
On Input Indistinguishable Proof Systems

Rafail Ostrovsky1, Giuseppe Persiano2,�, and Ivan Visconti2,�

1 University of California at Los Angeles
rafail@cs.ucla.edu

2 Università di Salerno
giuper@gmail.com, visconti@unisa.it

Abstract. We study Input Indistinguishable Computation (IIC), a se-
curity notion proposed by Micali, Pass, and Rosen in [14] and recently
considered also by Garg, Goyal, Jain and Sahai in [9]. IIC aims at gen-
eralizing the notion of a Witness Indistinguishable (WI) proof system
to general two-party functionalities and in its concurrent version (cIIC)
also considers security against man-in-the-middle (MiM) attacks.

In this paper, we focus on the proof system functionality and compare
IIC with two other security notions for proof systems: WI and Non-
Malleability (NM). We address the following two questions.
1. Since IIC is a generalization of WI from proof systems to general

2PC, are all WI proofs also IIC secure?
2. Are cIIC proofs also NM?

We show, somewhat surprisingly, that both answers to the above ques-
tions are negative. Indeed, we show that there exists a WI proof system
that is not IIC secure. We then show that a large class of WI proof
systems, including the classical Blum’s proof system for NP, are concur-
rently secure in the IIC sense. This answers the second question in the
negative, since Blum’s proofs are known to be malleable.

The consequence of our results is three-fold. 1) IIC is a too stringent
notion and this leaves the possibility of security notions weaker than
IIC with a satisfying level of security. 2) For important functionalities,
such as the proof system functionality, classical constructions like Blum’s
protocol are cIIC secure. 3) cIIC security should be carefully evaluated
when used as a security guarantee to model real-world concurrent attacks
to protocols, as our results show that cIIC security does not guarantee
non-malleability of proof systems. In contrast, standard simulation-based
security [5,2] and concurrent non-malleable WI (a game-based security
notion introduced by [15,16]) are secure against MiM attacks (the latter
even in constant rounds).

1 Introduction

Proof systems were introduced in [12] and their security was defined using the
simulation paradigm through the notion of Zero Knowledge (ZK). Witness Indis-
tinguishability (WI1) introduced by Feige and Shamir [8] is instead a game-based
� Work partially done while visiting University of California at Los Angeles.
1 We will use WI to mean both witness indistinguishability and indistinguishable.

J. Esparza et al. (Eds.): ICALP 2014, Part I, LNCS 8572, pp. 895–906, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

896 R. Ostrovsky, G. Persiano, and I. Visconti

security notion for proof systems requiring that the adversarial verifier be not
able to distinguish which of two given witnesses has been used by the prover. WI
is easily seen to be implied by ZK and, under plausible complexity assumptions,
there exist WI proof systems that are not ZK [6].

It was later observed that ZK is not preserved if more sophisticated attacks
are considered. Dwork et al. [7] initiated the study of security under concurrent
composition. That is, the adversarial verifier can play multiple concurrent ses-
sions keeping control over the scheduling of the messages. It is easy to see that
ZK is not closed under concurrent composition whereas WI is.

In a man-in-the-middle (MiM) attack an adversary A acts as a verifier in-
teracting with a honest prover and, at the same time, as a prover interacting
with a honest verifier. Security against MiM attacks is called non-malleability [5].
Concurrency and MiM can be combined by considering an adversary playing as
prover and verifier in multiple sessions. Formalizing security under such attacks
in the simulation paradigm gives the notion of concurrent non-malleable ZK [2]
(cNMZK) and guarantees non-transferability of proofs. The existence of a cN-
MZK protocol in the plain model with sub-logarithmic round complexity is a
major open problem. Ostrovsky et al. [15,16] proposed a game-based security
notion for proof systems, concurrent non-malleable WI (cNMWI), that implies
security against concurrent MiM attacks. cNMWI guarantees non-transferability
of proofs and is achievable in constant rounds, avoiding the complications of the
simulation paradigm. Proofs (rather than arguments) have been achieved in [4].

