [Rosenthal 2006]. For the output
probability space, we write P(𝑆) to refer to the power set (a 𝜎-algebra) of set 𝑆 . Moreover, we will

assume the sample space to be discretized as follows.

Definition 1 (𝑏-bit interval). A 𝑏-bit interval [𝑙, 𝑢]𝑏 is the set of points obtained by dividing
[𝑙, 𝑢) into 2𝑏 intervals: [𝑙, 𝑢]𝑏 = {𝑟 | 𝑟2𝑏 ∈ Z, 𝑟 ∈ [𝑙, 𝑢)}

We are now ready to define the notion of discretization function used in this paper.

, Vol. 1, No. 1, Article . Publication date: December 2023.
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Definition 2 (𝑏-bit discretization function). A 𝑏-bit discretization function takes as input
a probability space ( [𝑙, 𝑢),B([𝑙, 𝑢)), 𝜇), a bit width 𝑏 ∈ Z+ and outputs a discrete probability space
( [𝑙, 𝑢]𝑏,P([𝑙, 𝑢]𝑏), 𝜇𝐷 ) for some measure 𝜇𝐷 .

Example 1. Let 𝜋 be a uniform distribution on the unit interval, described by the probability space
( [0, 1),B([0, 1)), 𝜇) such that the probability density function specified by 𝜇 is 1 on the unit interval.
Consider a function 𝑓1 that takes 𝜋 as input and outputs the probability space (𝑆,P(𝑆), 𝜇𝐷 ) where
𝑆 = {0, 0.25, 0.5, 0.75} and 𝜇𝐷 is a probability measure over 𝑆 . Then 𝑓1 is a 2-bit discretization function.

As the example shows, one can come up with any arbitrary 𝑏-bit discretization function. To

qualify them further, we need a notion of accuracy — soundness up to 𝑏 bits defined as follows.

Definition 3 (soundness of 𝑏-bit discretization function). For any integer 𝑏 > 0, a 𝑏-bit
discretization function is 𝑏-sound for a particular input probability space ( [𝑙, 𝑢),B([𝑙, 𝑢)), 𝜇) if it
outputs a discrete probability space ( [𝑙, 𝑢)𝑏,P([𝑙, 𝑢]𝑏), 𝜇𝐷 ) such that the following holds:

∀𝑥 ∈ [𝑙, 𝑢]𝑏
∫ 𝑥+ 1

2
𝑏

𝑥

𝑑𝜇 (𝑦) = 𝜇𝐷 (𝑥)

Example 2. Let 𝑓2 be a 𝑏-bit discretization function that takes 𝜋 (as defined in Example 1) as input
and outputs the probability space (𝑆,P(𝑆), 𝜇𝐷 ) where 𝑆 = {0, 0.25, 0.5, 0.75} and for any subset T of S,
𝜇𝐷 (𝑇 ) = |𝑇 | × 0.25. Then 𝑓2 is a sound 2-bit discretization function.

Before we define a 𝑏-bit blasting function, we need to fix a generic representation of discrete

probability distributions. To that purpose, we define the concept of a discrete probabilistic closure,

akin to probabilistic Turing machines [Arora and Barak 2006].

Each probabilistic closure is a deterministic function from a set of biased coin flips to a discrete

set. This induces a probability distribution on the output of the function through probabilities

associated with coin flips. It also consists of an accepting Boolean formula that handles observations

and limits the set of values that input flips can take. We provide a formal definition below:

Definition 4 (discrete probabilistic closure). A discrete probabilistic closure is defined
as the tuple (𝜑,𝛾,𝑤) where 𝑤 is a vector of Boolean random variables (or biased coin flips), 𝜑 is a
deterministic function from {T, F} |𝑤 | to a finitely countable set S and 𝛾 is a deterministic Boolean
formula over variables in𝑤 .

The semantics of a discrete probabilistic closure, i.e. ⟨(𝜑,𝛾,𝑤)⟩ defines a probability space (𝑆,P(𝑆), 𝜇)
such that

∀𝑇 ⊆ 𝑆, 𝜇 (𝑇 ) = E𝑤 ((𝜑 (𝑤) ∈ 𝑇 ) ∧ 𝛾)
E𝑤 (𝛾)

if E𝑤 (𝛾) ≠ 0

Dice [Holtzen et al. 2020] and Problog [Fierens et al. 2015] are examples of PPLs that directly fit

into the paradigm of a discrete probabilistic closure.

1 function naïve(𝑓0, 𝑓1, . . . , 𝑓2𝑏−2)
2 val = if 𝑓0 then 0
3 else if 𝑓1 then 1
4 ...

5 else if 𝑓
2
𝑏−2 then 2

𝑏 − 2

6 else 2
𝑏 − 1

7 return val

Note that any discrete distribution 𝜇𝐷 over 2
𝑏
num-

bers can be represented as a discrete probabilistic clo-

sure (𝜑,𝛾,𝑤) where |𝑤 | = 2
𝑏 − 1. More concretely, con-

sider 𝜑 = naïve as defined below, 𝛾 = T and 𝑤 =

[flip (𝜇𝐷 (0)), flip (𝜇𝐷 (1)), . . . , flip (𝜇𝐷 (2𝑏 − 2))].
We want a discrete probabilistic closure to be more

succinct — of size polynomial in the number of bits of

precision, 𝑏. To this purpose, we define a bit blasting

function as follows:
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8 Poorva Garg, Steven Holtzen, Guy Van den Broeck, and Todd Millstein

Definition 5 (𝑏-bit blasting function). A 𝑏-bit blasting function [.]𝑏 is a 𝑏-bit discretization
function that outputs a discrete probabilistic closure (𝜑,𝛾,𝑤) that uses a number of Boolean random
variables that is polynomial in the number of bits 𝑏, that is, |𝑤 | ∈ 𝑂 (poly(𝑏))

It follows from Definitions 3, 4 and 5 that for an integer 𝑏 > 0, a 𝑏-bit blasting function is sound

for a given probability space ( [𝑙, 𝑢),B([𝑙, 𝑢)), 𝜇) if

∀𝑥 ∈ [𝑙, 𝑢]𝑏
∫ 𝑥+ 1

2
𝑏

𝑥

𝑑𝑝 (𝑦) = ⟨[𝑝]𝑏⟩,

that is, if the following diagram commutes:

( [𝑙, 𝑢),B([𝑙, 𝑢]), 𝜇) (𝜑,𝛾,𝑤)

( [𝑙, 𝑢]𝑏,P([𝑙, 𝑢]𝑏), 𝜇𝐷 )

Bit blast([.]𝑏 )

⟨.⟩
∫

Figure 7. Commutative diagram for a 𝑏-sound bit blasting function

3.2 Concrete Bit Blasting Function: Preliminaries
Next, our goal is to provide a concrete instantiation of a sound bit blasting function for mixed

gamma distributions, which have probability density functions as defined below.

