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Abstract

We are interested in image manipulation via
natural language text – a task that is useful for
multiple AI applications but requires complex
reasoning over multi-modal spaces. We extend
recently proposed Neuro Symbolic Concept
Learning (NSCL) (Mao et al., 2019), which
has been quite effective for the task of Visual
Question Answering (VQA), for the task of im-
age manipulation. Our system referred to as
NEUROSIM can perform complex multi-hop
reasoning over multi-object scenes and only
requires weak supervision in the form of an-
notated data for VQA. NEUROSIM parses an
instruction into a symbolic program, based on
a Domain Specific Language (DSL) compris-
ing of object attributes and manipulation oper-
ations, that guides its execution. We create a
new dataset for the task, and extensive experi-
ments demonstrate that NEUROSIM is highly
competitive with or beats SOTA baselines that
make use of supervised data for manipulation.

1 Introduction

The last decade has seen significant growth in the
application of neural models to a variety of tasks
including those in computer vision (Chen et al.,
2017; Krizhevsky et al., 2012), NLP (Wu et al.,
2016), robotics and speech (Yu and Deng, 2016).
It has been observed that these models often lack
interpretability (Fan et al., 2021), and may not al-
ways be well suited to handle complex reasoning
tasks (Dai et al., 2019). On the other hand, clas-
sical AI systems can seamlessly perform complex
reasoning in an interpretable manner due to their
symbolic representation (Pham et al., 2007; Cai
and Su, 2012). But these models often lack in
their ability to handle low-level representations and
be robust to noise. Neuro-Symbolic models (Dong
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et al., 2019; Mao et al., 2019; Han et al., 2019) over-
come these limitations by combining the power of
(purely) neural with (purely) symbolic representa-
tions. Studies (Andreas et al., 2016; Hu et al., 2017;
Johnson et al., 2017a; Mao et al., 2019) have shown
that neuro-symbolic models have several desirable
properties such as modularity, interpretability, and
improved generalizability.

Our aim in this work is to build neuro-symbolic
models for the task of weakly supervised manipu-
lation of images comprising multiple objects, via
complex multi-hop natural language instructions.
Specifically, we are interested in weak supervision
that only uses the data annotated for VQA tasks,
avoiding the high cost of getting supervised anno-
tations in the form of target manipulated images.
Our key intuition here is that this task can be solved
simply by querying the manipulated representation
without ever explicitly looking at the target im-
age. The prior work includes weakly supervised
approaches (Nam et al., 2018; Li et al., 2020) that
require textual descriptions of images during train-
ing and are limited to very simple scenes (or in-
structions). (See Section 2 for a survey).

Our solution builds on Neuro-Symbolic Concept
Learner (NSCL) proposed by (Mao et al., 2019)
for solving VQA. We extend this work to incorpo-
rate the notion of manipulation operations such as
change, add, and remove objects in a given image.
As one of our main contributions, we design novel
neural modules and a training strategy that just uses
VQA annotations as weakly supervised data for the
task of image manipulation. The neural modules
are trained with the help of novel loss functions that
measure the faithfulness of the manipulated scene
and object representations by accessing a separate
set of query networks, interchangeably referred to
as quantization networks, trained just using VQA
data. The manipulation takes place through inter-
pretable programs created using primitive neural
and symbolic operations from a Domain Specific
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Neuro-symbolic 
Image Manipulator

(NEUROSIM)

Change the size of 
the thing behind the 
large ball to big

O ß scene()
O ß filter(O, large)
O ß filter(O, sphere)
O ß relate(O, behind)
O ß change_size(O, large)

Input:  Source image 𝑰

Output: Manipulated image 𝑰"
Input: Instruction Text 𝑻

Output: Manipulation program 𝑷

Figure 1: The problem setup. See Section 1 for more details.

Language (DSL). Separately, a network is trained
to render the image from a scene graph represen-
tation using a combination of L1 and adversarial
losses as done by (Johnson et al., 2018). The entire
pipeline is trained without any intermediate super-
vision. We refer to our system as Neuro-Symbolic
Image Manipulator (NEUROSIM). Figure 1 shows
an example of I/O pair for our approach. Contribu-
tions of our work are as follows:

1. We create NEUROSIM, the first neuro-symbolic,
weakly supervised, and interpretable model for
the task of text-guided image manipulation, that
does not require output images for training.

2. We extend CLEVR (Johnson et al., 2017b), a
benchmark dataset for VQA, to incorporate ma-
nipulation instructions and create a new dataset
called as Complex Image Manipulation via Nat-
ural Language Instructions (CIM-NLI). We
also create CIM-NLI-LARGE dataset to test
zero-shot generalization.

3. We provide extensive quantitative experi-
ments on newly created CIM-NLI, CIM-NLI-
LARGE datasets along with qualitative exper-
iments on Minecraft (Yi et al., 2018). Despite
being weakly supervised, NEUROSIM is highly
competitive to supervised SOTA approaches
including a recently proposed diffusion based
model (Brooks et al., 2023). NEUROSIM also
performs well on instructions requiring multi-
hop reasoning, all while being interpretable. We
publicly release our code and data 1.

2 Related Work

Table 1 categorizes the related work across three
broad dimensions - problem setting, task complex-
ity, and approach. The problem setting comprises
two sub-dimensions: i) supervision type - self, di-
rect, or weak, ii) instruction format - text or UI-
based. The task complexity comprises of following
sub-dimensions: ii) scene complexity – single or
multiple objects, ii) instruction complexity - zero or

1https://github.com/dair-iitd/NeuroSIM

multi-hop instructions, iii) kinds of manipulations
allowed - add, remove, or change. Finally, the ap-
proach consists of the following sub-dimensions: i)
model – neural or neuro-symbolic and ii) whether
a symbolic program is generated on the way or not.
Dong et al. (2017), TAGAN (Nam et al., 2018),
and ManiGAN (Li et al., 2020) are close to us in
terms of the problem setting. These manipulate the
source image using a GAN-based encoder-decoder
architecture. Their weak supervision differs from
ours – We need VQA annotation, they need cap-
tions or textual descriptions. The complexity of
their natural language instructions is restricted to
0-hop. Most of their experimentation is limited to
single (salient) object scenes.

In terms of task complexity, the closest to us
are approaches such as TIM-GAN (Zhang et al.,
2021), GeNeVA (El-Nouby et al., 2019), which
build an encoder-decoder architecture and work
with a latent representation of the image as well
as the manipulation instruction. They require a
large number of manipulated images as explicit
annotations for training.

In terms of technique, the closest to our work
are neuro-symbolic approaches for VQA such as
NSVQA (Yi et al., 2018), NSCL (Mao et al., 2019),
Neural Module Networks (Andreas et al., 2016)
and its extensions (Hu et al., 2017; Johnson et al.,
2017a). Clearly, while the modeling approach
is similar and consists of constructing latent pro-
grams, the desired tasks are different in the two
cases. Our work extends the NSCL approach for
the task of automated image manipulation.

Jiang et al. (2021),Shi et al. (2021) deal with
editing global features, such as brightness, con-
trast, etc., instead of object-level manipulations
like in our case. Recent models such as Instruct-
Pix2Pix (Brooks et al., 2023), DALL-E (Ramesh
et al., 2022) and Imagen (Saharia et al., 2022) on
text-to-image generation using diffusion models
are capable of editing images but require captions
for input images; preliminary studies (Marcus et al.,
2022) highlight their shortcomings in composi-

https://github.com/dair-iitd/NeuroSIM


Prior Work
Problem Setting Task Complexity Approach

Supervision Type Instruction Format SC IC Operations Model Program

SIMSG Self Supervision UI MO N/A change, remove, add N ✗

PGIM Direct Supervision N/A MO* N/A change (image level) NS ✓

GeNeVA Direct Supervision Text MO Multi-Hop add N ✗

TIM-GAN Direct Supervision Text MO Zero-Hop change, remove, add N ✗

Dong et. al Weak Supervision Text SO Zero-Hop change N ✗

TAGAN Weak Supervision Text SO Zero-Hop change N ✗

ManiGAN Weak Supervision Text SO Zero-Hop change N ✗

InstructPix2Pix Pre-training + Supervision Text MO Multi-Hop change, remove, add N ✗

NEUROSIM (ours) Weak Supervision Text MO Multi-Hop change, remove, add NS ✓

Table 1: Comparison of Prior Work. Abbreviations (column titles) SC:= Scene Complexity, IC:=Instruction
Complexity. Abbreviations (column values) MO:= Multiple Objects, MO∗:= Multiple Objects with Regular Patterns,
SO:= Single Object, N:= Neural, NS:= Neuro-Symbolic, N/A:= Not applicable, ✓:= Yes, ✗:= No. See Section 2 for
more details.

tional reasoning and handling relations.

3 Neuro-Symbolic Image Manipulator

3.1 Motivation and Architecture Overview
The key motivation behind our approach comes
from the following hypothesis: consider a learner
L (e.g., a neural network or the student in Fig 2)
with sufficient capacity trying to achieve the task
of manipulation over Images I . Further, let each
image be represented in terms of its properties, or
properties of its constituents (e.g. objects like ap-
ple, leaf, tree, etc. in Fig 2), where each property
comes from a finite set S e.g, attributes of objects in
an image. Let the learner be provided with the prior
knowledge (for e.g. through Question Answering
as in Fig 2) about properties (e.g., color) and their
possible values (e.g., red). Then, in order to learn
the task of manipulation, it suffices to provide the
learner with a query network, which given a ma-
nipulated image Ĩ constructed by the learner via
command C, can correctly answer questions (i.e.
query) about the desired state of various properties
of the constituents of the image Ĩ . The query net-
work can be internal to the learner (e.g., the student
in Fig 2 can query himself for checking the color of
apples in the manipulated image). The learner can
query repeatedly until it learns to perform the ma-
nipulation task correctly. Note, the learner does not
have access to the supervised data corresponding
to triplets of the form (Is, C, If ), where Is is the
starting image, C is the manipulation command,
and If is the target manipulated image. Inspired by
this, we set out to test this hypothesis by building
a model capable of manipulating images, without
target images as supervision.

Figure 3 captures a high-level architecture of
the proposed NEUROSIM pipeline. NEUROSIM
allows manipulating images containing multiple
objects, via complex natural language instructions.
Similar to Mao et al. (2019), NEUROSIM as-
sumes the availability of a domain-specific lan-
guage (DSL) for parsing the instruction text T into
an executable program P . NEUROSIM is capable
of handling addition, removal, and change opera-
tions over image objects. It reasons over the image
for locating where the manipulation needs to take
place followed by carrying out the manipulation
operation. The first three modules, namely i) vi-
sual representation network, ii) semantic parser,
and iii) concept quantization network are suitably
customized from the NSCL and trained as required
for our purpose. In what follows, we describe the
design and training mechanism of NEUROSIM.