Beyond Proof Systems: Concurrently-Secure 2PC. Security of two-part compu-
tation (2PC) has been traditionally formalized within the simulation paradigm.
When concurrent attacks are considered though a series of impossibility results
hinted at the fact that this notion might be too stringent. Indeed, Lindell [13]
proved that concurrently secure 2PC can not be achieved for several interest-
ing functionalities. This first impossibility result relied on the use of adaptive
inputs through concurrent executions of protocols for some specific functionali-
ties. The result has been then strengthened to the static input case by [2], and
later broader impossibility results have been proved in [1,11].

Input-Indistinguishable Computation. Given the above limitations of simulation-
based notions capturing security against concurrent MiM attacks, Micali et
al. [14] proposed a game-based notion. Informally, the notion of Input Indistin-
guishability Computation (IIC, in short) tries to formalize the following security
goal for 2PC: suppose there is more than one input for player P1 that is consis-
tent with the output obtained by player P2; then, even a malicious P2 cannot
distinguish which of the possible consistent inputs has been actually used by P1
in an execution. This is very similar in flavor to what WI requires from a proof
system. The notion of IIC can be extended by considering the concurrent setting,
where several sessions can be concurrently played and the adversary is allowed
to play different roles in different sessions. The goal of cIIC is to guarantee that
the output of the honest players in some sessions is not affected by the inputs
used by honest players in other sessions, and this must hold for all inputs of

On Input Indistinguishable Proof Systems 897

the honest players that would produce the same outputs in those other sessions.
The goal of the adversary is to play concurrently in different sessions to create
correlations among their inputs/outputs.

Interestingly, in [14] it is first shown that IIC is not closed under concurrent
composition. In particular, this is proved by showing a successful concurrent MiM
attack on a protocol implementing the coin-flipping functionality. In the same
paper [14], by building on top of some powerful non-malleable subprotocols, the
authors showed a constant-round cIIC protocol for any two-party functionality.
This is a major result since for the first time a meaningful security notion is shown
to be feasible in the concurrent setting without relying on set-up assumptions.

The Recent Work of Garg et al. [9]. Very recently, Garg, Goyal, Jain and Sa-
hai [9]2 gave a different notion of IIC with a simulation-based flavor, that we
refer to as sIIC. Their notion also applies to randomized functionalities and
is therefore more general. The proposed definition however is unsatisfactory if
there exists a “splitting input” as discussed in [14]. Then [9] proposed another
formulation referred to as exdIIC, that implies both IIC and sIIC. Of course the
concepts of sIIC and exdIIC are naturally extended to the concurrent setting.

IIC: The Impact on Proof Systems. IIC is of major importance for the following
two reasons: a) there are several popular computations as the Millionaire Prob-
lem, where the goal is simply to keep the input hidden among all other possible
inputs that produce the same output, and IIC seems to be sufficient to achieve
such a type of security; b) constant-round cIIC for any 2-party functionality
has been achieved, while the same result under the standard simulation-based
notion of secure computation is impossible to achieve, regardless of the round
complexity. cIIC is therefore an appealing security notion to model security un-
der concurrent composition in the plain model.

In this work we will focus on relations among IIC and two well-studied security
notions for proof systems: WI and NM. The reason is two-fold. First, IIC has
been proposed as a generalization of WI. Second, a MiM attacks to a protocol
implementing the coin-flipping functionality proved that IIC is not closed under
concurrent MiM attacks. Ignoring details of definitions one would expect at least
one of the following two implications be true.

1. Since IIC is a generalization of WI to general two-party functionalities when
the proof system functionality is taken into account then IIC and WI should
coincide. In other words, every WI proof system should be IIC secure and
any IIC-secure proof system should be WI.

2. Since a cIIC-secure protocol must defeat some forms of MiM attacks, then
any cIIC-secure proof system should be non-malleable too.

1.1 Our Results

In this paper we analyze IIC-security in proof systems. Indeed IIC has been
defined with the goal of lifting up the notion of WI from the proof system
2 When referring to [9], we will actually refer to the full version available at [10].

898 R. Ostrovsky, G. Persiano, and I. Visconti

functionality to general 2-party functionalities. Therefore any subtlety in IIC
for the proof system functionality is potentially reflected on many other 2-party
functionality (in particular to the functionalities that are similar to the proof
system functionality). We embark on the task of finding answers to the above
two questions that try to relate IIC to WI and non-malleable of proof systems.