Definition 6 (generalized-gamma density). Given parameters 𝛼 ∈ Z+ and 𝛽 ∈ R, a
generalized-gamma density 𝜋𝛼,𝛽 is a probability density function over the interval [0, 1) of the form

𝜋𝛼,𝛽 (𝑥) =
𝑥𝛼𝑒𝛽𝑥∫

[0,1) 𝑦
𝛼𝑒𝛽𝑦 𝑑𝑦

.

Definition 7 (mixed-gamma density). Given a collection of 𝑁 ∈ Z+ generalized-gamma
densities 𝜋𝛼𝑖 ,𝛽𝑖 with their associated weights 𝑎𝑖 ∈ [0, 1] such that

∑𝑁
𝑖=1 𝑎𝑖 = 1, a mixed-gamma density

Υ is a probability density function over the interval [0, 1) of the form

Υ(𝑥) =
𝑁∑︁
𝑖=1

𝑎𝑖𝜋𝛼𝑖 ,𝛽𝑖 (𝑥).

For notational convenience, we confine the continuous distributions to the unit interval to get

discrete distributions over a 𝑏-bit unit interval. We generalize our approach to any finite interval

for building the probabilistic programming system HyBit based on bit blasting.

To describe our construction of the bit blasting function, we make use of Dice [Holtzen et al.

2020]. Dice already compiles its programs to weighted Boolean formulas (via the⇝ judgement) that

fit the definition of a discrete probabilistic closure.
2
This allows us to only define a⇝𝑏 judgment

from probability density functions to Dice programs to specify a bit blasting function. Dice also

defines a distributional semantics function J.K𝐷 : p → 𝑉 → [0, 1] that takes as input a Dice

program p and outputs a normalized probability distribution. We use the function J.K𝐷 to argue

about soundness of our construction later. More details can be found in the appendix.

2
Dice compiles to weighted Boolean formulas (𝜑,𝛾, 𝑤 ) where𝜑 outputs (tuples of) Boolean values,𝛾 represents observations

in a Dice program and 𝑤 consists of weights associated with Boolean variables (biased coin flips)
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The compilation judgement for mixed-gamma densities are of the form Υ⇝𝑏 p where p are
Dice programs. We further provide the following definitions for 𝑏-equivalence between densities

and Dice programs and 𝑏-succinctness of Dice programs.

Definition 8 (binarizing function). The binarizing function for 𝑏 bits, L.M𝑏 takes as input a
number 𝑟 ∈ [0, 1]𝑏 and returns a 𝑏-bit tuple (𝑣1, (𝑣2, (. . . 𝑣𝑏) . . .)) such that 𝑟 =

∑𝑏
𝑖=1

𝑣𝑖
2
𝑖

Definition 9 (b-eqivalence). Amixed-gamma density Υ and a Dice program p are𝑏-equivalent
for some 𝑏 ∈ Z+ if for all 𝑟 ∈ [0, 1]𝑏∫ 𝑟+ 1

2
𝑏

𝑟

Υ(𝑦) 𝑑𝑦 = JpK𝐷 (L𝑟M𝑏)

Note that 𝑏-equivalence is analogous to 𝑏-soundness but is specialized for Dice programs.

Definition 10. The flip count function flip_count (.) takes as input a Dice program p and
outputs the number of Boolean random variables (coin flips).

Definition 11 (b-succinct). Compilation Υ⇝𝑏 p is 𝑏-succinct if flip_count (p) ∈ 𝑂 (𝑏).

We define𝑏-succinctness such that the Dice program p employs coin flips linear in the number of

bits 𝑏. Observe that 𝑏-succinctness imposes a stricter condition than that required by a 𝑏-bit blasting

function (which requires poly(𝑏) coin flips). This implies that if we have a 𝑏-succinct judgment

for a mixed-gamma density, then we can have a 𝑏-bit blasting function for that distribution. We

describe this in more detail later.

3.3 Judgment⇝𝑏 and bit blasting
This section describes the rules for the judgement⇝𝑏 . We first describe the rules for an exponential

distribution and then move on to generalized gamma distributions. Finally, we describe the rule for

mixed-gamma densities. For each of the rules Υ⇝𝑏 p, we prove the 𝑏-equivalence of the density Υ
and the Dice program p and the 𝑏-succinctness of p. Detailed proofs can be found in the appendix.

We also demonstrate how⇝𝑏 allows us to come up with a bit blasting function for mixed-gamma

densities.

3.3.1 Exponential Distribution, 𝜋0,𝛽 . Let us first consider the uniform distribution (𝜋0,0), a special

case of an exponential distribution. If we bit blast a uniform distribution using 𝑏 bits into 2
𝑏

intervals, we end up with a discrete distribution 𝐷𝑏 over [0, 1]𝑏 with 2
𝑏
discrete points each having

probability
1

2
𝑏 . A straightforward discretization strategy enumerates 2

𝑏
values using 2

𝑏 −1 coin flips.

But the same can be achieved using a tuple of 𝑏 bits, where each bit is an unbiased coin flip(0.5).
The strategy to bit blast a uniform distribution using its binary representation works because of

the independence between binary digits. The same strategy can be extended to general exponential

distributions as well. This fact was shown in a classic paper in the statistics literature [Marsaglia

1971]. We formalize that idea using the following rule.

Definition 12. The function flip_param: R×Z+ → [0, 1] is defined flip_param(𝛽, 𝑏) = 𝑒

𝛽

2
𝑏

1+𝑒
𝛽

2
𝑏
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10 Poorva Garg, Steven Holtzen, Guy Van den Broeck, and Todd Millstein

fresh y1, y2, . . . yb
flip_param(𝛽, 1) = 𝜃1 flip_param(𝛽, 2) = 𝜃2 . . . flip_param(𝛽, 𝑏) = 𝜃𝑏

𝜋0,𝛽 ⇝𝑏

let y1 = flip(𝜃1) in
let y2 = flip(𝜃2) in
. . .

let yb = flip(𝜃𝑏) in
(y1, (y2, (. . . , yb)). . . ))

(Expo0)

We prove the 𝑏-equivalence of the density 𝜋0,0 and the Dice program in rule Expo0 and 𝑏-

succinctness of the latter in the following lemmass. It is more straightforward to see the succinctness

of the Dice program — it uses only 𝑏 coin flips.