3.2 Modules Inherited from NSCL

1] Visual Representation Network: Given input
image I , this network converts it into a scene graph
GI = (N,E). The nodes N of this scene graph
are object embeddings and the edges E are embed-
dings capturing the relationship between pair of
objects (nodes). Node embeddings are obtained
by passing the bounding box of each object (along
with the full image) through a ResNet-34 (He et al.,
2016). Edge embeddings are obtained by concate-
nating the corresponding object embeddings.
2] Semantic Parsing Module: The input to this
module is a manipulation instruction text T in nat-
ural language. Output is a symbolic program P
generated by parsing the input text. The symbolic
programs are made of operators, that are part of
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Figure 2: Motivating example NEUROSIM. Best viewed under magnification. See Section 3.1 for more details

[2] Semantic 
Parsing Module

O ß scene()
O ß filter(O, large)
O ß filter(O, sphere)
O ß relate(O, behind)
O ß change_size(O, large)

Program 𝑷

[1] Visual 
Representation 

Network

Scene graph 𝑮𝑰
for source image

Source image 𝑰

Scene graph 𝐆𝑰"
for target image

[5
] R

en
de

rin
g 

N
et

w
or

k

Change the size of 
the thing behind the 
large ball to big

Instruction Text 𝑻

Manipulated image 𝑰"

[3] Concept 
Quantization 

Network

[4] Manipulation 
Network

Program Executor

Figure 3: High level architecture of NEUROSIM. See Section 3 for more details.

our DSL (Specified in Appendix Section A).
3] Concept Quantization Network: Any object
in an image is defined by the set of visual at-
tributes (A), and set of symbolic values (Sa) for
each attribute a ∈ A. E.g., attributes can be shape,
size, etc. Different symbolic values allowed for
an attribute are also known as concepts. E.g.,
Scolor = {red, blue, green, . . .}. Each visual at-
tribute a ∈ A is implemented via a separate neu-
ral network fa(·) which takes the object embed-
ding as input and outputs the attribute value for the
object in a continuous (not symbolic) space. Let
fcolor : Rdobj −→ Rdattr represent a neural network
for the color attribute and consider o ∈ Rdobj as the
object embedding. Then, vcolor = fcolor(o) ∈ Rdattr

is the embedding for the object o pertaining to the
color attribute. Each symbolic concept s ∈ Sa for
a particular attribute a (e.g., different colors) is also
assigned a respective embedding in the same con-
tinuous space Rdattr . Such an embedding is denoted
by cs. These concept embeddings are initialized
at random, and later on, fine-tuned during train-
ing. An attribute embedding (e.g. vcolor) can be
compared with the embeddings of all the concepts
(e.g., cred, cblue, etc.) using cosine similarity, for
the purpose of concept quantization of objects.
Training for VQA: As a first step, we train the
above three modules via a curriculum learning pro-
cess (Mao et al., 2019). The semantic parser is
trained jointly with the concept quantization net-
works for generating programs for the question
texts coming from the VQA dataset. The corre-
sponding output programs are composed of prim-
itive operations coming from the DSL (e.g. filter,

count, etc.) and do not include constructs related to
manipulation operations. This trains the first three
modules with high accuracy on the VQA task.

3.3 Novel Modules and Training NEUROSIM

NEUROSIM training starts with three sub-modules
trained on the VQA task as described in Section 3.2.
Next, we extend the original DSL to include three
additional functional sub-modules within the se-
mantic parsing module, namely add, remove, and
change. Refer to appendix section A for details
on the DSL. We now reset the semantic parsing
module and train it again from scratch for generat-
ing programs corresponding to image manipulation
instruction text T . Such a program is subsequently
used by the downstream pipeline to reason over
the scene graph GI and manipulate the image. In
this step, the semantic parser is trained using an off-
policy program search based REINFORCE (Williams,
1992) algorithm. Unlike the training of semantic
parser for the VQA task, in this step, we do not
have any final answer like reward supervision for
training. Hence, we resort to a weaker form of su-
pervision. In particular, consider an input instruc-
tion text T and set of all possible manipulation pro-
gram templates Pt from which one can create any
actual program P that is executable over the scene
graph of the input image. For a program P ∈ Pt,
our reward is positive if this program P selects any
object (or part of the scene graph) to be sent to the
manipulation networks (change/add/remove). See
Appendix C for more details. Once the semantic
parser is retrained, we clamp the first three modules
and continue using them for the purpose of parsing



instructions and converting images into their scene
graph representations. Scene graphs are manipu-
lated using our novel module called manipulation
network which is described next.
4] Manipulation Network: This is our key module
responsible for carrying out the manipulation op-
erations. We allow three kinds of manipulation op-
erations – add, remove, and change. Each of these
operations is a composition of a quasi-symbolic
and symbolic operation. A symbolic operation cor-
responds to a function that performs the required
structural changes (i.e. addition/deletion of a node
or an edge) in the scene graph GI against a given
instruction. A quasi-symbolic operation is a ded-
icated neural network that takes the relevant part
of GI as input and computes new representations
of nodes and edges that are compatible with the
changes described in the parsed instruction.
(a) Change Network: For each visual attribute
a ∈ A (e.g. shape, size, . . . ), we have a separate
change neural network that takes the pair of (object
embedding, embedding of the changed concept) as
input and outputs the embedding of the changed ob-
ject. This is the quasi-symbolic part of the change
function, while the symbolic part is identity map-
ping. For e.g., let gcolor : Rdobj+dattr −→ Rdobj repre-
sent the neural network that changes the color of
an object. Consider o ∈ Rdobj as the object embed-
ding and cred ∈ Rdattr as the concept embedding for
the red color, then õ = gcolor(o; cred) ∈ Rdobj repre-
sents the changed object embedding, whose color
would be red. After applying the change neural
network, we obtain the changed representation of
the object õ = ga(o; cs∗a), where s∗a is the desired
changed value for the attribute a. This network is
trained using the following losses.

ℓa = −
∑

∀s∈Sa

Is=s∗a log [p(ha (õ) = s)] (1)

ℓa = −
∑

∀a′∈A,a′ ̸=a

∑
∀s∈Sa′

p(ha′(o) = s)∗
log[p(ha′(õ) = s)]

(2)

where, ha(x) gives the concept value of the
attribute a (in symbolic form s ∈ Sa) for
the object x. The quantity p (ha(x) = s) de-
notes the probability that the concept value
of the attribute a for the object x is equal to
s and is given as follows p (ha(x) = s) =
expdist(fa(x),cs)/

∑
s̃∈Sa

expdist(fa(x),cs̃) where,
dist(a, b) = (a⊤b − t2)/t1 is the shifted and
scaled cosine similarity, t1, t2 being constants.
The first loss term ℓa penalizes the model if

the (symbolic) value of the attribute a for the
manipulated object is different from the desired
value s∗a in terms of probabilities. The second term
ℓa, on the other hand, penalizes the model if the
values of any of the other attributes a′, deviate
from their original values. Apart from these losses,
we also include following additional losses.

ℓcycle = ∥o− ga(õ; cold)∥2; (3)

ℓconsistency = ∥o− ga(o; cold)∥2 (4)

ℓobjGAN = −
∑

o′∈O
[logD((o′)

+ log
(
1−D

(
ga(o

′; c)
))
]

(5)

where cold is the original value of the attribute a of
object o, before undergoing change. Intuitively the
first loss term ℓcycle says that, changing an object
and then changing it back should result in the same
object. The second loss term ℓconsistency intuitively
means that changing an object o that has value cold
for attribute a, into a new object with the same
value cold, should not result in any change. These
additional losses prevent the change network from
changing attributes which are not explicitly taken
care of in earlier losses (1) and (2). For e.g., ro-
tation or location attributes of the objects that are
not part of our DSL. We also impose an adversarial
loss ℓobjGAN to ensure that the new object embed-
ding õ is from the same distribution as real object
embeddings. See Appendix C for more details.
(b) Remove Network: This network takes the
scene graph GI of the input image and removes
the subgraph from GI that contains the nodes (and
incident edges) corresponding to the object(s) that
need to be removed, and returns a new scene graph
G

Ĩ
which is reduced in size. The quasi-symbolic

function for the remove network is identity.
(c) Add Network: For adding a new object into
the scene, add network requires the symbolic val-
ues of different attributes, say {sa1 , sa2 , . . . , sak},
for the new object, e.g., {red, cylinder, . . .}. It also
requires the spatial relation r (e.g. RightOf) of
the new object with respect to an existing object
in the scene. The add function first predicts the
object (node) embedding õnew for the object to be
added, followed by predicting edge embeddings
for new edges incident on the new node. New
object embedding is obtained as follows: õnew =
gaddObj({csa1 , csa2 , · · · , csak}, orel, cr) where, orel
is the object embedding of an existing object, rela-
tive to which the new object’s position r is speci-
fied. For each existing objects oi in the scene, an



edge ẽnew,i is predicted between the newly added
object õnew and existing object oi in following
manner: ẽnew,i = gaddEdge(õnew, oi). Functions
gaddObj(·) and gaddEdge(·) are quasi-symbolic oper-
ations. Symbolic operations in add network com-
prise adding the above node and the incident edges
into the scene graph.

The add network is trained in a self-supervised
manner. For this, we pick a training image and
create its scene graph. Next, we randomly select an
object o from this image and quantize its concepts,
along with a relation with any other object oi in the
same image. We then use our remove network to
remove this object o from the scene. Finally, we use
the quantized concepts and the relation that were
gathered above and add this object o back into the
scene graph using gaddObj(·) and gaddEdge(·). Let
the embedding of the object after adding it back is
õnew. The training losses are as follows:

ℓconcepts =−
k∑

j=1

log
(
p(haj (õnew) = saj )

)
(6)

ℓrelation =− log(p(hr(õnew, oi) = r)) (7)

ℓobjSup = ∥o− õnew∥2 (8)

ℓedgeSup =
∑

i∈O
∥eold,i − ẽnew,i∥2 (9)

ℓedgeGAN = −
∑
∀i∈O

[logD({o; eold,i; oi})+

log(1−D ({õnew; ẽnew,i; oi}))] (10)

where saj is the required (symbolic) value of the
attribute aj for the original object o, and r is the re-
quired relational concept. O is the set of the objects
in the image, eold,i is the edge embedding for the
edge between original object o and its neighboring
object oi. Similarly, ẽnew,i is the corresponding em-
bedding of the same edge but after when we have
(removed + added back) the original object. The
loss terms ℓconcepts and ℓrelation ensure that the added
object comprises desired values of attributes and
relation, respectively. Since we had first removed
and then added the object back, we already have the
original edge and object representation, and hence
we use them in loss terms given in equation 9. We
use adversarial loss equation 10 for generating real
(object, edge, object) triples and also a loss similar
to equation 5 for generating real objects.