We show that there exists a non-conversation-based3 WI system that does not
enjoy IIC. This is indeed surprising since the notion of IIC has been introduced
to generalize the notion of WI to any other 2-party functionality, and thus one
should expect that WI proofs of knowledge be IIC secure too. We then show
that most of WI proofs of knowledge found in the literature are also secure in
the IIC sense for the proof-system functionality even under concurrent composi-
tion. Specifically, this holds for conversation-based proofs, therefore contradicting
the second claim. Indeed this class of WI proofs of knowledge contains several
malleable protocols such as Blum’s protocol.

We consider the notions of sIIC and exdIIC proposed in [9] and show that in
contrast to IIC, every WI PoK is also sIIC. Of course since exdIIC implies IIC,
there exists a (non-conversation-based) WI PoK that is not exdIIC secure. We
will also prove that any conversation-based WI PoK is also exdIIC secure.

Consequences. In addition to the conceptual relevance of showing somewhat
unexpected relations among security notions, our results have the following three
consequences in applications of IIC.

First, IIC does not generalize WI but only a stronger form of it. The impact of
this is that it is still possible to give a weaker definition of IIC that still captures
the desired flavor, but that is easier to achieve. sIIC goes in this direction.

Second, there are important functionalities (e.g., the proof system function-
ality) such that classic constructions (e.g., Blum’s protocol) are already cIIC se-
cure. Therefore depending on the functionality in question, cIIC-security could
come for free, without resorting to the general and inefficient (based on the use
of expensive non-malleable subprotocols) constructions shown in previous work.

Third, when relying on cIIC for some 2-party functionalities, the actual mean-
ing of cIIC for the given functionality should be carefully evaluated. Indeed
while simulation-based secure 2PC provides strong enough guarantees, the se-
curity of cIIC can be unsatisfying. Such a decreased security does not depend
on the fact that non-transferability of proofs requires simulation. Indeed, for the
case of proof systems, it is still possible to obtain non-malleability (i.e., non-
transferability of proofs) under an indistinguishability notion (e.g., NMWI [15]).
We show that the formulation of cIIC does not give such a guarantee.

2 Definitions

A polynomial-time relation R is a relation for which it is possible to verify in
time polynomial in |x| whether R(x, w) = 1. We consider NP-languages L and
3 In a conversation-based proof the transcript identifies the common instance x and

with overwhelming probability whether the verifier accepted or rejected.

On Input Indistinguishable Proof Systems 899

denote by RL the corresponding polynomial-time relation such that x ∈ L if and
only if there exists w such that RL(x, w) = 1. We call such a w a valid witness
for x ∈ L and denote by WL(x) the set of valid witnesses for x ∈ L. We slightly
abuse notation and, whenever L is clear from the context, we simply write W (x)
instead of WL(x). For sequences X = (x1, · · · , xm) and W = (w1, · · · , wm), by
the writing “W ∈ W (X)” we mean that wi ∈ W (xi) for i = 1, · · · , m.

For a language L we will denote by Lm
n the set of sequences of m elements of

L each of length at most n. A negligible function ν(k) is a function such that for
any constant c < 0 and for all sufficiently large k, ν(k) < kc.

We stress that we will always refer to polynomial-time adversaries, therefore
when we say proof systems or PoK, we actually refer to arguments.

We will use the standard definitions of proof system, WI and and the definition
of IIC given in [14].

3 Input Indistinguishability vs WI

In this section we consider the notion of IIC [14] for the proof system functional-
ity and compare it with the notion of a WI proof system [8]. While it is trivial to
see from the definitions that any IIC proof is also WI, we show that the opposite
implication does not hold.

We first show that a large class of WI proof systems (that includes all WI
proof systems in the literature) also enjoys cIIC. However we will also show that
this does not hold for all WI proof systems. The above large class consists of
all WI proofs of knowledge that are conversation-based; that is, one can guess
the output of the verifier (that is, whether the verifier accepts) by looking at
the transcript of the protocol and, possibly, running in super-polynomial time.
It is easy to see that all WI proof systems in the literature enjoy this property
even in a very stringent sense, since the sole transcript is usually sufficient to
efficiently guess whether the verifier accepts.

In this section, we denote the prover P by P1 and the verifier V by P2 in order
to keep notation consistent with [14].