Lemma 1. ∀𝑏 ∈ Z+, 𝛽 ∈ R, p, if 𝜋0,𝛽 ⇝𝑏 p, then 𝜋0,𝛽 and p are 𝑏-equivalent.

Lemma 2. ∀𝛽 ∈ R,⇝𝑏 is 𝑏-succinct for 𝜋0,𝛽

We provide detailed proofs of the above lemmas in the appendix. For rest of the paper, we

consider exponential distributions as primitives to build other distributions, since these are the

only ones that enjoy the property of independent bits. But, sound bit blasting functions are still

possible for other distributions, as we show next.

3.3.2 Gamma Distribution 𝜋1,𝛽 . To come up with a sound bit blasting function for 𝜋1,𝛽 , we present a

key mathematical insight. Consider the program in Figure 8a. Continuous random variables X and Y
have a uniform (𝜋0,0) and exponential (𝜋0,𝛽 ) distribution respectively. It returns the new distribution

of X after conditioning on the inequality Y < X. It turns out that the posterior distribution is a

specific gamma distribution 𝜋1,𝛽 . We show the resulting calculation below, where pdf refers to the

the probability density function.

pdf (𝑋 |𝑌 < 𝑋 ) ∝
∫

1

𝑦=0

pdf (𝑌 ) · pdf (𝑋 ) · 1(𝑌 < 𝑋 ) 𝑑𝑦 =

∫ 𝑥

𝑦=0

1 · 𝑒𝛽𝑥 𝑑𝑦 ∝ 𝑥𝑒𝛽𝑥 (1)

What happens if we discretize the program in Figure 8a using 𝑏 bits? We get the program in

Figure 8b where each continuous random variable has been replaced with its bit blasted counterpart

(X replace by X𝑏 and so on). We have already seen that for uniform and exponential distributions,

𝑏-equivalent Dice programs exist. But what about the other constructs? As Figure 8d demonstrates,

observe (Y𝑏 < X𝑏) incurs error over its continuous counterpart observe (X < Y). The good
news is that we can account for the error as shown by the following equations:

Pr(𝑋𝑏 | 𝑌 <𝑋 ) = Pr(𝑋𝑏, 𝑌𝑏 <𝑋𝑏 | 𝑌 <𝑋 ) + Pr(𝑋𝑏, 𝑌𝑏 == 𝑋𝑏 | 𝑌 <𝑋 )
= Pr(𝑋𝑏 | 𝑌𝑏 < 𝑋𝑏)︸               ︷︷               ︸
Output of the discrete program

· Pr(𝑌𝑏 < 𝑋𝑏 | 𝑌 <𝑋 ) + Pr(𝑋𝑏 | 𝑌𝑏 == 𝑋𝑏, 𝑌 <𝑋 )︸                          ︷︷                          ︸
Correction ∝[𝜋0,𝛽 ]𝑏

· Pr(𝑌𝑏 == 𝑋𝑏 | 𝑌 <𝑋 ).

The correction term in the above equations when computed algebraically turns out to be propor-

tional to the exponential density (𝜋0,𝛽 ). So now, the resulting discrete probabilistic program after

correction looks as shown in Figure 8c where 𝜃 = Pr (𝑌𝑏 == 𝑋𝑏 |𝑌 < 𝑋 ).
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1 Y ~ uniform(0, 1)
2 X ~ exponential(𝛽)
3 observe(Y < X)
4 return X

(a) Continuous probabilistic
program for density 𝑥𝑒𝛽𝑥

1 Y𝑏 ~ [uniform(0, 1)]𝑏
2 X𝑏 ~ [exponential(𝛽)]𝑏
3 observe(Y𝑏 < X𝑏)
4 return X𝑏

(b) bit blasted probabilistic pro-
gram analogous to program 8a

1 Y𝑏 ~ [uniform(0, 1)]𝑏
2 X𝑏 ~ [exponential(𝛽)]𝑏
3 C ~ [exponential(𝛽)]𝑏
4 observe(Y𝑏 < X𝑏)
5 Z = if flip(𝜃) then C

else X𝑏
6 return Z

(c) Sound bit blasted probabilistic
program for density 𝑥𝑒𝛽𝑥

0

2

4

0

0.25
0.5

0.75
1 0

0.25

0.5

0.75

1

Pr(𝑋𝑏 | 𝑌𝑏 < 𝑋𝑏)︸               ︷︷               ︸
Output of program in Figure 8b

Pr(𝑋𝑏 | 𝑌𝑏 == 𝑋𝑏, 𝑌 < 𝑋 )︸                           ︷︷                           ︸
Correction C in Figure 8c ∝ [exponential(𝛽 ) ]𝑏

𝑒𝛽𝑥

1
𝑥𝑒𝛽𝑥

𝑋

𝑌

pd
f

(d) Sound 𝑏-bit blasting of 𝑥𝑒𝛽𝑥 . Prior densities for X and Y (shown in blue) when conditioned on 𝑌 < 𝑋

(shown in violet) returns the posterior for X (shown in orange).

Figure 8. Key insight in bit blasting 𝑥𝑒𝛽𝑥 probability density. [.]𝑏 refers to discretization of a continuous
density into 2𝑏 intervals and X𝑏 refers to the discretization of X.

The rule Expo1 captures the above intuition. Here, unifObs(y, b) = p is a helper judgment

where p constructs a uniform distribution that it conditions through observe on being less than y.

fresh y1, y2, y3 𝛽 ≠ 0

𝜋0,𝛽 ⇝𝑏 p1 unifObs(y1, b) = p3 𝜃 =
(𝑒𝛽 ·2−𝑏 (𝛽 ·2−𝑏−1)+1) (1−𝑒𝛽 )
(1−𝑒𝛽 ·2−𝑏 ) (𝑒𝛽 (𝛽−1)+1)

𝜋1,𝛽 ⇝𝑏

let y1 = p1 in
let _ = p3 in
let y2 = p1 in
let y3 = flip(𝜃 ) in
if y3 then y2 else y1

(Expo1)

We prove the 𝑏-equivalence and 𝑏-succinctnesss. The proof for 𝑏-equivalence is much more

involved but it is easy to see that the Dice program in the above rules uses 3𝑏 + 1 coin flips: 𝑏 coin

flips in each occurrence of p1, 𝑏 coin flips in p3 and 1 coin flip in the if then else guard to create

a mixture.

Lemma 3. ∀𝑏 ∈ Z+, 𝛽 ≠ 0 ∈ R,, p, if 𝜋1,𝛽 ⇝𝑏 p, then 𝜋1,𝛽 and p are 𝑏-equivalent.