3.4 Image Rendering from Scene Graph
5] Rendering Network: Following Johnson et
al. (2018), the scene graph for an image is first
generated using the visual representation network,

which is the processed by a GCN and passed
through a mask regression network followed by
a box regression network to generate a coarse 2-
dimensional structure (scene layout). A Cascaded
Refinement Network (Chen and Koltun, 2017) is
then employed to generate an image from the scene
layout. A min-max adversarial training procedure
is used to generate realistic images, using a patch-
based and object-based discriminator.

4 Experiments

Datasets: Among the existing datasets, CSS (Vo
et al., 2019) contains simple 0-hop instructions and
is primarily designed for the text-guided image
retrieval task. Other datasets such as i-CLEVR (El-
Nouby et al., 2019) and CoDraw are designed for
iterative image editing. i-CLEVR contains only
"add" instructions and CoDraw doesn’t contain
multi-hop instructions. Hence we created our own
multi-object multi-hop instruction based image ma-
nipulation dataset, referred to as CIM-NLI. This
dataset was generated with the help of CLEVR
toolkit (Johnson et al., 2017b). CIM-NLI con-
sists of (Source image I , Instruction text T , Target
image Ĩ∗) triplets. The dataset contains a total of
18K, 5K, 5K unique images and 54K, 14K, 14K
instructions in the train, validation and test splits
respectively. Refer to Appendix B for more details
about the dataset generation and dataset splits.
Baselines: We compare our model with purely su-
pervised approaches such as TIM-GAN (Zhang
et al., 2021), GeNeVA (El-Nouby et al., 2019)
and InstructPix2Pix (Brooks et al., 2023). In or-
der to make a fair and meaningful comparison be-
tween the two kinds (supervised and our, weakly-
supervised) approaches, we carve out the following
set-up. Assume the cost required to create one sin-
gle annotated example for image manipulation task
be αm while the corresponding cost for the VQA
task be αv. Let α = αm/αv. Let βm be the num-
ber of annotated examples required by a supervised
baseline for reaching a performance level of ηm on
the image manipulation task. Similarly, let βv be
the number of annotated VQA examples required
to train NEUROSIM to reach the performance level
of ηv. Let β = βm/βv. We are interested in figur-
ing out the range of β for which performance of
our system (ηv) is at least as good as the baseline
(ηm). Correspondingly we can compute the ratio
of the labeling effort required, i.e., α ∗ β, to reach
these performance levels.



Figure 4: Visual comparison of NEUROSIM with various baselines. See Section 4.4 for more details.

If α ∗ β > 1, our system achieves the same or
better performance, with lower annotation cost.
Weakly supervised models (Li et al., 2020; Nam
et al., 2018) are designed for a problem setting
different from ours – single salient object scenes,
simple 0-hop instructions (Refer Section 2 for de-
tails). Further, they require paired images and their
textual descriptions as annotations. We, therefore,
do not compare with them in our experiments. See
Appendix G, H for computational resources and
hyperparameters respectively.

Evaluation Metrics: For evaluation on im-
age manipulation task, we use three metrics - i)
FID, ii) Recall@k, and iii) Relational-similarity
(rsim). FID (Heusel et al., 2017) measures the
realism of the generated images. We use the
implementation proposed in Parmar et al. (2022)
to compute FID. Recall@k measures the semantic
similarity of gold manipulated image Ĩ∗ and
system produced manipulated image Ĩ . For
computing Recall@k, we follow Zhang et al.
(2021), i.e. we use Ĩ as a query and retrieve images
from a corpus comprising the entire test set. rsim
measures how many of the ground truth relations
between the objects are present in the generated
image. We follow (El-Nouby et al., 2019) to
implement rsim metric that uses predictions from a
trained object-detector (Faster-RCNN) to perform
relation matching between the scene-graphs of
ground-truth and generated images.

4.1 Performance with varying Dataset Size
Table 2 compares the performance of NEUROSIM
other SoTA methods two level of β 0.054 and
0.54 representing use of 10% and 100% samples
from CIM-NLI. Despite being weakly supervised,
NEUROSIM performs significantly better than the
baselines with just 10k data samples (especially
TIM-GAN) and not too far from diffusion model

Method
β = 0.054 β = 0.54

FID R1 R3 rsim FID R1 R3 rsim

GeNeVA 42.6 6.6 58.7 80.1 28.5 4.6 64.4 84.9
TIM-GAN 24.2 31.9 74.2 88.4 22.7 58.1 90.2 94.0
IP2P 3.4 40.6 77.0 88.8 2.2 49.2 84.8 94.5
NEUROSIM 35.0 45.3 65.5 91.3 35.1 45.5 66.7 91.5

Table 2: Performance comparison of NEUROSIM with
TIM-GAN and GeNeVA, and InstructPix2Pix (IP2P)
with 10% data (β = 0.054) and full data (β = 0.54).
We always use 100K VQA examples (5K Images,
20 questions per image) for our weakly supervised
training.R1, R3 correspond to Recall@1,3 respectively.
FID: lower is better; Recall/rsim: higher is better. See
Section 4.1 for more details.

based IP2P in full data setting, using the R@1
performance metric. This clearly demonstrates the
strength of our approach in learning to manipulate
while only making use of VQA annotations. We
hypothesize that, in most cases, NEUROSIM
will be preferable since we expect the cost of
annotating an output image for manipulation to
be significantly higher than the cost of annotating
a VQA example. To reach the performance of
the NEUROSIM in a low data regime, TIM-GAN
requires a larger number of expensive annotated
examples (ref. Table 13 in Appendix). The FID
metric shows similar trend across dataset sizes and
across models. The FID scores for NEUROSIM
could potentially be improved by jointly training
VQA module along with image decoder and is a
future direction.

We evaluate InstructPix2Pix (IP2P) (Brooks
et al., 2023), a state-of-the-art pre-trained diffusion
model for image editing, in a zero-shot manner on
the CIM-NLI dataset. Considering its extensive
pre-training, we expect IP2P to have learned the
concepts present in the CIM-NLI dataset. In this
setting IP2P achieves a FID score of 33.07 and
R@1 score of 7.48 illustrating the limitations of



large-scale models in effectively executing com-
plex instruction-based editing tasks without full
dataset fine-tuning. Table 2 contains the results ob-
tained by IP2P after fine-tuning for 16k iterations
on CIM-NLI dataset.

Method Larger Scenes Hops
R1 R3 ZH MH △

GeNeVA 54K 5.0 65.8 6.3 6.4 (+0.1)

GeNeVA 5.4K 8.2 64.6 8.5 9.9 (+1.4)

TIM-GAN 54K 66.3 92.4 84.0 76.2 (-7.8)

TIM-GAN 5.4K 30.2 80.7 56.4 41.6 (-14.8)

IP2P 54K 69.2 99.8 72.5 67.4 (-5.1)

IP2P 5.4K 64.9 99.4 69.3 54.8 (-14.5)

NEUROSIM 5.4K 63.7 89.1 64.5 63.0 (-1.5)

Table 3: (Left) Performance on generalization to Larger
Scenes. (Right) R1 results for 0-hop (ZH) vs multi-
hop (MH) instruction-guided image manipulation. See
Sections 4.2 and 4.3 for more details.

4.2 Performance versus Reasoning Hops
Table 3 (right) compares baselines with NEU-
ROSIM for performance over instructions requiring
zero-hop (ZH) versus multi-hop (1− 3 hops) (MH)
reasoning. Since there are no Add instructions with
ZH, we exclude them from this experiment for the
comparison to be meaningful. GeNeVA performs
abysmally on both ZH as well as MH. We see a sig-
nificant drop in the performance of both TIM-GAN
and IP2P when going from ZH to MH instructions,
both for training on 5.4K, as well as, 54K data-
points. In contrast, NEUROSIM trained on 10%
data, sees a performance drop of only 1.5 points
showing its robustness for complex reasoning tasks.

4.3 Zero-shot Generalization to Larger Scenes
We developed another dataset called CIM-NLI-
LARGE, consisting of scenes having 10 − 13
objects (See Appendix B for details). We study
the combinatorial generalization ability of NEU-
ROSIM and the baselines when the models are
trained on CIM-NLI containing scenes with 3− 8
objects only and evaluated on CIM-NLI-LARGE.
Table 3 captures such a comparison. NEUROSIM
does significantly better, i.e., 33 pts (R1) than TIM-
GAN and is competitive with IP2P when trained on
10% (5.4Kdata points) of CIM-NLI. We do see
a drop in performance relative to baselines when
they are trained on full (54K) data, but this is ex-
pected as effect of supervision takes over, and ours
is a weakly supervised model. Nevertheless, this
experiments demonstrates the effectiveness of our

model for zero-shot generalization, despite being
weakly sueprvised.

4.4 Qualitative Analysis and Interpretability
Figure 4 shows anecdotal examples for visually
comparing NEUROSIM with baselines. Note,
GeNeVA either performs the wrong operation on
the image (row #1, 2, 3) or simply copies the input
image to output without any modifications. TIM-
GAN often makes semantic errors which show its
lack of reasoning (row #3) or make partial edits
(row #1). IP2P also suffers from this where it edits
incorrect object (row #1,2). Compared to baselines,
NEUROSIM produces semantically more mean-
ingful image manipulation. NEUROSIM can also
easily recover occluded objects (row #4). For more
results, see Appendix I, J. NEUROSIM produces
interpretable output programs, showing the steps
taken by the model to edit the images, which also
helps in detecting errors (ref. Appendix L).

4.5 Evaluating Manipulated Scene Graph
We strongly believe image rendering module
of NEUROSIM pipeline and encoder modules
used for computing Recall@k add some amount
of inefficiencies resulting in lower R1 and R3
scores for us. Therefore, we decide to as-
sess the quality of manipulated scene graph G

Ĩ
.

Method R1 R3

Text-Only 0.2 0.4
Image-Only 34.1 83.6
Concat 39.5 86.9
TIRG 34.8 84.6
NEUROSIM 85.8 92.9

Table 4: GĨ Quality
via image retrieval.

For this, we consider the
text guided image retrieval
task proposed by (Vo et al.,
2019). In this task, an im-
age from the database has
to be retrieved which would
be the closest match to the
desired manipulated image.
Therefore, we use our ma-
nipulated scene graph G

Ĩ
as

the latent representation of the input instruction and
image for image retrieval. We retrieve images from
the database based on a novel graph edit distance
between NEUROSIM generated G

Ĩ
of the desired

manipulated images, and scene graphs of the im-
ages in the database. This distance is defined using
the Hungarian algorithm (Kuhn, 1955) with a sim-
ple cost defined between any 2 nodes of the graph
(ref. Appendix D for details). Table 4 captures
the performance of NEUROSIM and other popular
baselines for the image retrieval task. NEUROSIM
significantly outperforms supervised learning base-
lines by a margin of ∼ 50% without using output
image supervision, demonstrating that NEUROSIM



meaningfully edits the scene graph. Refer to Sec-
tion 4.7 for human evaluation results and Appendix
Section D-E, K, for more results including results
on Minecraft dataset and ablations.