The Proof System Functionality FL
PK. The input of (the prover) P1 for func-

tionality FL
PK for NP language L consists of a pair (x, y) whereas (the verifier)

P2 has in input only x. The output f1 of P1 in FL
PK((x, y), x) is defined as

f1((x, y), x) = ⊥ (i.e., P1 does not get any output); output f2 of P2 instead is de-
fined as f2((x, y), x) = 1 if y is a valid NP witness for x ∈ L; and f2((x, y), x) = 0,
otherwise.

Notice that FL
PK is defined with the two players having common input x.

Whenever L is clear from the context, we will simply write FPK.

Remark 1. One could think of using a different definition for the ideal function-
ality of a proof system where prover and verifier can have different statements as
input. With such a different definition, then it happens that even the standard
zero-knowledge PoK of Blum (e.g., sequential repetition of the classical 3-round

900 R. Ostrovsky, G. Persiano, and I. Visconti

protocol with a 1-bit challenge) would not be a secure instantiation (in the classi-
cal 2PC sense) of such a proof system functionality. The reason is that with such
a functionality, the input statement x of the prover should remain private when
playing with a V ∗ that runs on input a statement x′ different from x. Instead
in Blum’s protocol the statement proven by the prover is not private at all. In
general implementing such a functionality could require techniques/assumptions
taken from general 2-party computation. Therefore we find such a definition of
an ideal functionality less intuitive than the one that we use in the paper and
that follows in spirit the formulation of [12].

Conversation-Based WI Proofs. We say that a WI proof is conversation-based if,
given a transcript of the protocol it is possible to identify the common instance x
and to compute with overwhelming probability the output of the honest verifier.
We stress that no time bound is imposed on the decision procedure. All standard
WI proofs (including Blum’s protocol [3]) are in this category.

3.1 Conversation-Based WI ⇒ IIC

In this section we prove that all conversation-based WI proof systems with per-
fect completeness are also cIIC for the proof system functionality FPK. Thus,
following Definition 1 and 2 of [14], we exhibit, for any conversation-based WI
proof, a first-party and second-party implicit input functions IN1, IN2 that fulfill
all requirements of IIC.

Defining the Implicit-Input Functions for FPK. We remind the reader that,
according to the definition of IIC, implicit-input functions are not necessarily
efficiently computable.

IN1: Let View∗
1(e) be the full view of P ∗

1 of an execution e of (P ∗
1 , P2) (this

includes the private coins and the input of P ∗
1). For each session i of e, the

output of IN1 on input View∗
1(e) is defined as follows.

If OUTPUTi
1(e) = 1 and the verifier P2 accepted the proof (this can be decided

because of the conversation-based property), then IN1 outputs a pair consisting
of the instance x that is obtained fromView∗

1(e) (as it is the i-th common input),
and the lexicographically first witness y for x ∈ L. Instead, IN1 outputs ⊥ for
all sessions i in which OUTPUTi

1(e) = 0 or the verifier P2 did not accept the proof
(again, this is can be decided using the conversation-based property).
IN2: Let View∗

2(e) be the full view of P ∗
2 of an execution e of (P1, P ∗

2).
For each session i of e, if OUTPUTi

2(e) = 1, IN2 on input View∗
2(e) outputs

the statement x that is obtained from View∗
2(e) since it is the i-th common

input, and outputs ⊥ otherwise.

First of all, notice that IN1 and IN2 are implicit functions (i.e., they both
output ⊥ in case of aborts).

On Input Indistinguishable Proof Systems 901

Completeness. For any session i, Prob
[

P1(Viewi
1(e)) = f1((xi, yi), xi)

]
= 1 and

Prob
[

P2(Viewi
2(e)) = f2((xi, yi), xi)

]
= 1. Indeed, for the former, notice that

f1 always outputs ⊥, and honest prover P1 never outputs a value different than
⊥; for the latter, notice that P2 outputs precisely a bit denoting accept or reject
and this coincides with the output of f2. The perfect completeness property of
the WI proof is required to prover the IIC completeness.