Lemma 4. ∀𝛽 ∈ R,⇝𝑏 is 𝑏-succinct for 𝜋1,𝛽
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12 Poorva Garg, Steven Holtzen, Guy Van den Broeck, and Todd Millstein

3.3.3 Generalized Gamma Distribution 𝜋𝛼,𝛽 . The previous subsection shows how conditioning

on the inequality (Y < X) introduces a linear factor to 𝜋0,𝛽 to obtain 𝜋1,𝛽 . Note that conditioning

on (Y < X) introduces a linear factor regardless of what initial probability density X had. That

is, if X’s initial probability density was 𝑓 (𝑥), the resulting density of the following probabilistic

1 Y ~ uniform(0, 1)
2 X ~ f(x)
3 observe(Y < X)
4 return X

program would be 𝑥 𝑓 (𝑥). This implies that if we can bit blast 𝑓 (𝑥),
we can bit blast 𝑥 𝑓 (𝑥).

We still need to account for the error incurred by observe (Y𝑏
< X𝑏) i.e. Pr(𝑋𝑏 |𝑌𝑏 == 𝑋𝑏, 𝑌 < 𝑋 ). It turns out that the correction
term is a mixture of gamma distributions which can be bit blasted

soundly as well. We provide the judgement rule and proof of the

following lemma in the appendix.

Lemma 5. ∀𝑏, 𝛼 ∈ Z+, 𝛽 ∈ R,, p, if 𝜋𝛼,𝛽 ⇝𝑏 p, then 𝜋𝛼,𝛽 and p are 𝑏-equivalent.

Lemma 6. ∀𝛽 ∈ R, 𝛼 ∈ Z+,⇝𝑏 is 𝑏-succinct for 𝜋𝛼,𝛽

3.3.4 Mixture of Gamma Distributions
∑

𝑖 𝑎𝑖𝜋𝛼𝑖 ,𝛽𝑖 . Since generalized gamma densities 𝜋𝛼,𝛽 can

be bit blasted, mixed gamma densities can be bit blasted as well. One bit blasts each individual

generalized gamma density and creates their mixture using if then else constructs as follows.

fresh y1, y2, y3
𝑁 > 1 𝜋𝛼𝑁 ,𝛽𝑁 ⇝𝑏 p1

∑𝑁−1
𝑖=1

𝑎𝑖
1−𝑎𝑁 𝜋𝛼𝑖 ,𝛽𝑖 ⇝𝑏 p2 ∀𝑖, 𝑎𝑖 ∈ [0, 1] ∑𝑁

𝑖=1 𝑎𝑖 = 1

∑𝑁
𝑖=1 𝑎𝑖𝜋𝛼𝑖 ,𝛽𝑖 ⇝𝑏

let y1 = flip(𝑎𝑁 ) in
let y2 = p1 in
let y3 = p2 in
if y1 then y2 else y3

(Trans-mix)

We prove the following theorems with details in the appendix.

Theorem 7. ∀Υ, 𝑏 ∈ Z+, p, if Υ⇝𝑏 p then Υ and p are 𝑏-equivalent.

Theorem 8. ⇝𝑏 is 𝑏-succinct for all mixed-gamma densities Υ

Now that we have specified the rules for judgment⇝𝑏 , we specifically define a sound bit

blasting function for all mixed-gamma densities Υ, that is⇝ ◦⇝𝑏 .

Theorem 9. ⇝ ◦⇝𝑏 is a sound 𝑏-bit blasting function

Earlier work [Holtzen et al. 2020] defines the judgment⇝ that takes as input a Dice program

p and outputs a weighted Boolean formula (𝜑,𝛾,𝑤) that aligns with Definition 4 of a discrete

probabilistic closure. And since⇝𝑏 is 𝑏-succinct for all mixed-gamma densities by Theorem 8,

⇝ always outputs a𝑤 with poly(𝑏) coin flips. Thus,⇝ ◦⇝𝑏 is a 𝑏-bit blasting function. Earlier

work [Holtzen et al. 2020] also proves the correctness of compilation to weighted Boolean formula

with respect to the semantics of the Dice program. This fact combined with Theorem 7 concludes

that⇝ ◦⇝𝑏 is a sound 𝑏-bit discretization function. Detailed proofs can be found in the appendix.

3.3.5 Example: Laplace Distribution. Previous sections described how mixed gamma densities

can be bit blasted when they are confined to a unit interval. But how can distributions that are

shifted or scaled to other finite intervals be bit blasted? We explain it through the example of a

Laplace distribution. A Laplace distribution has two parameters: location (𝜇) and scale (𝑏) and has

the probability density function as described below where 𝑥 ∈ R.
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Laplace(𝑥 |𝜇, 𝑏) = 1

2𝑏
𝑒−

|𝑥−𝜇 |
𝑏 =

{
1

2𝑏
𝑒

𝜇

𝑏 𝑒−
𝑥
𝑏 𝑥 ≥ 𝜇

1

2𝑏
𝑒−

𝜇

𝑏 𝑒
𝑥
𝑏 𝑥 < 𝜇

Let us consider the Laplace distribution truncated at the interval [𝜇 − 𝑟, 𝜇 + 𝑟 ). We assume that

𝑟 would be a suitable power of 2 allowing product with 𝑟 (denoted by 𝑟 × p) to be just a decimal

shift and 𝜇 to be a 𝑏-bit representable number allowing precise shifting of p. First we generate the
exponentials scaled for an interval of width 𝑟 instead of width 1:

𝜋
0,− 𝑟

𝑏
⇝𝑏 p1 𝜋

0, 𝑟
𝑏
⇝𝑏 p2

And then we create a mixture of them:

𝐿𝑎𝑝𝑙𝑎𝑐𝑒 (𝑥 |𝜇, 𝑏) ⇝𝑏 if flip 0.5 then 𝜇 + 𝑟 × p1 else 𝜇 − 𝑟 + 𝑟 × p2

Since p1 and p2 use 𝑏 coin flips each, the program shown above uses 2𝑏 coin flips and⇝ ◦⇝𝑏 is a

sound bit blasting function for Laplace distributions as well.

3.4 How does bit blasting help in inference?
We have demonstrated sound bit blasting functions for mixed gamma distributions. But how does

that help in inference for probabilistic programs with these distributions? To answer this question,

we focus on a particular inference strategy - that is knowledge compilation. We first describe the

necessary preliminaries about knowledge compilation and then argue about how the programs

obtained through⇝𝑏 are efficient for knowledge compilation.

