
Incoercible Multi-Party Computation and
Universally Composable Receipt-Free Voting

Joël Alwen1, Rafail Ostrovsky2, Hong-Sheng Zhou3, and Vassilis Zikas4?

1 IST Austria, jalwen@ist.ac.at
2 UCLA, rafail@cs.ucla.edu

3 Virginia Commonwealth University, hszhou@vcu.edu
4 ETH Zurich, vzikas@inf.ethz.ch

Abstract. Composable notions of incoercibility aim to forbid a coercer
from using anything beyond the coerced parties’ inputs and outputs to
catch them when they try to deceive him. Existing definitions are re-
stricted to weak coercion types, and/or are not universally composable.
Furthermore, they often make too strong assumptions on the knowledge
of coerced parties—e.g., they assume they known the identities and/or
the strategies of other coerced parties, or those of corrupted parties—
which makes them unsuitable for applications of incoercibility such as
e-voting, where colluding adversarial parties may attempt to coerce hon-
est voters, e.g., by o↵ering them money for a promised vote, and use
their own view to check that the voter keeps his end of the bargain.
In this work we put forward the first universally composable notion of
incoercible multi-party computation, which satisfies the above intuition
and does not assume collusions among coerced parties or knowledge of
the corrupted set. We define natural notions of UC incoercibility corre-
sponding to standard coercion-types, i.e., receipt-freeness and resistance
to full-active coercion. Importantly, our suggested notion has the unique
property that it builds on top of the well studied UC framework by
Canetti instead of modifying it. This guarantees backwards compatibil-
ity, and allows us to inherit results from the rich UC literature.
We then present MPC protocols which realize our notions of UC inco-
ercibility given access to an arguably minimal setup—namely honestly
generate tamper-proof hardware performing a very simple cryptographic
operation—e.g., a smart card. This is, to our knowledge, the first pro-
posed construction of an MPC protocol (for more than two parties) that
is incoercibly secure and universally composable, and therefore the first
construction of a universally composable receipt-free e-voting protocol.

Keywords: multi-party computation, universal composition, receipt-freeness

1 Introduction

Secure multi-party computation (MPC) allows n mutually distrustful parties to
securely perform some joint computation on their inputs even in the presence

? Research partly done while the author was at UCLA.

of cheating parties. To capture worst-case (collaborative) cheating, a central ad-
versary is assumed who gets to corrupt parties and uses them to attack the
MPC protocol. Roughly speaking, security requires that the computation leaks
no information to the adversarial parties about the inputs and outputs of un-
corrupted, aka honest, parties (privacy) and that the corrupted parties cannot
a↵ect the output any more than choosing their own inputs (correctness).

The seminal works on MPC [36,18,3,12] established feasibility for arbitrary
functions and started a rich and still evolving literature. Along the way, addi-
tional desired properties of MPC were investigated. Among these, universal com-
posability guarantees that the protocol preserve its security even when executed
within an online adversarial environment, e.g., along-side other (potentially in-
secure) protocols. Various frameworks for defining universal composability have
been suggested [2,30], with Canneti’s UC framework [6] being the most common.

The above frameworks make use of the so called simulation-based paradigm
for defining security which, in a nutshell, can be described as follows: Let f de-
note a specification of the task that the parties wish to perform. Security of a
protocol ⇧ for f is defined by comparing its execution with an ideal scenario
in which the parties have access to a fully trusted third party, the functionality,
which takes their inputs, locally computes f , and returns to the parties their
respective outputs. More concretely, a protocol ⇧ is secure if for any adver-
sary A attacking ⇧, there exists an ideal adversary S attacking the above ideal
evaluation scenario, which simulates the attack (and view) of A towards any
environment Z that gets to choose the parties’ inputs and see their outputs.5

Arguably, UC security captures most security guarantees that one would
expect from a multi-party protocol. Nonetheless, it does not capture incoercibility
a property which is highly relevant for one of a prototypical application of MPC,
namely secure e-voting. Intuitively, incoercibility ensures that even when some
party is forced (or coerced) by some external entity into executing a strategy
other than its originally intender, e.g., coerced to use a di↵erent input or even a
di↵erent protocol, then the party can disobey (i.e., deceive) its coercer, e.g., use
its originally intended input, without the coercer being able to detect it.

In the special case of e-voting, where parties are voters, this would mean that
a coercer, e.g., a vote buyer that o↵ers a voter money in exchange of his vote
for some candidate c, is not able to verify whether the voter indeed voted for c
or for some other candidate. In other words, the voter cannot use his transcript
as a receipt that he voted for c, which is why in the context of voting the above
type of incoercibility is often referred to as receipt-freeness.

Which guarantees can we expect from a general definition of incoercibility?
Clearly, if the coercer can use the outputs of the function to be computed to
check upon the coerced party it is impossible to deceive him. Considering our
voting scenario (concretely, majority election) if there are two candidates c1 and
c2 and a set V of voters with |V | = 2m+1 for some m, and the coercer coercing

5 In strong (UC) definitions, it is required that this simulation is sound even in an
on-line manner, i.e., S is not only required to simulated the view of A but has to do
so against an online environment that might talk to the adversary at any point.