Implicit Computation. Let P ∗
2 be the adversary. W Prob

[
P1(Viewi

1(e)) = ⊥]
=

1 in session i, and also f1((xi, yi), x∗
i) = ⊥ where x∗

i = is the i-th compo-
nent of the output of IN2(View∗

2(e)). Here notice that regardless of the value of
OUTPUTi

1(e), both P1(Viewi
1(e)) = ⊥ and f1((xi, yi), x∗

i) are always equal to ⊥.
Let P ∗

1 be the adversary. If OUTPUTi
2 is false then Prob

[
P2(Viewi

2(e)) = ⊥]
=

1 since the output delivery message of the i session is not in the view of e. In
case OUTPUTi

2 is true, we have that the i-th component (xi, y∗
i) of the output of

IN1(View∗
1(e)), is a valid theorem-witness pair for the i-th component xi of the

input of P2 in the i-th session, only if P2 gives in output 1. Therefore the implicit
function IN1 always outputs a value that makes the evaluation of f2 consistent
with the output of P2

4.

Input Indistinguishability and Independence. We next show that for any ad-
versary P ∗

2 it holds that {EXPTP1,P ∗
2 ((x,y1), (x,y2),x; 1n)} is indistinguishable

from {EXPTP1,P ∗
2 ((x,y2), (x,y1),x; 1n)}.

Indeed, the input function IN2 selects xi from View∗
2(e) independently of the

other inputs. Since those other inputs are the only differences between the two
experiments we have that by the WI of the views, the outputs (x∗,View∗

2(e)) of
both experiments are computationally indistinguishable.

Let us now consider adversary P ∗
1 . In this case we have that,

since the verifier has as input only x, both experiments correspond to
{EXPTP ∗

1 ,P2((x,y),x,x; 1n)}. The input function IN1 defined above selects the
instance-witness pair (xi, yi) for the i-session from the view of the i-th execution
independently of the witness that has been actually used (as long as the tran-
script is accepting), since IN1 considers the first witness in lexicographic order.
Therefore both experiments produce the same output (y∗,View∗

1(e)).

From Fixed Roles to a General Adversarial Behavior. Notice that in the discus-
sion above, we have considered a fixed-role adversay only; that is, an adversary
that either plays the role of the prover in all sessions or it plays the role of
verifier. Intuitively, we used the following two facts: 1) when the adversary is
a verifier, it has as input only x and the output by EXPT is a tuple of pairs
(y,View), one for each session, where y is actually independent of the witness
used by the prover, and View is a witness indistinguishable transcript; 2) when
the adversary is a prover, the honest verifier has no private input and thus the
two experiments EXPT of the definition collapse in one experiment only, so that
indistinguishability of the output is trivial.
4 The fact that IN1 uses the conversation-based property is critical. Indeed we will

exploit this to show that there exists a WI proof system that does not enjoy IIC.

902 R. Ostrovsky, G. Persiano, and I. Visconti

In general, the adversary could play a man-in-the-middle attack; that is, it
could play the role of the prover in some sessions and the role of the verifier in
other sessions. We next argue that the above analysis still works. Indeed, based
on the two possible sequences of inputs of the honest provers, we have that:

1) in the sessions where the adversary played as verifier, the output of EXPT
contains witnesses unrelated to the ones used by honest provers and views that
do not allow one to distinguish which witness has been used; 2) in the sessions
where the adversary played as prover, we will have statements and views that
again can only vary according to the sequence of witnesses used by honest provers
in other sessions, which in turn means that, by the witness indistinguishability
of those proofs, these views are indistinguishable as well.

Thus we proved the following theorem.

Theorem 1. Any conversation-based WI proof system for an NP language L is
IIC (even under concurrent composition) for FL

PK.

3.2 WI �⇒ IIC for FPK

Here, we show that there exist WI proof systems that do not enjoy IIC.

Theorem 2. There exists a WI proof system Π for NP language L that is not
IIC for functionality FL

PK.

Proof. Consider the classical proof system pBLUM that consists of parallel ex-
ecutions of Blum’s protocol for the NP-complete language of the Hamiltonian
graphs [3]. More precisely, in the first round of pBLUM with security parameter
k and input graph G, the prover selects k random permutations π1, . . . , πk, com-
putes graphs G1, . . . , Gk where Gi = πi(G) and sends the commitments of the
adjacency matrices of the k graphs. The verifier picks random bits b1, . . . , bk and
sends them to the verifier. Finally, for each i for which bi = 0, the prover opens
all the commitments of the adjacency matrix of Gi and sends πi; instead, for
each i for which bi = 1, the prover opens the commitments of the adjacency ma-
trix of Gi that correspond to edges in a Hamiltonian cycle. The verifier accepts
if and only if all the k answers obtained are correct.