Knowledge compilation based approaches [Fierens et al. 2015; Holtzen et al. 2020] for exact

discrete probabilistic inference compile discrete probabilistic programs into weighted Boolean

formulas that are represented using (reduced) ordered binary decision diagrams (OBDDs). These

OBDDs are single rooted in case of a single Boolean random variable being returned and multi-

rooted in case of a tuple of Boolean random variables being returned. By fixing a value for all the flips

(biased coin flips with associated weights) in the program, and by traversing the OBDD following

those values (solid line for true, dashed for false), we reach the terminal corresponding to the value

of each bit. The operation of weighted model counting computes the probability of reaching the

1-terminal for each bit in the returned value. It is a dynamic programming algorithm that runs in

time linear in the OBDD size. The size of an OBDD for a Boolean formula 𝜙 , denoted OBDD(𝜙), is
the number of nodes in the OBDD. Thus, if we can obtain a smaller OBDD representation for a

distribution, we can efficiently compose it with other constructs in a discrete probabilistic program.

We discuss and prove formally how every program obtained through the judgement ⇝𝑏

compiles into a weighted Boolean formula that compiles to a multi-rooted OBDD that grows

linearly in the number of bits as opposed to the worst case exponentially. Recall that Dice programs

compile to weighted Boolean formula (𝜑,𝛾,𝑤) where 𝜑 is the Boolean formula corresponding to

the return value of the program, 𝛾 is the accepting Boolean formula to encode observations and𝑤

is the weight function with flip probabilities.

Theorem 10. ∀Υ, p, 𝜑,𝛾,𝑤, ∃𝑘,∀𝑏, if Υ ⇝𝑏 p and p ⇝ (𝜑,𝛾,𝑤), then there exists a variable
order Π of Boolean random variables in𝑤 such that OBDD(𝜑) + OBDD(𝛾 ) ≤ 𝑘𝑏

We now provide intuition for the proof of the above theorem. Note that in the programs

obtained through the judgement⇝𝑏 , there are only two constructs that depend on the number of

bits: (1) construction of exponential distribution 𝜋0,𝛽 , and (2) conditioning on inequality between

an exponential and a uniform distribution through unifObs(y, b). We provide intuition how the

OBDD size for these constructs increase linearly in the number of bits, 𝑏.
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𝑓1

𝑓2

𝑓3

6.14e-6

0.0025

0.047

F T

𝑏1 𝑏2 𝑏3

Figure 9. Compiled BDD
for exponential (-3) 𝑒−3𝑥 .

3.4.1 Exponential Distribution. In Figure 9, we 3-bit blast an exponential
distribution, i.e. we have a discrete exponential distribution over 8 values

(0, 0.125, 0.25, . . ., 0.875). The figure shows a 3-rooted BDD where each

root labeled as 𝑏1, 𝑏2 and 𝑏3 represents a bit in the returned value of

3 bits. Consider that we fix the value of the flip corresponding to the

node 𝑓1 to be true, then for 𝑏1, we would reach the terminal 1 and its

value would be assigned 1. The operation of weighted model counting

(WMC) would calculate the probability of 𝑏1 to be 1 as 6.14𝑒−6 as node
𝑓1 has probability 6.14𝑒−6 to be true. Similarly WMC can be used for

other roots of this BDD. Since each bit needs one BDD node, the overall

BDD size grows linearly with the number of bits. Since WMC runs in

time linear in the BDD size, probabilistic inference for an exponential

distribution would run linear in the number of bits O(𝑏). Another example of OBDD for a uniform

distribution can be found in the appendix.

For all programs p obtained through the judgement⇝𝑏 , if p ⇝ (𝜑,𝛾,𝑤), then 𝜑 is the Boolean

formula that represents the return value of the program. We argue that the return value of p is

always a mixture of exponential distributions making its OBDD size linear in the number of bits.

3.4.2 Conditioning on inequality between an exponential and a uniform distribution. The rules for
judgment⇝𝑏 use the helper judgment unifObs(y, b) = p to condition on an inequality between

binary representations of a uniform distribution and an exponential distribution.

Definition 13 (ineqality function). A 𝑏-bit inequality function, LT𝑏 : {0, 1}𝑏 × {0, 1}𝑏 →
{0, 1} takes as input two 𝑏-bit numbers 𝑥,𝑦 and outputs 1 if 𝑥 < 𝑦 and 0 otherwise. Thus,

LT𝑏 ((𝑥1, . . . 𝑥𝑏), (𝑦1, . . . 𝑦𝑏)) =
{
¬𝑥1𝑦1 𝑏 = 1

¬𝑥1𝑦1 + (¬𝑥1¬𝑦1 + 𝑥1𝑦1)LT𝑏−1 ((𝑥2, . . . , 𝑥𝑏), (𝑦2, . . . , 𝑦𝑏)) 𝑏 > 1

We prove the following lemma which states that the OBDD size for the inequality function

grows linearly with the number of bits.

Lemma 11. ∃𝑘,∀𝑏, for the variable order 𝑥1, 𝑦1, 𝑥2, 𝑦2, . . . , 𝑥𝑏, 𝑦𝑏 , the size of the OBDD, that is
OBDD(LT ((𝑥1, 𝑥2, . . . , 𝑥𝑏), (𝑦1, 𝑦2, . . . , 𝑦𝑏))) ≤ 𝑘𝑏.

Since the only constructs that depend on the number of bits (exponential distributions and

inequalities) grow linearly with the number of bits, Theorem 10 holds intuitively. We provide a

formal proof in the appendix.

4 HYBIT: A PROBABILISTIC PROGRAMMING SYSTEM
The previous section described how to bit blast mixed-gamma distributions. We further use it

to build a probabilistic program system HyBit for hybrid probabilistic programs. This section

describes its implementation and elaborates on two important aspects: piece-wise approximations

of continuous distributions and advantages of a binary representation.

4.1 HyBit — Implementation Details
We build a probabilistic programming system HyBit around sound bit blasting of mixed-gamma

densities and approximate bit blasting of other continuous distributions. To do so, we first build

a shallow embedding of Dice in Julia using its meta-programming tools [Bezanson et al. 2017;

Holtzen et al. 2020] and extend it with necessary features to support hybrid probabilistic programs.
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DistFixPt{bits} general_gamma(int bits, int alpha, real beta, float ll, float ul)

Parameters:
• bits: number of bits for bit blasting

• alpha, beta: parameters of the density 𝜋𝛼,𝛽
• ll, ul: range of the continuous density

Returns: Sound bit blasted distribution of type DistFixPt{bits}

DistFixPt{bits} bitblast(int bits, function density, int numPieces, bool dist,
float ll, float ul)

Parameters:
• bits: number of bits for bit blasting

• density: continuous density function

• numPieces: number of pieces

• dist: Boolean indicating whether to use linear or exponential pieces

• ll, ul: range of the continuous density

Returns: Bit blasted distribution of type DistFixPt{bits}

Dict{float, float} pr(DistFixPt{bits} var)
float expectation(DistFixPt{bits} var)
float variance(DistFixPt{bits} var)

Parameters: random variable

Returns: Probability distribution / expectation / variance of var.