4.6 A Hybrid Approach using NEUROSIM

From Table 3, we observe that both TIM-GAN
and IP2P suffer a significant drop in performance
when moving from ZH to MH instructions, whereas
NEUROSIM is fairly robust to this change. Further,
we note that the manipulation instructions in our
dataset are multi-hop in terms of reasoning, but
once an object of interest is identified, the actual
manipulation operation can be seen as single hop.
We use this observation to design a hybrid super-
vised baseline that utilizes the superior reasoning
capability of NEUROSIM and high quality editing
and generation capabilities of IP2P.

We take the CIM-NLI test set and parse the text-
instructions through our trained semantic-parser to
obtain the object embeddings over which the ma-
nipulation operation is to be performed. We utilize
our trained query networks to obtain the symbolic
attributes such as color, shape, size and material
of the identified object. Using these attributes we
simplify a complex multi-hop instruction into a
simple instruction with 0 or 1 hops using a simple
template based approach (see Appendix Section N
for details). These simplified instructions are fed
to the fine-tuned IP2P model to generate the edited
images. We refer to our hybrid approach as IP2P-
NS where NS refers to Neuro-Symbolic. Table 5
presents the results. We find that there is a clear
advantage of using a hybrid neuro-symbolic model
integrating NEUROSIM with IP2P. We see a sig-
nificant gain on FID, recall, rsim when we use the
hybrid approach, especially in the low resource set-
ting (β = 0.054). Compared to IP2P, the hybrid
neuro-symbolic approach results in better FID, re-
call and rsim scores, except a small drop in R1 for
β = 0.54 setting. This opens up the possibility of
further exploring such hybrid models in future for
improved performance (in the supervised setting).

Method
β = 0.054 β = 0.54

FID R1 R3 rsim FID R1 R3 rsim

IP2P 3.4 40.6 77.0 88.8 2.2 49.2 84.8 94.5
NEUROSIM 35.0 45.3 65.5 91.3 35.1 45.5 66.7 91.5
IP2P-NS 1.96 45.5 83.2 94.0 1.8 48.0 85.5 95.6

Table 5: Comparison between IP2P-NS and IP2P.

Qn. NEUROSIM TIM-GAN IP2P
5.4K 54K 54K

Q1 0.41 0.27 0.25

Q2 0.33 0.84 0.78

Table 6: Human evaluation comparing various models.

4.7 Human Evaluation
For the human evaluation study, we presented 10
evaluators with a set of five images each, including:
The input image, the ground-truth image and ma-
nipulated images generated by NEUROSIM 5.4K,
TIM-GAN 54K, and IP2P 54K. Images generated
by the candidate models were randomly shuffled to
prevent any bias. Evaluators were asked two binary
questions, each requiring a ’yes’ (1) or ’no’ (0) re-
sponse, to assess the models: (Q1) Does the model
perform the desired change mentioned in the input
instruction?, (Q2) Does the model not introduce
any undesired change elsewhere in the image? Re-
fer to Appendix Section M for more details about
exact questions and the human evaluation process.

The average scores from the evaluators across
different questions can be found in Table 6. The
study achieved a high average Fleiss’ kappa
score (Fleiss et al., 2013) of 0.646, indicating
strong inter-evaluator agreement. Notably, NEU-
ROSIM (5.4K) outperforms TIM-GAN and IP2P
(54K) in Q1 suggesting its superior ability to do rea-
soning, and identify the relevant object as well as af-
fect the desired change.In contrast, TIM-GAN and
IP2P score significantly better in Q2, demonstrat-
ing their ability not to introduce unwanted changes
elsewhere in the image, possibly due to better gen-
eration quality compared to NEUROSIM.

5 Conclusion

We present a neuro-symbolic, interpretable ap-
proach NEUROSIM to solve image manipulation
task using weak supervision in the form of VQA
annotations. Our approach can handle multi-object
scenes with complex instructions requiring multi-
hop reasoning, and solve the task without any out-
put image supervision. We also curate a dataset of
image manipulation and demonstrate the potential
of our approach compared to supervised baselines.
Future work includes understanding the nature of
errors made by NEUROSIM, having a human in the
loop to provide feedback to the system for correc-
tion, and experimenting with real image datasets.



6 Ethics Statement

All the datasets used in this paper were syntheti-
cally generated and do not contain any personally
identifiable information or offensive content. The
ideas and techniques proposed in this paper are
useful in designing interpretable natural language-
guided tools for image editing, computer-aided de-
sign, and video games. One of the possible ad-
verse impacts of AI-based image manipulation is
the creation of deepfakes (Vaccari and Chadwick,
2020) (using deep learning to create fake images).
To counter deepfakes, several researchers (Dolhan-
sky et al., 2020; Mirsky and Lee, 2021) have also
looked into the problem of detecting real vs. fake
images.

7 Limitations

A limitation of our approach is that when trans-
ferring to a new domain, having different visual
concepts requires not only learning new visual con-
cepts but also the DSL needs to be redefined. Auto-
matic learning of DSL from data has been explored
in some prior works (Ellis et al., 2021, 2018), and
improving our model using these techniques are
future work for us. We can also use more power-
ful graph decoders for image generation, for im-
proved image quality, which would naturally result
in stronger results on image manipulation.
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Appendix
A Domain Specific Language (DSL)

Table 7 captures the DSL used by our NEUROSIM
pipeline. The first 5 constructs in this table are
common with the DSL used in Mao et al. (2019).
The last 3 operations (Change, Add, and Remove)
were added by us to allow for the manipulation
operations. Table 8 shows the type system used
by the DSL in this work. The first 5 types are
inherited from (Mao et al., 2019) while the last one
is an extension of the type system for handling the
inputs to the Add operator.

B Dataset Details

We use CLEVR dataset and CLEVR toolkit (code
to generate the dataset). These are public and are
under CC and BSD licenses respectively, and are
used by many works, including ours, for research
purposes. We now give details of the datasets we
create, building upon CLEVR.

B.1 CIM-NLI Dataset

This dataset was generated with the help of CLEVR
toolkit (Johnson et al., 2017b) by using following
recipe.

1. First, we create a source image I and the corre-
sponding scene data by using Blender (Commu-
nity, 2018) software.

2. For each source image I created above, we gen-
erate multiple instruction texts T ’s using its
scene data. These are generated using templates,
similar to question templates proposed by (John-
son et al., 2017b).

3. For each such (I, T ) pair, we attach a corre-
sponding symbolic program P (not used by
NEUROSIM though) as well as scene data for
the corresponding changed image.

4. Finally, for each (I, T ) pair, we generate the
target gold image Ĩ∗ using Blender software
and its scene data from the previous step.

Below are some of the important characteristics
of the CIM-NLI dataset.

• Each source image I comprises several objects
and each object comprises four visual attributes -
color, shape, size, and material.

• Each instructions text T comprises one of the
following three kinds of manipulation operations
- add, remove, and change.

• An add instruction specifies color, shape, size,
and material of the object that needs to be added.
It also specifies a direct (or indirect) relation with
one or more existing objects (called reference ob-
ject(s)). The number of relations that are required
to traverse for nailing down the target object is
referred to as # of reasoning hops and we have
allowed instructions with up to 3-hops reasoning.
We do not generate any 0-hop instruction for add
due to ambiguity of where to place the object
inside the scene.

• A change instruction first specifies zero or more
attributes to uniquely identify the object that
needs to be changed. It may also specify a direct
(or indirect) relation with one or more existing
reference objects. Lastly, it specifies the target
values of an attribute for the identified object
which needs to be changed.

• A remove instruction specifies zero or more at-
tributes of the object(s) to be removed. Addition-
ally, it may specify a direct (or indirect) relation
with one or more existing reference objects.

Table 9 captures the fine grained statistics about
the CIM-NLI dataset. Specifically, it further splits
each of the train, validation, and test set across the
instruction types - add, remove, and change.

B.2 CIM-NLI-LARGE Dataset

We created another dataset called CIM-NLI-
LARGE to test the generalization ability of NEU-
ROSIM on images containing more number of ob-
jects than training images. CIM-NLI-LARGE
tests the zero-shot transfer ability of both NEU-
ROSIM and baselines on scenes containing more
objects.

Each image in CIM-NLI-LARGE dataset com-
prises of 10−13 objects as opposed to 3−8 objects
in CIM-NLI dataset which was used to train NEU-
ROSIM. The CIM-NLI-LARGE dataset consists
of 1K unique input images. We have created 3
instructions for each image resulting in a total of
3K instructions. The number of add instructions is
significantly less since there is very little free space
available in the scene to add new objects. To create
scenes with 12 and 13 objects, we made all objects
as small size and the minimum distance between



Operation Signature [Output← Input]) Semantics

Scene ObjSet← () Returns all objects in the scene.

Filter ObjSet← (ObjSet, ObjConcept)
Filter out a set of objects from ObjSet that
have a concept (e.g. red) specified in Obj-
Concept.

Relate
ObjSet ← (ObjSet, RelConcept,
Obj)

Filter out a set of objects from ObjSet
that have concept specified relation con-
cept (e.g. RightOf) with object Obj.

Query ObjConcept← (Obj, Attribute)
Returns the Attribute value for the object
Obj.

Exist Bool← (ObjSet) Checks if the set ObjSet is empty.

Change Obj← (Obj, Concept)
Changes the attribute value of the input
object (Obj), corresponding to the input
concept, to Concept

Add
Graph←
(Graph, RelConcept, Obj, Concept-
Set)

Adds an object to the input graph, gener-
ating a new graph having the object with
attribute values as ConceptSet, and present
in relation RelConcept of the input Obj

Remove Graph← (Graph, ObjSet)
Removes the input objects and their edges
from the input graph to output a new graph

Table 7: Extended Domain Specific Language (DSL) used by NEUROSIM.

objects was reduced so that all objects could fit in
the scene. Table 10 captures the statistics about this
dataset.

B.3 Multi-hop Instructions

In what follows, we have given examples of the
instructions that require multi-hop reasoning to nail
down the location/object to be manipulated in the
image.

• Remove the tiny green rubber ball. (0-hop)

• There is a block right of the tiny green rubber
ball, remove it. (1-hop)

• Remove the shiny cube left of the block in front
of the gray thing. (2-hop)

• Remove the small thing that is left of the brown
matte object behind the tiny cylinder that is be-
hind the big yellow metal block. (3-hop)

C Model Details

C.1 Semantic Parser

C.1.1 Details on Parsing
We begin by extending the type system of (Mao
et al., 2019) and add ConceptSet because our add
operation takes as input a set of concepts depict-
ing attribute values of the new object being added
(refer Table 8 for the details). Next, in a manner
similar to (Mao et al., 2019), we use a rule based
system for extracting concept words from the input
text. We, however, add an extra rule for extracting
ConceptSet from the input sentence. Rest of the
semantic parsing methodology remains the same
as given in (Mao et al., 2019), with the difference
being that our training is weakly supervised (refer
Section 3.3 of the main paper).