It is easy to see that pBLUM is a WI proof system with perfect completeness
and negligible (in k) soundness error for the language of the Hamiltonian graphs.
Also, pBLUM is conversation-based since the final decision of the verifier is solely
based on the transcript.

To prove Theorem 2, we artificially modify pBLUM by requiring the honest
verifier V to randomly select j ∈ {1, . . . , k} and to neglect the answer of the
prover in the j-th parallel execution in deciding whether to accept or not. The
resulting protocol, mBLUM, enjoys perfect completeness and negligible sound-
ness error and is still WI. However, mBLUM is not conversation-based. Indeed, a
malicious prover P ∗ could use a string s hardwired in its code to decide to play
wrongly in exactly one of the k parallel executions while playing honestly in the
remaining ones. Notice that the honest verifier for mBLUM will accept the proof
of P ∗ with non-negligible probability 1/k. Indeed, it will accept exactly when

On Input Indistinguishable Proof Systems 903

the randomly selected parallel execution of the protocol corresponds to the one
specified by s. Therefore, by looking at the transcript one can not guess and
be correct with overwhelming probability if the honest verifier accepted or not.
Notice that this holds unconditionally, even when the private input and coins of
the prover are known.

Formally, assume that the instance is x and the witness is y. We have that the
Implicit Computation property does now hold when P ∗

1 is the above adversarial
prover and P2 is the above honest verifier. Indeed in the above execution it
happens that P2(View1

2) = 1 with probability 1/k and P2(View1
2) = 0 with

probability 1 − 1/k. The probability is over (a subset of) the private coins of
P2 that are independent from the transcript. Therefore to satisfy the Implicit
Computation property one should have an implicit function IN1 that on input
View∗

1 guesses with overwhelming probability the output of P2. However, View∗
1

does not contain the private coins used by P2 to discard one of the parallel
executions of Blum’s protocol, therefore any implicit function IN1 fails with
non-negligible probability5.

The existence of a WI proof system that is not IIC proves that IIC is a
generalization to general functionalities of some special forms of WI only.

4 Simulation-Based IIC: sIIC and exdIIC

Here we study some relations among WI, IIC and sIIC and exdIIC [10]. We stress
that even though we focus on the proof-system functionality, it is expected that
our results extend to several other functionalities.

We next briefly review the notions of sIIC and exdIIC and refer the reader to
Definition 5 and Definition 7 of [10] for formal definitions.

Classical (simulation-based) concurrently-secure 2PC requires the existence of
a simulator S for every real-world adversary A so that the views of the adversary
in the real world and in the ideal world are indistinguishable. Roughly speaking,
sIIC (called IIC in [10]) relaxes this requirement by allowing the simulator S to
depend also on the pair of input vectors of the honest party and by only requiring
that the distributions of the outputs of the two party to be indistinguishable. The
definition of extended Input Indistinguishable Computation (exdIIC, for short)
strengthens the notion of sIIC by requiring indistinguishability between the ideal
and real world of the pair consisting of the output of the parties (so far, it is
similar to sIIC) and the input of the adversary which for the real world is defined
by means of an implicit function IN that extracts the input from the view. For
further details on sIIC and exdIIC, see Definition 5 and Definition 7 of [10].

5 Indeed even in case one can have a randomized implicit function IN1 that with
probability 1 − 1/k outputs ⊥, it would work against the above P ∗

1 , but it would fail
against another adversary P ∗∗

1 that just plays as honest prover and always convinces
the verifier.

904 R. Ostrovsky, G. Persiano, and I. Visconti

4.1 WI and IIC vs sIIC

Theorem 3. Any WI PoK for an NP language L is sIIC for FL
PK.

Proof. First of all remember that in the definition of [9], the simulator can be
different for different pairs of inputs obtained by the honest player.