Figure 10. API for HyBit.

HyBit provides support for random variables over unsigned and signed fixed point numbers

using the type DistFixPt{bits}, representing distributions over fixed point numbers with bitwidth

bits. This is used as the representation for bit blasted distributions.

Figure 10 contains the API description. The function general-gamma is used for sound bit

blasting of generalized gamma densities using the bits specified using the parameter bits. Sound
bit blasting of mixed-gamma densities is achieved using if-then-else construct over generalized

gamma densities. The function bitblast is used for bit blasting any arbitrary continuous distribu-

tion using piece-wise approximation employing the bits and pieces specified using the parameters

bits and pieces. The API also allows the user to choose the type of discrete distribution − linear or

exponential − for the piece-wise approximation. The parameters of linear (slope) and exponential

(𝛽) pieces are automatically chosen such that the ratio of probabilities of the first and last interval

is the same as that for the naïve discretization. With these functions, users can write their hybrid

probabilistic program as Julia code with each continuous distribution replaced with its bit blasted

discrete distribution. The next subsection describes piece-wise approximations in more detail.

The API also provides functions for querying the probability distribution, expectation and the

variance of a random variable. The computation of expectation and variance benefit from the binary

representation, which we also elaborate further below.

4.2 Piece-wise Approximations
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Figure 11. Bit blasted Gaussian distri-
bution using 5 bits in the range [−8, 8)
using exponential pieces 𝑝 — for 2, 4,
8 and 16 pieces.

Even though mixed-gamma distributions capture many nat-

ural distributions, there are other commonly occurring ones,

such as the Gaussian. It is an open problem as to whether

Gaussians admit a sound bit blasting function, let alone one

that compiles to a compact OBDD. For such distributions, one

can instead use a piece-wise approximation.

Let 𝐶 be an arbitrary continuous probability distribution

over the interval [𝑙, 𝑢). To bit blast 𝐶 using a piece-wise dis-

tribution with 𝑡 pieces, C is approximated using a mixture of

𝑡 discrete probability distributions over disjoint intervals. For

every piece, one creates a shifted and scaled instance of a bit

blasted mixed-gamma density and then creates a mixture of

them. Note that since each piece uses O(𝑏) coin flips, a piece-

wise distribution with 𝑡 pieces uses O(𝑡𝑏) coin flips. Section 5

shows empirical advantages of this approach.

This piece-wise approximation using linear or exponential pieces can be easily built using

the bitblast API available in HyBit (Figure 10). For other piece-wise approximations using

gamma pieces, one can use the construct if-then-else along with general_gamma. Figure 11

(a) Expectation

(b) Variance

Figure 12. Speedup in computing ex-
pectation and variance

shows bit blasting of a Gaussian distribution using 2, 4, 8 and

16 pieces, where each piece is a bit blasted exponential. This

allows the user to have the conventional trade off between

accuracy and performance. We elaborate more on this trade

off in Section 5.

4.3 Advantages of the Binary Representation
The binary representation has important advantages for prob-

abilistic reasoning beyond the succinctness that bit blasting

provides. First, many hybrid probabilistic models involve arith-

metic operation on continuous random variables — for exam-

ple, to express constraints or dependencies among variables.

The binary representation of discretized distributions allows

probabilistic inference (specifically the knowledge compila-

tion approach that we employ) to identify and exploit the

structure that exists in arithmetic, such as conditional inde-

pendences among the resulting bits in a computation. Recent

work [Cao et al. 2023] showed this advantage empirically for

integers; HyBit leverages these advantages for computations

over fixed-point numbers.

The binary representation also enables an optimized com-

putation of expectation and variance. Naïve computation of

expectation and variance for a distribution over 2
𝑏
values re-

quires one to compute probability of 2
𝑏
values. Bitwise representation and linearity of expectation

allows one to only compute probability of 𝑏 bits which gives an exponential improvement. We

formalize the approach in following two propositions.

Proposition 12. Let D be a discrete probability distribution over the interval [0, 2𝑛). Then D
can be represented as a distribution over 𝑛 bits as (𝑏𝑛, 𝑏𝑛−1, . . . , 𝑏1) and the expectation of D can be
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computed using linearity of expectation as follows:

E[𝐷] =
2
𝑛−1∑︁
𝑖=0

𝑖 · pr (𝑖) = E(
𝑛∑︁
𝑗=1

2
𝑗−1𝑏 𝑗 ) =

𝑛∑︁
𝑗=1

2
𝑗−1 · pr (𝑏 𝑗 )

Proposition 13. Let D be a discrete probability distribution over the interval [0, 2𝑛). Then D can
be represented as a distribution over 𝑛 bits as (𝑏𝑛, 𝑏𝑛−1, . . . , 𝑏1) and the variance of D can be computed
as follows:

Var [𝐷] =
2
𝑛−1∑︁
𝑖=0

𝑖2pr (𝑖) − (E(𝐷))2 = Var (
𝑛∑︁
𝑗=1

2
𝑗−1𝑏 𝑗 ) =

𝑛∑︁
𝑘=1

𝑛∑︁
𝑙=1

2
𝑙+𝑘−2 [pr (𝑏𝑙 ∧ 𝑏𝑘 ) − pr (𝑏𝑙 )pr (𝑏𝑘 )]

Example. Consider a discrete uniform distribution 𝑈4 over the integers {0, 1, 2, 3} represented
using two bits, (𝑋2, 𝑋1). The direct way of calculating the expectation and variance of this uniform

distribution requires inferring the probability of all the integers in the domain as follows:

E[𝑈4] =
𝑖≤3∑︁
𝑖=0

𝑖 · pr (𝑖) =
𝑖≤3∑︁
𝑖=0

𝑖 · 1
4

= 1.5 Var [𝑈4] =
𝑖≤3∑︁
𝑖=0

𝑖2 · pr (𝑖) − (E(𝑈4))2 =
𝑖≤3∑︁
𝑖=0

𝑖 · 1
4

= 1.25

But using Propositions 12 and 13, the expectation and variance can instead be calculated from the

probabilities of the individual bits.