C.1.2 Training
As explained in Section 3.3 of the main paper,
for training with weaker form of supervision, we
use an off-policy program search based REINFORCE
(Williams, 1992) algorithm for calculating the ex-
act gradient. For this, we define a set of all possible
program templates Pt. For a given input instruc-



Type Remarks

ObjConcept Concepts for any given object, such as blue, cylinder, etc.

Attribute Attributes for any given object, such as color, shape, etc.

RelConcept Relational concepts for any given object pair, such as RightOf, LeftOf, etc.

Object Depicts a single object

ObjectSet Depicts multiple objects

ConceptSet A set of elements of ObjConcept type

Table 8: Extended type system for the DSL used by NEUROSIM.

Operation Split # (I, T, Ĩ∗)
# reasoning hops # objects

min mean max min mean max

train 17827 1 2.00 3 3 5.51 8

Add valid 4459 1 2.00 3 3 5.50 8

test 4464 1 2.00 3 3 5.45 8

train 15999 0 1.50 3 3 5.50 8

Remove valid 5000 0 1.50 3 3 5.50 8

test 5000 0 1.50 3 3 5.48 8

train 19990 0 1.50 3 3 5.45 8

Change valid 4996 0 1.50 3 3 5.56 8

test 4998 0 1.50 3 3 5.52 8

Table 9: Statistics of CIM-NLI dataset introduced in this paper.

tion text T , we create a set of all possible pro-
grams {PT } from Pt. For e.g. given a template
{remove(relate(·, filter(·, scene())))}, this is
filled in all possible ways, with concepts, concept-
Set, attributes and relational concepts extracted
from the input sentence to get programs for this par-
ticular template. All such programs created using
all templates form the set PT . All PT are executed
over the scene graph of the input image. A typical
program structure in our work is of the form ma-
nip_op(reasoning()), where manip_op represents
the manipulation operator, for example change,
add, or remove; and reasoning() either selects ob-
jects for change or remove, or it selects a reference
object for adding another object in relation to it.
After a hyperparameter search for the reward (refer

Section H of the appendix), we assign a reward
of +8 if the reasoning() part of the program leads
to an object being selected for change/remove in-
struction or a related object being selected for add
instruction. If no such object is selected, we give a
reward of +2. Reward values were decided on the
basis of validation set accuracy. We find that with
this training strategy, we achieve the validation set
accuracy of 95.64%, where this accuracy is calcu-
lated based on whether a program lead to an object
being selected or not. Note, this is a proxy to the
actual accuracy. For finding the actual accuracy, we
would need a validation set of (instruction, ground
truth output program) pairs, but we do not use this
supervised data for training or validation.



Operation # (I, T, Ĩ∗)
# reasoning hops # objects

min mean max min mean max

Add 393 1 2.0 3 10 11.53 13

Remove 524 0 1.50 3 10 11.48 13

Change 2083 0 1.51 3 10 11.50 13

Table 10: Statistics of CIM-NLI-LARGE dataset.

C.2 Manipulation Network

In what follows, we provide finer details of manip-
ulation network components.

Change Network: As described in Section 3.3
of the main paper, we have a change neural net-
work for each attribute. For changing the current
attribute value of a given object o, we use the fol-
lowing neural network: õ = ga(o; cs∗a), where s∗a
is the desired changed value for the attribute a. õ
is the new representation of the object. We model
ga(·) by a single layer neural network without hav-
ing any non-linearity. The input dimension of this
neural network is (256 + 64) because we concate-
nate the object representation o ∈ R256 with the
desired concept representation d ∈ R64. We pass
this concatenated vector through ga(·) to get the
revised representation of the object: õ ∈ R256.

The loss used to train the weights of the change
network is a weighted sum of losses equation 1 to
equation 5 given in the main paper. This leads to
the overall loss function given below.

Loverall_change = λ1 ℓa + λ2 ℓa + λ3 ℓcycle

+ λ4 ℓconsistency + λ5 ℓobjGAN

where, ℓobjGAN above is the modified GAN
loss (Goodfellow et al., 2014). Here λ1 = 1,
λ2 = 1/((num_attrs−1)∗(num_concepts)), λ3 =
λ4 = 103, and λ5 = 1/(num_objects). Here,
(num_objects) is the number of objects in input
image, (num_attrs) is the total number of attributes
for each object, and (num_concepts) are the total
number of concepts in the NSCL (Mao et al., 2019)
framework.

The object discriminator is a neural network with
input dimension 256 and a single 300 dimensional
hidden layer with ReLU activation function. This
discriminator is trained using standard GAN ob-
jective ℓobjGAN. See Fig 5a for an overview of the
change operator

Remove Network: The remove network is a sym-
bolic operation as described in Section 3.3 of the
main paper. That is, given an input set of objects,
the remove operation deletes the subgraph of the
scene graph that contains the nodes corresponding
to removed objects and the edges incident on those
nodes. See Fig 5c for an overview of the remove
operator.

Add Network: The neural operation in the add
operator comprises of predicting the object rep-
resentation for the newly added object using a
function gaddObj(·). This function is modeled as
a single layer neural network without any acti-
vation. The input to this network is a concate-
nated vector [[csa1 , csa2 , · · · , csak ], orel, cr], where
[csa1 , csa2 , · · · , csak ] represents the concatenation
of all the concept vectors of the desired new ob-
jects. The vector orel is the representation of the
object with whom the relation (i.e. position) of the
new object has been specified and cr is the concept
vector for that relationship. The input dimension
of gaddObj(·) is (k ∗ 64 + 256 + 64) and the output
dimension is 256. For predicting representation of
newly added edges in the scene graph, we use edge
predictor gaddEdge(·). The input to this edge pre-
dictor function is the concatenated representation
of the objects which are linked by the edge. The
input dimension of gaddEdge(·) is (256 + 256) and
the output dimension is 256.

The loss used to train the add network weights is
a weighted sum of losses equation 6 to equation 10
along with an object discriminator loss. The overall
loss is given by the following expression.

Loverall_add = λ1ℓconcepts + λ2ℓrelation

+ λ3ℓobjSup + λ4ℓedgeSup

+ λ5ℓedgeGAN + λ6ℓobjGAN

where, ℓobjGAN and ℓedgeGAN above denotes the
modified GAN loss (Goodfellow et al., 2014). Here



(a) Change operator overview.

(b) Add operator overview.

(c) Remove operator overview.

Figure 5: Overview of new operators (change, add and remove) added to the DSL.



λ1 = λ2 = 1/(num_attrs), λ3 = λ4 = 103,
λ6 = 1/(num_objects).

The object discriminator is a neural network with
input dimension as 256 and a single 300 dimen-
sional hidden layer with ReLU activation function.
This discriminator is trained using the standard
GAN objective ℓobjGAN. Note, ℓobjGAN has 2 parts
– i) the loss for the generated (fake) object embed-
ding using the add network, and ii) the loss for the
real objects (all the unchanged object embeddings
of the image). The former is unscaled but the latter
one is scaled by a factor of 1/(num_objects).

The edge discriminator is a neural network with
input dimension as (256 ∗ 3) and a single 300 di-
mensional hidden layer with ReLU activation func-
tion. As input to this discriminator network, we
pass the concatenation of the two objects and the
edge connecting them. This discriminator is trained
using the standard GAN objective ℓedgeGAN. See
Fig 5b for an overview of the add operator

D Additional Results

D.1 Detailed Performance for Zero-Shot
Generalization on Larger Scenes

Table 11 below is a detailed version of the Table
3 in the main paper. This table compares the per-
formance of NEUROSIM with baseline methods
TIM-GAN, GeNeVA and IP2P for the zero-shot
generalization to larger scenes (with ≥ 10 objects),
while the models were trained on images with 3−8
objects. Relative to the main paper’s table 3, this
table offers separate performance numbers for each
of the add, remove and change instructions.

D.2 Image Retrieval Task

A task that is closely related to the image manip-
ulation task is the task of Text Guided Image Re-
trieval, proposed by (Vo et al., 2019). Through
this experiment, our is to demonstrate that NEU-
ROSIM is highly effective in solving this task as
well. In what follows, we provide details about this
task, baselines, evaluation metric, how we adapted
NEUROSIM for this task, and finally performance
results in Table 12. This table is a detailed version
of the Table 4 in the main paper.

Task Definition: Given an Image I , a text in-
struction T , and a database of images D, the task
is to retrieve an image from the database that is se-
mantically as close to the ground truth manipulated
image as possible.

Note, for each such (I, T ) pair, some image from
the database, say Ĩ ∈ D, is assumed to be the ideal
image that should ideally be retrieved at rank-1.
This, so called desired gold retrieval image might
even be an image which is the ideal manipulated
version of the original images I in terms of satis-
fying the instruction T perfectly. Or, image Ĩ may
not be such an ideal manipulated image but it still
may be the image in whole corpus D that comes
closest to the ideal manipulated image.

In practice, while measuring the performance of
any such system for this task, the gold manipulated
image for (I, T ) pair is typically inserted into the
database D and such an image then serves as the
desired gold retrieval image Ĩ .

Baselines: Our baselines includes popular super-
vised learning systems designed for this task. The
first baseline is TIRG proposed by Vo et al. (2019)
where they combine image and text to get a joint
embedding and train their model in a supervised
manner using embedding of the desired retrieved
image as supervision. For completeness, we also
include comparison with other baselines – Concat,
Image-Only, and Text-Only – that were introduced
by Vo et al. (2019).

A recent model proposed by Chen et al. (2020)
uses symbolic scene graphs (instead of embed-
dings) to retrieve images from the database. Moti-
vated by this, we also retrieve images via the scene
graph that is generated by the manipulation mod-
ule of NEUROSIM. However, unlike Chen et al.
(2020), the nodes and edges in our scene graph
have associated vectors and make a novel use of
them while retrieving. We do not compare our per-
formance with (Chen et al., 2020) since its code
is unavailable and we haven’t been able to repro-
duce their numbers on datasets used in their paper.
Moreover, (Chen et al., 2020) uses full supervision
of the desired output image (which is converted to
a symbolic scene graph), while we do not.

Evaluation Metric: We use Recall@k (and re-
port results for k = 1, 3) for evaluating the perfor-
mance of text guided image retrieval algorithms
which is standard in the literature.