When the real-world prover is honest, the simulator plays as verifier in the
ideal world and simulates a prover against the malicious verifier. The simulator
internally has two witnesses (sIIC allows a different simulator for each pair of
inputs for the honest player) for the theorem corresponding to the input state-
ment and picks one of them to be used with the malicious verifier, playing then
the protocol of the honest prover.

When the real-world verifier is honest, the simulator plays as prover in the
ideal world and simulates a verifier against the malicious prover. Since the honest
player (i.e., the verifier) has no witness, the simulator will have no witness as
well. However the PoK property guarantees that the simulator can extract a
witness from the malicious prover and can then play it in the ideal world.

It is easy to see that if the output of the ideal-world experiment differs form
the one of the real world, one can easily break the WI of the proof system.
Indeed notice that for the sessions where the simulator is an ideal-world verifier,
the only deviation with respect to the real world consists in the fact that the
simulator might use a different witness. For the sessions where the simulator is
a real-world verifier, the only deviation with respect to the real world consists
in the fact that the simulator has to extract a witness from P ∗ in order to play
it in the ideal world. The PoK property guarantees that this can be done.

Notice that rewinding the adversary in the concurrent setting is often danger-
ous and can blow up the running time of the simulator. Nevertheless, since here
the simulator rewinds only the malicious prover, there is no issue with its run-
ning time. The reason is that rewinds are related to extractions and can therefore
be done sequentially, applying the extractor to the final transcript. During each
extraction, there are no rewinds related to other sessions.

4.2 WI and IIC vs exdIIC

With the purpose of having a definition that also captures the security goals
of IIC, Garg et al. in [9] defined exdIIC and proved that it implies both IIC
of [14] and sIIC. One might think that exdIIC is a strengthening of IIC that
requires stronger security properties (indeed it is a simulation-based notion) and
it could be possible that several protocols that are IIC are not exdIIC. We show
that for the proof system functionality this is not the case as we prove that any
conversation-based WI PoK is also secure in the exdIIC sense.

Theorem 4. Any conversation-based WI PoK for NP language L is exdIIC for
functionality FL

PK.

Proof. The definition of exdIIC considers the indistinguishability of ideal and
real world experiments also including 1) in the distribution of the ideal-world

On Input Indistinguishable Proof Systems 905

experiment, the inputs sent by the adversary to the trusted party and 2) in
the distribution of the real-world experiment, the outputs of implicit functions
IN1, IN2 on inputs the views of the adversaries.

The proof given for the case of sIIC is not sufficient here because we need to
define implicit functions first, and then we must make sure that the inputs sent
by the simulator to the ideal functionality are consistent with the outputs of the
implicit functions.

Since the honest verifier of a PoK runs on input just the statement of the the-
orems, the implicit function IN2 can just output the list of theorems (accepting
or not) belonging to the view received in input. Therefore the only problem is
to define the implicit function IN1 that receives as input the view of the adver-
sarial prover. Our choice is to have IN1 to output, for each theorem in the view
received in input, the first valid witness in lexicographic order provided that the
transcript of the session is accepting6, otherwise it will output ⊥.

In order to have that the inputs sent to the functionality by the ideal-world
adversary be consistent with the output of IN1 we consider a simulator that first
runs internally as verifier against the real-world adversary and checks if it gets
a convincing proof. If this is the case, the simulator send to the functionality
the witness that it has hardwired in its code. Notice that since in the definition
of [9] there is a simulator for any pair of inputs, we have that there always exists
a simulator that contains hardwired in its code the first witness in lexicographic
order corresponding to the theorem specified in the input of the prover.

The case of an ideal-world adversarial verifier is simpler. As soon as a proof
starts the simulator sends the theorem to the ideal functionality, and if it gets
as output 1, it runs internally the honest prover procedure using the witness
that it has hardwired in its code. If instead it receives 0, it just sends and abort
message to the real-world adversarial verifier (the same things is of course done
by a prover when the theorem to be proved is different from the one expected by
the verifier). As for the case of sIIC, this proposed simulation is indistinguishable
by the WI of the underlying proof system. Therefore the theorem holds.