E[𝑈4] =
2∑︁
𝑗=1

2
𝑗−1 · pr (𝑏 𝑗 ) = 1.5 Var [𝑈4] =

2∑︁
𝑘=1

2∑︁
𝑙=1

2
𝑙+𝑘−2 [pr (𝑏𝑙 ∧ 𝑏𝑘 ) − pr (𝑏𝑙 )pr (𝑏𝑘 )] = 1.25

Figure 12 empirically shows the performance benefits in computing expectation and variance

of a distribution as we increase the number of bits in bit blasting a standard normal distribution.

5 EMPIRICAL EVALUATION
We evaluate the practicality of bit blasting on real-life probabilistic programs

3
. We have carried out

relevant experiments to investigate the following questions:

Q1: How does HyBit perform in comparison to existing inference algorithms? Section 5.1

Q2: How effective is the piece-wise approximation? Section 5.2

5.1 Comparison with existing inference algorithms
5.1.1 Approximate Inference Algorithms. We evaluate HyBit against two classes of approximate

inference algorithms.

Sampling Methods We compare against WebPPL rejection sampling, MCMC sampling (with

Metropolis Hastings kernel), SMC sampling and Stan HMC as representatives of this class.

Discretization Methods The second class of inference algorithms are those that discretize

the continuous probability density functions. We compare against AQUA in this class of inference

algorithms [Huang et al. 2021].

Comparing performance of different probabilistic programming systems is a challenging task

since performance is directly affected by the structure of the program.Wewrite equivalent programs

for these benchmarks in each system and put in our best effort to optimize them. The tables in this

section and subsequent sections report the mean value of absolute error over 10 runs for stochastic

3HyBit’s implementation and code for all experiments are available at https://github.com/Juice-jl/Dice.jl/tree/hybit
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algorithms. For other inference algorithms, we report output of a single run. All experiments were

single-threaded and were carried out on a server with 2.4 GHz CPU and 512 GB RAM.

Table 3. Comparison of HyBit
with exact inference PPLs: Psi

Benchmarks HyBit Psi

Pi ✓ ✗

weekend ✓ ✗

spacex ✓ ✗

GPA ✓ ✓

Tug of war ✓ ✗

altermu2 ✓ ✗

conjugate gaussians ✓ ✗

normal_mixture (𝜃 ) ✓ ✗

normal_mixture (𝜇1) ✓ ✗

normal_mixture (𝜇2) ✓ ✗

zeroone (w1) ✓ ✗

zeroone (w2) ✓ ✗

coinBias ✓ ✓

Addfun/sum ✓ ✓

ClickGraph ✓ ✓

trueskill ✓ ✗

clinicaltrial1 ✓ ✓

clinicaltrial2 ✓ ✓

addfun/max ✓ ✗

Table 2 reports the results of performance evaluation of HyBit
against other existing approximate inference algorithms. We take

all the hybrid and continuous benchmarks on which Psi [Gehr et al.
2016] was evaluated and a few more relevant benchmarks from

existing work [Huang et al. 2021]. We put in our best effort to

compute ground truth for these benchmarks either analytically

or using computer algebra systems. We include only those bench-

marks in our evaluation for which we were able to compute the

ground truth reliably. We report the absolute error with respect

to the ground truth for all the benchmarks. For benchmarks that

returned a non-boolean value, we compute the absolute error of

expectation for each of the approaches. We report the minimum

error achieved by an inference algorithm within a timeout of 20

minutes.

For all the benchmarks, HyBit replaced mixed-gamma distribu-

tions with their sound bit blasted distribution and all other distribu-

tions with their linear piece-wise approximation 𝜋1,0. The employed

bits and pieces for each benchmark are reported in Table 2. To run

Stan on these benchmarks, we make use of SlicStan [Gorinova et al.

2020] to get the Stan program with marginalized discrete random

variables. For all WebPPL baselines, default settings were used for

all the sampling algorithms with maximum number of samples

within 20 minutes.

As Table 2 shows, HyBitwith its efficient bit blasting is comparable with the existing approaches

on all the benchmarks, even better on 11/19 of them. For other 8 benchmarks, HyBit achieves

Table 2. Comparison of HyBit against other approximate inference algorithms. Each row consists of one entry
in bold indicating the lowest absolute error achieved among all inference algorithms. A ’✗’ denotes that the
baseline does not support inference for the benchmark. A ’𝜙 ’ denotes timeout

Benchmarks HyBit AQUA WebPPL

Bit Pieces rejection MCMC SMC Stan

Pi [@10kdiver 2022] 1.73E-03 14 − ✗ 9.12E-05 9.74E-05 1.29E-03 4.84E-05
weekend [Gehr et al. 2016] 2.52E-08 24 4096 ✗ 1.51E-02 1.04E-02 1.10E-02 ✗
spacex [canyon289 2022] 6.94E-04 19 32 ✗ 8.84E-04 2.98E-03 1.90E-02 1.15E-04
GPA [Wu et al. 2018] 2.22E-16 25 4096 3.62E-01 1.70E-02 9.29E-03 1.38E-02 ✗
Tug of war [Huang et al. 2021] 2.87E-07 23 16 ✗ 6.54E-04 6.94E-04 2.39E-03 4.51E-05

altermu2 [Nishihara et al. 2013] 1.33E-05 16 256 3.41E-07 𝜙 4.14E-01 4.48E-01 1.68E-03

conjugate gaussians [Jordan 2010] 1.23E-06 23 16 0.99 1.77E-04 3.24E-04 2.95E-03 1.77E-05

normal_mix (𝜃 ) [Huang et al. 2021] 5.49E-05 9 64 4.13E-07 𝜙 3.78E-04 5.09E-03 4.29E-01

normal_mix (𝜇1) [Huang et al. 2021] 5.20E-03 9 16 7.55E-06 𝜙 1.36E-03 2.00E-02 1.87E+01

normal_mix (𝜇2) [Huang et al. 2021] 3.92E-03 9 32 8.65E-06 𝜙 7.11E-04 1.15E-02 1.77E+01

zeroone (w1) [Bissiri et al. 2016] 9.40E-05 16 − 5.66E-02 𝜙 𝜙 𝜙 1.73E-01

zeroone (w2) [Bissiri et al. 2016] 4.51E-04 19 − 3.69E+00 1.40E+00 1.43E+00 1.03E+00 2.38E-01

coinBias [Gehr et al. 2016] 2.02E-07 22 4096 2.47E-02 9.88E-06 7.73E-05 1.16E-03 1.18E-05

Addfun/sum (cont.) [Gehr et al. 2016] 3.81E-06 24 16 ✗ 4.50E-04 1.63E-03 5.11E-03 8.45E-05