Retrieval using Scene Graphs: We use the
scene graph generated by NEUROSIM as the latent
representation to retrieve images from the database.
We introduce a novel yet simple method to retrieve
images using scene graph representation. For con-
verting an image into the scene graph, we use the vi-



Method
Train
Data
Size

Add Change Remove

R1 R3 R1 R3 R1 R3

GeNeVA 54K 0.5 64.6 4.9 69.9 9.0 50.0

GeNeVA 5.4K 0.0 60.1 8.2 69.2 14.3 49.6

TIMGAN 54K 12.5 77.4 73.4 95.2 78.2 92.2

TIMGAN 5.4K 1.0 70.0 32.1 84.4 44.7 74.0

IP2P 54K 38.2 100.0 72.7 100.0 78.6 98.9

IP2P 5.4K 34.1 100.0 68.8 100.0 72.5 96.4

NEUROSIM 5.4K 3.8 46.6 68.2 95.8 90.7 94.3

Table 11: Detailed performance scores for NEUROSIM, TIM-GAN, GeNeVA and IP2P for zero-shot generalization
to larger scenes (with ≥ 10 objects) from CIM-NLI-LARGE dataset, while models are trained on images with
3− 8 objects. Table has separate performance numbers for add, remove, and change instructions. Along with each
method, we have also written the number of data points from CIM-NLI dataset that were used for training. R1 and
R3 correspond to Recall@1 and Recall@3, respectively.

sual representation network of NEUROSIM. Given
the scene graph G for the input image I and the
manipulation instruction text T , NEUROSIM con-
verts the scene graph into the changed scene graph
G

Ĩ
, as described in Section C in Appendix. Now,

we use this graph G
Ĩ

as a query to retrieve im-
ages from the database D. For retrieval, we use
the novel graph edit distance (GED) between G

Ĩ
and the scene graph representation of the database
images. The scene graph for each database image
is also obtained using the visual representation net-
work of NEUROSIM. The graph edit distance is
given below.

GED(G
Ĩ
, GD) =

{
∞ |N

Ĩ
|̸= |N

D̃
|

minπ∈Π
∑

∀i∈{1,···,|N
Ĩ
|} c(ni, yi) otherwise.

where, G
Ĩ

= (N
Ĩ
, V

Ĩ
) and GD = (ND, VD).

ni and yi are the node embeddings of the query
graph G

Ĩ
and scene graph GD of an image from

the database. c(a, b) is the cosine similarities be-
tween embeddings a and b. This GED is much
simpler than that defined in (Chen et al., 2020),
since it does not need any hand designed cost for
change, removal, or addition of nodes, or different
attribute values. It can simply rely on the cosine
similarities between node embeddings. We use the
Hungarian algorithm (Kuhn, 1955) for calculating
the optimal matching π of the nodes, among all pos-
sible matching Π. We use the negative of the cosine
similarity scores between nodes to create the cost
matrix for the Hungarian algorithm to process. This

simple yet highly effective approach (See Table 4
in the main paper and Table 12 in the appendix),
can be improved by more sophisticated techniques
that include distance between edge embeddings
and including notion of subgraphs in the GED. We
leave this as future work. This result shows that
our manipulation network edits the scene graph in
a desirable manner, as per the input instruction.

D.3 Detailed Multi-hop Reasoning
Performance

Table 14 below provides a detailed split of the
performance numbers reported in Table 3 of the
main paper across i) number of hops (0− 3 hops)
and ii) type of instructions (add/remove/change).
We observe that for change and remove instruc-
tions, NEUROSIM improves over TIM-GAN,
GeNeVA and IP2P trained on 5.4K CIM-NLI
data points by a significant margin (∼ 20% on 3-
hop change/remove instructions). However, NEU-
ROSIM lags behind TIM-GAN when the entire
CIM-NLI labeled data is used to train TIM-GAN.
We also observe that all the models perform poorly
on the add instructions, as compared to change and
remove instructions.

D.4 Detailed Performance for Different Cost
Ratios β

Table 2 in Section 4 of the main paper showed the
performance of NEUROSIM compared with TIM-
GAN and GeNeVA for various values of β, where



Method
Train
Data
Size

Add Change Remove

1 2 3 0 1 2 3 0 1 2 3

Text-Only 54K 0.4 0.3 0.3 0.1 0.0 0.1 0.1 0.1 0.3 0.3 0.0

Image-Only 54K 35.3 33.4 32.3 20.1 23.2 16.9 19.8 46.3 41.3 53.1 57.8

Concat 54K 36.3 33.3 31.8 37.3 40.4 34.2 37.9 41.8 41.0 50.0 55.0

TIRG 54K 35.6 31.8 33.5 22.0 25.1 18.8 22.0 46.6 42.7 52.5 56.1

NEUROSIM 5.4K 96.2 95.3 95.3 83.3 82.9 81.3 78.7 79.6 77.4 86.4 82.2

Table 12: Performance scores (Recall@1) on the Image Retrieval task, comparing NEUROSIM with TIM-GAN
and GeNeVA with increase in reasoning hops, for add, remove, and change instructions. Along with each method,
number of data points from CIM-NLI used for training are written.

β is the ratio of the number of annotated (with
output image supervision) image manipulation ex-
amples required by the supervised baselines, to the
number of annotated VQA examples required to
train NEUROSIM. In Table 13, we show a detailed
split of the performance, for the add, change, and
remove operators, across the same values of β as
taken before.

We find that for the change operator, NEU-
ROSIM performs better than TIM-GAN by a mar-
gin of ∼ 8% (considering Recall@1) for β ≤ 0.1.
For the remove operator, NEUROSIM performs bet-
ter than TIM-GAN by a margin of ∼ 4% (consider-
ing Recall@1) for β ≤ 0.2. Overall, NEUROSIM
performs similar to TIM-GAN, for β = 0.2, for
remove and change operators. All models perform
poorly on the add operator as compared to the
change and remove operators. We find that having
full output image supervision allows TIM-GAN
to reconstruct (copy) the unchanged objects from
the input to the output for all the operators. This
results in a higher recall in general but its effect is
most pronounced in the Recall@3. NEUROSIM,
on the other hand, suffers from rendering errors
which makes the overall recall score (especially
Recall@3) lower. We believe that improving image
rendering quality would significantly improve the
performance of NEUROSIM and we leave this as
future work.

D.5 Results on Datasets from different
domains

D.5.1 Minecraft Dataset

Dataset Creation: We create a new dataset having
(Image, instruction) by building over the Minecraft

dataset used in (Yi et al., 2018). Specifically,
we create zero and one hop remove instructions
and one hop add instructions similar to the cre-
ation of CIM-NLI. This dataset contains scenes
and objects from the Minecraft video game and
is used in prior works for testing Neuro-Symbolic
VQA systems like NSCL (Mao et al., 2019) and
NS-VQA (Yi et al., 2018). The setting of the
Minecraft worlds dataset is significantly different
from CLEVR in terms of concepts and attributes
of objects and visual appearance.

Experiment: We use the above dataset for test-
ing the addition and removal of objects using Neu-
roSIM (See Fig 6). We train NeuroSIM’s de-
coder to generate images from scene graphs of the
minecraft dataset. We assume access to a parser
that gives us programs for an instruction. For re-
moval, we use the same remove network as de-
scribed above, while for addition, we assume ac-
cess to the features of object to be added, which
is added to the scene graph of the image and the
decoder decodes the final image. See Figure 6 for a
set of successful examples on the Minecraft dataset.
We see that using our method, one can add and re-
move objects from the scene successfully, without
using any output image as supervision during train-
ing. Though we have assumed the availability of a
parser in the above set-up, training it jointly with
other modules should be straightforward, and can
be achieved using our general approach described
in Section 3 of the main paper.

E End-to-end Training

The main objective of this work is to make use of
weakly supervised VQA data for the image manipu-



Method Instruction

β = 0.054 β = 0.07 β = 0.1 β = 0.2 β = 0.54

R1 R3 R1 R3 R1 R3 R1 R3 R1 R3

GeNeVA

add 0.0 57.3 – – – – – – 0.7 63.6

change 5.9 36.3 – – – – – – 4.1 39.4

remove 13.2 82.3 – – – – – – 8.7 89.3

TIM-GAN

add 1.9 70.7 4.9 74.0 8.6 76.7 10.3 77.1 13.1 78.6

change 41.0 72.1 42.9 73.5 49.8 77.3 62.5 84.2 78.3 92.3

remove 49.6 79.5 47.0 91.9 53.9 93.1 65.3 96.8 78.0 98.5

IP2P

add 0.7 70.5 – – – – – – 5.4 78.6

change 54.9 72.8 – – – – – – 61.5 78.9

remove 62.0 87.2 – – – – – – 76.0 96.3

NEUROSIM

add 4.9 30.9 6.4 34.8 5.7 34.7 5.9 38.9 5.6 35.0

change 57.2 79.4 57.3 79.3 57.2 79.3 57.2 79.4 57.1 79.3

remove 69.6 82.5 69.5 82.5 69.5 82.6 69.5 82.5 69.6 82.5

Table 13: Detailed performance comparison of NEUROSIM with TIM-GAN (Zhang et al., 2021), GeNeVA (El-
Nouby et al., 2019) and IP2P (Brooks et al., 2023) with varying β levels, split across add, remove and change
instructions. The ’-’ entries for GeNeVA and IP2P were not computed due to excessive training time (inference
time as well in case of IP2P); Geneva’s performance is abysmal even when using full data. TIM-GAN does the
best among baselines in terms of its recall score at β = 0.54. We always use 100K VQA examples (5K Images, 20
questions per image) for our weakly supervised training. R1 and R3 correspond to Recall@1 and 3, respectively.
For Recall, higher score is better.

lation task without using output image supervision.
But a natural extension of our work is to use output
image supervision as well, to improve the perfor-
mance of NEUROSIM. We devised an experiment
to compare how much performance boost can be
obtained by utilizing ground truth output (manipu-
lated) images as the supervision for different mod-
ules of NEUROSIM. This experiment demonstrates
the value of end-to-end training for NEUROSIM
and how it can exploit the supervised data. We
refer to this variant as NEUROSIM(e2e). We begin
with a pre-trained NEUROSIM model trained with
VQA annotations and then fine-tune it using super-
vised manipulation data. The detailed results are
given in Table 15. This experiment demonstrates
that with a small amount of supervised data, the
performance of NEUROSIM can be significantly
improved (e.g., more than 9 points increase for
the change instruction with only 5.4K supervision
examples)

Given the significant increase in performance
of NEUROSIM when using supervised data, we
also test it’s generalization capability (Analogous
to Section 4.2, 4.3), and quality of scene graph
retrieval (Analogous to Section 4.5 ).

From Table 16, we see that NEUROSIM(e2e)
shows improved zero-shot generalization to larger
scenes. Even when trained on just 5.4k CIM-NLI
data, NEUROSIM(e2e) improves over TIM-GAN-
54k by 3.9 R@1 points. A 5.3 point improvement
over TIM-GAN is observed when full CIM-NLI
data is used.

Next, we measure drop in performance with in-
creasing reasoning hops. From Table 17, we see
that NEUROSIM(e2e) achieves the lowest drop
when compared to TIM-GAN. NEUROSIM(e2e)
improves over weakly supervised NEUROSIM
baseline by 6.6 R@1 points.