It is worthy to notice the point in which the above theorem would fail in
case of non-conversation based WI proof systems. Indeed we have that IN1 could
output a witness even when the verifier, because of his private coins, does not
accept that transcript. Therefore in the real-world experiment, the verifier would
output 0 while the output of IN1 would be a witness. Then in the ideal-world
experiment the simulator would be required to send the same witness, which of
course allows the honest verifier of the ideal world to obtain 1 as output. This
would clearly make ideal and real worlds distinguishable.

Acknowledgments. Work supported in part by NSF grants 09165174, 1065276,
1118126 and 1136174, US-Israel BSF grant 2008411, OKAWA Foundation Re-
search Award, IBM Faculty Research Award, Xerox Faculty Research Award,
B. John Garrick Foundation Award, Teradata Research Award, and Lockheed-
Martin Corporation Research Award. This material is based upon work sup-
ported by the Defense Advanced Research Projects Agency through the U.S.
6 This restricts the statement of our theorem to conversation-based proofs only.

906 R. Ostrovsky, G. Persiano, and I. Visconti

Office of Naval Research under Contract N00014 -11 -1-0392. The views ex-
pressed are those of the author and do not reflect the official policy or position
of the Department of Defense or the U.S. Government.

References

1. Agrawal, S., Goyal, V., Jain, A., Prabhakaran, M., Sahai, A.: New impossibility
results for concurrent composition and a non-interactive completeness theorem for
secure computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 443–460. Springer, Heidelberg (2012)

2. Barak, B., Prabhakaran, M., Sahai, A.: Concurrent non-malleable zero knowledge.
In: 47th FOCS. IEEE Computer Society Press (2006)

3. Blum, M.: How to Prove a Theorem So No One Else Can Claim It. In: Proceedings
of the International Congress of Mathematicians, pp. 1444–1451 (1986)

4. Cao, Z., Visconti, I., Zhang, Z.: On constant-round concurrent non-malleable proof
systems. Inf. Process. Lett. 111(18), 883–890 (2011)

5. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. In: 23rd ACM STOC,
pp. 542–552. ACM Press (1991)

6. Dwork, C., Naor, M.: ZAPs and their applications. In: 41st FOCS, pp. 283–293.
IEEE Computer Society Press (2000)

7. Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. In: 30th ACM STOC,
pp. 409–418. ACM Press (1998)

8. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:
22nd ACM STOC, pp. 416–426. ACM Press (1990)

9. Garg, S., Goyal, V., Jain, A., Sahai, A.: Concurrently secure computation in con-
stant rounds. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 99–116. Springer, Heidelberg (2012)

10. Garg, S., Goyal, V., Jain, A., Sahai, A.: Concurrently secure computation in con-
stant rounds (full version) (2012), http://goo.gl/iPXSbe

11. Garg, S., Kumarasubramanian, A., Ostrovsky, R., Visconti, I.: Impossibility re-
sults for static input secure computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 424–442. Springer, Heidelberg (2012)

12. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM Journal on Computing 18(1), 186–208 (1989)

13. Lindell, Y.: Lower Bounds for Concurrent Self Composition. In: Naor, M. (ed.)
TCC 2004. LNCS, vol. 2951, pp. 203–222. Springer, Heidelberg (2004)

14. Micali, S., Pass, R., Rosen, A.: Input-indistinguishable computation. In: 47th
FOCS, pp. 136–145. IEEE Computer Society Press (2006)

15. Ostrovsky, R., Persiano, G., Visconti, I.: Constant-round concurrent non-malleable
zero knowledge in the bare public-key model. In: Aceto, L., Damg̊ard, I., Goldberg,
L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part
II. LNCS, vol. 5126, pp. 548–559. Springer, Heidelberg (2008)

16. Ostrovsky, R., Persiano, G., Visconti, I.: Concurrent non-malleable witness in-
distinguishability and its applications. Electronic Colloquium on Computational
Complexity (ECCC) 13(95) (2006)

http://goo.gl/iPXSbe

	On Input Indistinguishable Proof Systems
	1 Introduction
	1.1 Our Results

	2 Definitions
	3 Input Indistinguishability vs WI
	3.1 Conversation-Based WI
	3.2 WI IIC for FPK

	4 Simulation-Based IIC: sIIC and exdIIC
	4.1 WI and IIC vs sIIC
	4.2 WI and IIC vs exdIIC

	References