ClickGraph [Gehr et al. 2016] 1.75E-03 10 − ✗ 7.14E-04 1.22E-03 3.07E-03 2.80E-05
trueskill [Gehr et al. 2016] 6.40E-04 10 16 ✗ 2.01E-04 4.22E-04 1.35E-03 6.88E-05
clinicaltrial1 [Gehr et al. 2016] 5.27E-16 9 − ✗ 4.54E-02 1.41E-01 1.23E-01 4.53E-03

clinicaltrial2 [Gehr et al. 2016] 6.81E-07 13 − ✗ 1.14E-01 1.32E-01 6.39E-02 4.54E-05

addfun/max [Gehr et al. 2016] 2.20E-06 23 128 ✗ 3.49E-04 4.42E-04 2.90E-03 1.19E-04
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Figure 13. Runtime and Accuracy trends with respect to linear pieces for different bitwidths

a very close accuracy. AQUA performs better on only four of the benchmarks. This is primarily

because its enumerative discretization does not scale well for higher precision. WebPPL and Stan

(equipped with automated marginalization through SlicStan) support most of the benchmarks but

do not achieve good accuracy within the threshold time. This is because sampling based algorithms

are stochastic and cannot obtain sufficiently many samples from the true posterior in limited time.

5.1.2 Exact Inference Algorithms. Table 3 compares HyBit against a probabilistic programming

systems that perform exact inference using algebraic methods i.e. Psi [Gehr et al. 2016]. Since

Psi performs exact inference, it gives the exact correct answer for the programs that it is able to

handle but is limited in its expressivity. It fails to handle 13/19 benchmarks. HyBit works for all 19

benchmarks as it reduces the computation to discrete inference on Boolean random variables and

approximates the inference query.

5.2 How effective is piece-wise approximation?
We analyze the tradeoff between performance and accuracy when using different numbers of pieces

to approximate the continuous distribution. Figure 13 demonstrates the trends of runtime and

accuracy with the increase in pieces for different bitwidths for four benchmarks. As the number of

linear pieces increases, runtime tends to first decrease and then increase. As the number of pieces

increases, the accuracy tends to improve as shown by the lower four plots. This is due to the fact

that as we increase the number of pieces, continuous distributions are replaced with more accurate

bit blasted distributions. That accuracy improvement comes at the cost of increased runtime after a

certain sweet spot. The appendix provides additional experiments that also justify the usage of

piece-wise approximations over other approximations based on the central limit theorem.

6 RELATEDWORK
Probabilistic programming has been an an active area of research both from the perspective of

semantics and inference [Dahlqvist et al. 2023; Milch et al. 2005]. This section describes some closely

related work and positions HyBit with respect to them. At a high level, the key distinction in HyBit
is the development of bit blasting for succinct discretization of hybrid probabilistic programs.

Discretization approaches. Prior approaches that discretize continuous or hybrid probabilistic

programs estimate the posterior by exhaustively enumerating all of the discretized values [Huang

et al. 2021], which does not scale to provide sufficient accuracy in many cases. One prior discretiza-

tion technique also employs a bit representation [Claret et al. 2013]. However, their approach is not
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a form of bit blasting, since it is not succinct but rather still in general produces a representation that

is proportional to the number of discretized points. Finally, a recent approach uses discretization to

produce upper and lower bounds on the posterior of a probabilistic program [Beutner et al. 2022].

Inference algorithms for hybrid probabilistic programs. Other research specifically targets hybrid

probabilistic programs. Leios [Laurel and Misailovic 2020] continualizes the hybrid probabilistic
program in order to harness the power of existing continuous inference algorithms. HyBit, on the

other hand discretizes the hybrid programs which helps in scaling inference for hybrid programs

specifically with respect to the discrete structure. SPPL support hybrid programs by translating

them to specific representations for that purpose [Saad et al. 2021]. However, these representations

place constraints on the hybrid programs that can be supported, while HyBit can support arbitrary

many more hybrid programs. Probabilistic logic programming languages have also been extended

to support hybrid models through interval traces [Gutmann et al. 2011]. Further, there have been

inference algorithms for hybrid domains in the context of Bayesian deep learning as well [Zeng

and Van den Broeck 2023].

Algebraic approaches. Some PPL inference algorithms produce closed form algebraic expressions

to encode probability distributions and then use symbolic techniques to perform exact inference

[Gehr et al. 2016; Hur et al. 2014; Narayanan et al. 2016]. However, these systems are necessarily

limited in their expressivity and the programs that they can handle, as shown in Table 2.

Path based inference algorithms.A common class of inference algorithms for PPLs are operational:
they record traces on the program by using concrete values of the random variables. This includes

sampling algorithms and variational approximations [Bingham et al. 2019; Carpenter et al. 2017;

Chaganty et al. 2013; Dillon et al. 2017; Goodman et al. 2008; Hur et al. 2015; Kucukelbir et al.

2015; Mansinghka et al. 2013, 2018; Minka et al. 2014; Pfeffer 2007; Saad and Mansinghka 2016;

Tristan et al. 2014; van de Meent et al. 2015; Wingate and Weber 2013; Wood et al. 2014]. Sampling

algorithms like rejection sampling and MCMC methods are universal but have known limitations

such as difficulty in handling multi-modality and low-probability evidence, as described in Section 2.

More sophisticated techniques like HamiltonianMonte Carlo and variational approximation address

these limitations but impose constraints of continuity and almost-everywhere differentiability, so

they must resort to marginalizing out all discrete structure.

Use of a binary representation bit blasting has been a widespread technique in software verifica-

tion, used in constraint solvers to reason about arithmetic using a bit representation [Bruttomesso

and Sharygina 2009]. Recent work in scaling inference for probabilistic programs over integers

also employs a binary representation for numbers [Cao et al. 2023], in order to exploit conditional

independences in that representation. The bit blasting in HyBit is inspired by these techniques but

has a different purpose and hence a very different technical approach: to develop succinct, and in

many cases provably sound, approximations of continuous probability distributions.

7 CONCLUSION AND FUTUREWORK
In this work, we motivated the need for new inference methods for hybrid probabilistic programs.

We described bit blasting, whereby hybrid probabilistic programs are succinctly discretized and then

analyzed using algorithms for discrete inference. We characterized a class of continuous densities —

mixed-gamma densities — for which bit blasting is not only succinct but also sound relative to an

explicit discretization approach as well as provably efficient to analyze. We then presented a new

PPL HyBit that employs a novel inference algorithm for hybrid programs based on bit blasting. We

demonstrated the performance benefits of HyBit over existing approximate inference algorithms.

In future work, we hope to expand the class of distributions that can be bit blasted soundly. We

are also interested to explore the integration of HyBit with other inference approaches, to leverage

their relative strengths for support of a wider range of hybrid probabilistic programs.
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