Finally, we measure the quality of scene graphs
via retrieval. From Table 18, we see that super-



Method
Train
Data
Size

Add Change Remove

1 2 3 0 1 2 3 0 1 2 3

GeNeVA 54K 1.1 0.5 0.5 3.6 4.2 4.7 3.9 9.0 8.0 8.3 9.4

GeNeVA 5.4K 0.0 0.0 0.0 4.7 7.1 5.6 6.1 12.3 11.3 15.5 13.5

TIM-GAN 54K 7.6 16.1 15.7 85.8 74.1 78.0 75.4 82.2 68.3 81.9 79.7

TIM-GAN 5.4K 1.4 2.3 1.9 54.5 36.4 38.7 34.5 58.3 40.9 50.9 48.2

IP2P 54K 6.6 5.5 4.2 67.9 60.6 59.1 58.5 77.1 71.9 78.1 76.8

IP2P 5.4K 0.5 0.7 0.9 64.0 54.8 50.6 50.3 74.5 55.3 60.3 58.0

NEUROSIM 5.4K 4.6 5.0 5.1 59.5 57.9 55.8 55.7 69.6 66.6 71.8 70.4

Table 14: Performance scores (Recall@1) for NEUROSIM with TIM-GAN, GeNeVA and IP2P with increase in
reasoning hops, for add, remove, and change instructions. Along with each method, number of data points from
CIM-NLI used for training are written.

Figure 6: Results for addition and removal of objects from images of the minecraft dataset

vised training significantly improves the scene
graph quality, thus improving retrieval perfor-
mance. Supervised training improves retrieval
by 7.3 R@1 points over weakly supervised NEU-
ROSIM baseline. These findings suggest that NEU-
ROSIM(e2e) significantly outperforms other super-

vised approaches in almost all settings. One can
fine-tune the image decoder and the visual repre-
sentation network to further enhance the findings,
which should greatly enhance the outcomes.



Instruction Model
# of CIM-NLI examples used for training

5.4K 7K 10K 20K 54K

Add

GeNeVA 0.0 - - - 0.7

TIM-GAN 1.9 4.9 8.6 10.3 13.1

IP2P 0.7 - - - 5.4

NEUROSIM 4.9 6.4 5.7 5.9 5.6

NEUROSIM(e2e) 8.8 8.9 9.2 10.5 10.6

Change

GeNeVA 5.9 - - - 4.1

TIM-GAN 41.0 42.9 49.8 62.5 78.3

IP2P 54.9 - - - 61.5

NEUROSIM 57.2 57.3 57.2 57.2 57.1

NEUROSIM(e2e) 66.2 66.3 66.6 67.4 69.6

Remove

GeNeVA 13.2 - - - 8.7

TIM-GAN 49.6 47.0 53.9 65.3 78.0

IP2P 62.0 - - - 76.0

NEUROSIM 69.6 69.5 69.5 69.5 69.6

NEUROSIM(e2e) 69.6 69.5 69.5 69.5 69.6

Table 15: Performance comparison of NEUROSIM(e2e) with baselines using Recall@1. NEUROSIM(e2e) refers to
NEUROSIM trained end-to-end by utilizing ground truth manipulated images as the supervision for NEUROSIM
modules.

Model
Train
Data
Size

R1 R3

TIM-GAN 5.4K 30.2 80.7

TIM-GAN 54K 66.3 92.4

NEUROSIM 5.4K 63.7 89.1

NEUROSIM(e2e) 5.4K 70.2 92.6

NEUROSIM(e2e) 54K 71.6 91.7

Table 16: Zero-shot generalization to larger scenes (Ex-
tension of Table 3 of main paper).

F LLMs as few-shot parser

We also tested the semantic parsing ability of Large
Language Models (LLMs), specifically GPT-4 for
our task. The task of semantic parsing is given

manipulation instruction text in natural language,
generated the symbolic program by parsing the
input text. To provide GPT-4 with context, we
designed an extensive prompt that begins with our
DSL followed by six different in-context examples
representing various instruction types for few-shot
learning. This prompt is then followed with the
instruction text that we want to parse. We tested
GPT-4 on a randomly sampled subset of our test
dataset. For evaluation, we measured the accuracy
of semantic parsing using an exact match between
the generated symbolic program and the ground-
truth symbolic program.

The detailed results are given in Table 19. Inter-
estingly, we observed that GPT-4 performed poorly
on Add instructions, achieving less than 10% of
parsing accuracy. To address this, we prompted
GPT-4 separately with additional few-shot exam-
ples for Add instructions, which led to the results
displayed in the table. Even with the additional



Method
Train
Data
Size

Hops

ZH MH △

TIM-GAN 5.4K 56.4 41.6 -14.8

TIM-GAN 54K 84.0 76.2 -7.8

NEUROSIM 5.4K 64.5 63.0 -1.5

NEUROSIM(e2e) 5.4K 69.4 67.3 -2.1

NEUROSIM(e2e) 54K 71.1 69.6 -1.5

Table 17: Performance with increasing reasoning hops (Extension of Table 3 of main paper).

Model R1 R3

Text-Only 0.2 0.4

Image-Only 34.1 83.6

Concat 39.5 86.9

TIRG 34.8 84.6

NEUROSIM 85.8 92.9

NEUROSIM(e2e) 93.1 96.7

Table 18: Quality of scene graph measured via retrieval
(Extension of Table 4 of main paper)

Instruction
type

Hops
Total

0 1 2 3

Add NA 18.9 30.5 37.5 29.5

Remove 91.5 85.1 80.0 84.9 85.6

Change 70.7 81.7 76.2 70.2 74.6

Total 81.5 55.6 55.9 58.1 60.5

Table 19: Few-shot parsing results of GPT-4

guidance, Add instructions remained significantly
lower in accuracy compared to other instruction
types. This analysis demonstrates that our rein-
forcement learning-based instruction parser out-
performs GPT-4, at least on this dataset. It also
highlights the need for more careful prompt engi-
neering before LLMs like GPT-4 can be readily
applied in our specific setting.

G Computational Resources

We trained all our models and baselines on 1 Nvidia
Volta V100 GPU with 32GB memory and 512GB
system RAM except IP2P which was trained on
8-A100 80 GB GPUs. Our image decoder training
takes about 4 days of training time. Training of
the VQA task takes 5 − 7 days of training time
and training the Manipulation networks take 4− 5
hours of training time.

H Hyperparameters and Validation
Accuracies

H.1 Training for VQA Task

The hyperparameters for the VQA task are kept
same as default values coming from the prior
work (Mao et al., 2019). We refer the readers to
(Mao et al., 2019) for more details. We obtained a
question answering accuracy of 99.3% after train-
ing on the VQA task.

H.2 Training Semantic Parser

The semantic parser is trained to parse instruc-
tions. Learning of this module happens using the
REINFORCE algorithm as described in Section C of
this appendix. During REINFORCE algorithm, we
search for positive rewards from the set {7, 8, 10},
and negative rewards from the set {0, 2, 3}. We
finally choose a positive reward of 8 and negative
reward of 2. For making this decision, we first train
the semantic parser for 20 epochs and then calcu-
late its accuracy by running it on the quantized
scenes from the validation set. For a particular
output program, we say it is correct if it leads to
an object being selected (see Section C of the ap-
pendix for more information) and this is how the
accuracy of the semantic parser is calculated. This



accuracy is a proxy for the real accuracy. An alter-
native is to use annotated ground truth programs
for calculating accuracy and then selecting hyper-
parameters. However, we do not use ground truth
programs. All other hyperparameters are kept the
same as used by (Mao et al., 2019) to train the
parser on VQA task. We obtain a validation accu-
racy of 95.64% after training the semantic parser
for manipulation instructions.

H.3 Training Manipulation Networks
The architecture details of the manipulation net-
work are present in Section C of this appendix. We
use batch size of 32, learning rate of 10−3, and
optimize using AdamW (Loshchilov and Hutter,
2019) with weight decay of 10−4. Rest of the hy-
perparameters are kept the same as used in (Mao
et al., 2019). During training, at every 5th epochs,
we calculate the manipulation accuracy by using
the query networks that were trained while training
the NEUROSIM on VQA data. This serves as a
proxy to the validation accuracy.

• For the change network training, we use the
query accuracy of whether the attribute that was
supposed to change for a particular object, has
changed correctly or not. Also, whether any other
attribute has changed or not.

• For the add network training, we use the query
accuracy of whether the attributes of the added
object are correct or not. Also, whether the added
object is in a correct relation with reference ob-
ject or not.

We obtained a validation accuracy (based on query-
ing) of 95.9% for the add network and an accuracy
of 99.1% for the change network.

H.4 Image Decoder Training
The architecture of the image decoder is similar
to (Johnson et al., 2018) but our input scene graph
(having embeddings for nodes and edges) is di-
rectly processed by the graph neural network. We
use a batch size of 16, learning rate of 10−5, and
optimize using Adam (Kingma and Ba, 2015) opti-
mizer. The rest of the hyperparameters are same as
(Johnson et al., 2018). We train the image decoder
for a fixed set of 1000K iterations.

I Qualitative Analysis

Figures 7, 8, 9 compare the images generated by
NEUROSIM, TIM-GAN, and GeNeVA on add,

change and remove instructions respectively. NEU-
ROSIM’s advantage lies in semantic correctness of
manipulated images. For example, see Figure 7 row
#3,4; Figure 8 row #2; 9 all images. In these im-
ages, NEUROSIM was able to achieve semantically
correct changes, while TIM-GAN, GeNeVA faced
problems like blurry, smudged objects while adding
them to the scene, removing incorrect objects from
the scene, or not changing/partially changing the
object to be changed. Images generated by TIM-
GAN are better in quality as compared to NEU-
ROSIM. We believe the reason for this is that TIM-
GAN, being fully supervised, only changes a small
portion of the image and has learned to copy a sig-
nificant portion of the input image directly to the
output. However, this doesn’t ensure the semantic
correctness of TIM-GAN’s manipulation, as de-
scribed above with examples where it makes errors.
The images generated by NEUROSIM look slightly
worse since the entire image is generated from ob-
ject based embeddings in the scene graph. Improv-
ing neural image rendering from scene graphs can
be a promising step to improve NEUROSIM.

J Errors

Figure 10 captures the images generated by our
model where it has made errors. The kind of errors
that NEUROSIM makes can be broadly classified
into three categories.

• [Rendering Errors] This set includes images
generated by our model which are semantically
correct but suffer from rendering errors. The
common rendering errors include malformed
cubes, partial cubes, change in position of ob-
jects, and different lighting.

• [Logical Errors] This set includes images gen-
erated by our model which have logical errors.
That is, manipulation instruction has been inter-
preted incorrectly and a different manipulation
has been performed. This happens mainly due to
an incorrect parse of the input instruction into the
program, or manipulation network not trained to
perfection. For example, change network chang-
ing attributes which were supposed to remain
unchanged.

• [VQA Errors] The query networks are not ideal
and have errors after they are trained on the VQA
task. This in turn causes errors in supervision (ob-
tained from query networks) while training the



TIM-GAN Input Image Instruction NEUROSIM GeNeVA

There is a shiny thing that is on 
the right side of the shiny block, 
add a big gray metallic ball in 
front of it.

There is a rubber thing behind 
the matte thing in front of the 
tiny rubber object, add a tiny 
blue shiny sphere behind it.

Add a small gray rubber cylinder 
that is in front of the big cube.

Ground Truth 

Add a large gray metallic 
cylinder that is in front of the 
small rubber object behind the 
tiny green matte cylinder.

There is a purple shiny object in 
front of the purple metal ball, 
add a large red matte ball to the 
left of it.

Figure 7: Visual comparison of NEUROSIM with TIM-GAN and GeNeVA for the add operator. The red bounding
boxes in the ground truth output image indicate the objects required to add to the input image.

TIM-GAN Input Image Instruction NEUROSIM GeNeVA

There is a rubber thing in front 
of the red matte ball; change the 
shape of it to cylinder. 

Change material of the rubber 
object in front of the small 
rubber thing that is left of the 
tiny gray matte sphere that is in 
front of the yellow block to shiny.

There is a small matte thing; 
change the color of it to purple.

Ground Truth 

There is a cylinder that is behind 
the small metallic cylinder; 
change the size of it to tiny.

There is a tiny cylinder that is to 
the left of the small blue thing to 
the left of the big green metallic 
cylinder; change the material of 
it to matte.

Figure 8: Visual comparison of NEUROSIM with TIM-GAN and GeNeVA for the change operator. The red
bounding boxes in the input and ground truth output image indicate the objects required to be changed.

manipulation networks and leads to a less than
optimally trained manipulation network. Also,
during inference, object embeddings may not be
perfect due to the imperfections in the visual rep-
resentation network and that leads to incorrect
rendering.

K Ablations

Table 20 shows the performance of NEUROSIM
when certain loss terms are removed while learning
of the networks. This depicts the importance of loss
terms that we have considered. In particular we
test the performance of the network by removing



TIM-GAN Input Image Instruction NEUROSIM GeNeVA

There is a large metal object left 
of the metallic object that is to 
the right of the large metallic 
thing in front of the sphere, 
remove it.

Ground Truth 

Remove the large shiny object 
that is behind the big purple 
cylinder.

There is a big sphere in front of 
the big ball behind the blue 
thing, remove it.

There is a metallic thing in front 
of the small gray rubber thing, 
remove it

There is a shiny cube, remove it.

Figure 9: Visual comparison of NEUROSIM with TIM-GAN and GeNeVA for the remove operator. The red
bounding boxes in the input image indicate objects required to be removed.

Figure 10: Types of errors in NEUROSIM.

edge adversarial loss used by add network (row 2),
object adversarial losses for both add and change
networks (row 3, 5), self supervision losses used by
add network (row 4), cyclic (row 6) and consistency
(row 7) losses used by change network.

L Interpretability of NEUROSIM

NEUROSIM allows for interpretable image manip-
ulation through programs which are generated as an
intermediate representation of the input instruction.
This is one of the major strengths of NEUROSIM,
since it allows humans to detect where NEUROSIM
failed. This is not possible with purely neural mod-
els, that behave as a black box. Knowing about the



Loss R1 R3

ℓ 45.3 65.5

ℓ− ℓaddedgeGAN 43.7 66.0

ℓ− ℓaddobjGAN 44.3 60.2

ℓ− ℓaddobjSup − ℓaddedgeSup 44.1 57.9

ℓ− ℓchangeobjGAN 44.9 61.5

ℓ− ℓchangecycle 36.5 51.1

ℓ− ℓchangeconsistency 31.0 44.8

Table 20: Ablations conducted by removing some loss
terms. ℓ is the total loss before any ablation. For each
loss term being removed, the superscript denotes which
network it belongs to (add or change). Ablations are
conducted for the setting where β = 0.054 (see main
paper Section 4 for the definition of β)

failure cases of NEUROSIM also means that it can
be selectively trained to improve certain parts of
the network (for eg individually training on change
instructions to improve the change command, if
the model is performing poorly on change instruc-
tions). We now assess the correctness of intermedi-
ate programs using randomly selected qualitative
examples present in Figure 11. Since no wrong
program was obtained in the randomly selected set,
we find 2 more data points manually, to show some
wrong examples.

M Human Evaluation Details

See Table 21 for the questions (paraphrased) asked
to the evaluators. Detailed instructions and an ex-
ample of the questions provided to the evaluators
can be found in Figure 12. A total of 10 evalu-
ators, consisting of a mix of undergraduate and
post-graduate students, were involved in the study.
The same set of 30 random images were given to
each evaluator. They were compensated at a rate
three times the average hourly salary in the country
of origin. Each evaluator was given upto 24 hours
to complete the task.

N Simplifying Multi-Hop Instructions
using NeuroSIM Modules

In this section, we provide details on our method of
utilizing the trained semantic parser to convert the
complex multi-hop instruction into a simplified 0
or 1 hop instruction. We generate three simplified

templates one for each edit operation.
1. Change the [attribute] of [size] [color] [mate-
rial] [shape] to [attribute’]
2. Remove the [size] [color] [material] [shape]
3. Add a [size] [color] [material] [shape] to the
[relation] of [shape’]. Next, given a multi-hop
instruction we parse it using our semantic parser
which gives us the object’s embedding on which
either an operation is to be executed (in case of
change and remove operations) or a new object has
to be inserted in relation to it (in case of add op-
eration). The trained query-networks predicts the
symbolic values of the concepts in the placeholders.
Example, if the MH instruction is "Change the size
of the big thing that is behind the metallic cylin-
der behind the purple object that is to the right of
the big brown shiny object to tiny" , we find the
placeholder attributes to be operation=change, at-
tribute=size, color=yellow, shape=cube, size=large,
material=rubber, attribute’=tiny. Hence the sim-
plified instruction becomes, "Change the size of
the large yellow rubber cube to tiny". Add and
Remove instructions follow similarly.



Input Image Instruction 

Change the shape of the big
gray thing to cube.

Remove the gray rubber
thing in front of the gray
matte sphere behind the
large gray matte sphere.

Remove the brown metal
object that is left of the blue
matte block that is left of the
brown thing on the right side
of the large cyan metal cube.

There is a matte block that
is in front of the big gray
rubber object; change the
material of it to shiny.

Add a tiny purple metal ball
that is in front of the blue
object that is behind the
matte ball.

Generated Program Correctness

Remove the cylinder that is
to the right of the matte
cylinder that is in front of
the small red matte thing.

Add a large purple shiny
sphere behind the shiny
cube behind the tiny gray
object.

Change the material of the
small metallic block in front
of the brown metal block to
rubber.

Change the shape of the
large object in front of the
tiny yellow sphere to ball.

Remove the big ball that is
to the right of the large
thing in front of the purple
metallic object

scene() -> filter(['rubber', 'sphere']) -> relate(['behind']) -> filter(['blue']) -> 
add(rel_concept=['front'], concept_set=['small', 'purple', 'metal', 'sphere'])

scene() -> filter(['large', 'cyan', 'metal', 'cube']) -> relate(['right']) -> filter(['brown']) -> 
relate(['left']) -> filter(['blue', 'rubber', 'cube']) -> relate(['left']) -> filter(['brown', 
'metal']) -> remove()

scene() -> filter(['large', 'gray']) -> change(attr=shape, concept=['cube'])

scene() -> filter(['large', 'gray', 'rubber', 'sphere']) -> relate(['behind']) -> filter(['gray', 
'rubber', 'sphere']) -> relate(['front']) -> filter(['gray', 'rubber']) -> remove()

scene() -> filter(['large', 'gray', 'rubber']) -> relate(['front']) -> filter(['rubber', 'cube']) -
> change(attr=material, concept=['metal'])

scene() -> filter(['purple', 'metal']) -> relate(['front']) -> filter(['large']) -> 
relate(['right']) -> filter(['large', 'sphere']) -> remove()

scene() -> filter(['brown', 'metal', 'cube']) -> relate(['front']) -> filter(['small', 'metal', 
'cube']) -> change(attr=material, concept=['rubber'])

scene() -> filter(['small', 'red', 'rubber']) -> relate(['front']) -> filter(['rubber', 
'cylinder']) -> relate(['right']) -> filter(['cylinder']) -> remove()

scene() -> filter(['small', 'gray']) -> relate(['behind']) -> filter(['metal', 'cube']) -> 
add(rel_concept=['behind'], concept_set=['large', 'purple', 'metal', 'sphere'])

scene() -> filter(['small', 'yellow', 'sphere']) -> relate(['front']) -> filter(['large']) -> 
change(attr=shape, concept=['sphere'])

✅

✅

✅

✅

✅

✅

✅

✅

✅

✅

There is a blue thing behind
the big blue block left of the
thing that is in front of the
blue matte block; change
the color of it to brown.

scene() -> filter(['blue', 'rubber', 'cube']) -> relate(['front']) -> filter(['large', 'blue', 'cube']) -> 
relate(['left']) -> filter(['blue']) -> relate(['behind']) -> change(attr=color, concept=['brown']) ❌
Corrected program:
scene() -> filter(['blue', 'rubber', 'cube']) -> relate(['front']) -> relate(['left']) -> filter(['large', 
'blue', 'cube']) -> relate(['behind’]) -> filter(['blue']) -> change(attr=color, concept=['brown'])

✅

Remove the brown object 
on the left side of the object 
right of the brown object 
that is behind the big brown 
block.

scene() -> filter(['large', 'brown', 'cube']) -> relate(['behind']) -> filter(['brown']) -> 
relate(['right']) -> filter(['brown']) -> relate(['left']) -> remove() ❌
Corrected program:
scene() -> filter(['large', 'brown', 'cube']) -> relate(['behind']) -> filter(['brown']) -> 
relate(['right']) -> relate([‘left']) ->  filter([‘brown']) -> remove()

✅

Figure 11: Qualitative examples of generated programs by NEUROSIM.



Question 1:

[Change] Are all the attributes (color, shape, size, material, and relative
position) of the changed object mentioned in the instructions identical
between the ground truth image and the system-generated image?

[Add] Are all the attributes (color, shape, size, material, and relative
position) of the added object mentioned in the instructions identical
between the ground truth image and the system-generated image?

[Remove] Are same objects removed in ground truth image and the
system-generated image?

Question 2:

[Change] Are all the attributes (color, shape, size, material, and relative
position) of the remaining objects identical between the ground truth
image and the system-generated image?

[Add] Are all the attributes (color, shape, size, material, and relative
position) of the remaining objects identical between the ground truth
image and the system-generated image?

[Remove] Are all the attributes (color, shape, size, material, and relative
position) of the remaining objects identical between the ground truth
image and the system-generated image?

Table 21: Questions asked to human evaluators for evaluating NEUROSIM and TIM-GAN. Note that there are
some variations in the questions for Change, Add, and Remove instructions dues to different semantic nature of the
instructions.







Figure 12: Screenshots for human evaluation study. See Section 4.7 for more details