2

vi 2 V knows that half of the parties in V \ {vi} voted for c1 and the other half
voted for c2, then vi cannot deceive its coercer, as his input uniquely defines the
outcome of the election. Therefore, composable notions of incoercibility [9,35]
aim for the next best thing, namely allow the parties to deceive their coercer
within the “space of doubt” that the computed function allows them. In other
words, an informal description of incoercibility requires that the parties can
deceive their coercer when they are executing the protocol as good as they can
deceive someone who only observes the inputs and outputs of the computation.

Of course, the above intuition becomes tricky to formulate when the protocol
is supposed to be incoercible and simultaneously tolerate malicious adversaries.
There are several parameters to take into account when designing such a defini-
tion. In the following we sketch those that, in our opinion, are most relevant.

Coercion Type. This specifies the power that the coercer has on the coerced
party. Here we one can distinguish several types of coercion: I/O-coercion allows
the coercer to provide an input to the party and only use its output. This is
the simplest (and weakest) form of coercion as it is implied by UC security. A
stronger type is receipt-freeness or semi-honest coercion; here, the coercer gets
to provide an input to the coerced party, but expects to see a transcript which
is consistent to this input. This type corresponds to the notion of coercion in-
troduced in [9,10] and abstracts the receipt-freeness requirement in the voting
literature [31,33,20,32,23,27,28,19].6 Finally, active coercion is the strongest no-
tion of coercion, where the adversary instructs the coerced party which messages
to send in the protocol and expects to see all messages he receives (also in an on-
line fashion). This type of coercion has been considered, explicitly or implicitly,
in the stand-alone setting (i.e., without universal composition) by Moran and
Naor [32] and more recently in the UC setting by Unruh and Müller-Quade [35].

Adaptive vs. Static.As with corruption, we can consider coercers who choose the
set of parties to coerce at the beginning of the protocol execution, i.e., in a static
manner, or adaptively during the protocol execution depending on their view so
far—e.g., by observing the views of other coerced parties.

Coercer/deceiver-collusions. The vast majority of works in the multi-party lit-
erature assumes a so called monolithic adversary who coordinates the actions
of corrupted parties. This naturally captures the worst-case scenario in which
cheaters work together to attack the protocol. Analogously, works on incoercible
computation [9,32,35,10] assume a monolithic coercer, i.e., a single entity which
is in charge of coordinating coerced parties. This has the following counter-
intuitive side-e↵ect: in order for a coerced party to be able to deceive any such
a monolithic coercer it needs to coordinate its deception strategy with other
coerced (or with honest) parties. In fact, in recent universally composable no-
tions of incoercibility this deceiver coordination is explicit. For example, in [35]
an even stronger requirement is assumed: the coerced parties which attempt a

6 For the special case of encryption, resiliency to semi-honest coercion corresponds to
the well-known concept of deniability [8].

3

deception know the identities and deception strategies of other coerced parties,
and even the identities of all corrupted parties. This is an unrealistic assumption
in scenarios such as e-voting, where a potential vote-seller is most likely oblivious
to who is cheating or to who else is selling its vote.

In order to avoid the above counter intuitive situation, in this work we as-
sume that deception (therefore also coercion) is local to each coerced party, i.e.,
coercers of di↵erent parties are not by default colluding. Alas, casting our defi-
nition in the UC framework makes coercer collusion explicit: Although coercers
are local, they can still be coordinated via an external channel, e.g., through
the environment. In fact, in our definition the worst-case environment implicitly
specifies such a worst-case coercion scenario.

Informants and dependency between corruption and deception.Another question
which is highly relevant for incoercibility, is whether or not coerced parties know
the identities of the cheaters/adversaries. In particular, a worst case coercion
scenario is the one in which the coercer and the adversary work together to
check on the coerced parties—stated di↵erently, the coercer uses corrupted par-
ties as informants against coerced parties to detect if they are attempting to
deceive him. (In the context of receipt-free voting, this corresponds to checking
the view/receipt of vote sellers against the corresponding views of malicious par-
ties.) Clearly, if a coerced party knows who are the informants then it is easier
to deceive its coercer. (This is the approach taken in [35], where the identities
of corrupted parties are accessible to the deceivers via a special register.) Ar-
guably, however, this is not a realistic assumption as it reduces the e↵ect of using
informants—a vote buyer is unlikely to tell the vote seller how he can check upon
him. The modeling approach taken in this work implies that real-world deceivers
have no information on who is corrupted (or coerced).

Our Contributions. In this work we provide the first security definition of
incoercible multi-party computation which is universally composable (UC) and
makes minimal assumptions on the coerced parties’ ability to deceive their co-
ercer. Our definition o↵ers the same flexibility on addressing di↵erent classes
of coercion as standard security notion o↵ers for corruptions. Indicatively, by
instantiating it with di↵erent types of coercion we devise definitions of UC inco-
ercibility against semi-honest coercions—corresponding to the classical notion of
receipt-freeness—as well as of the more powerful active coercions corresponding
to the strong receipt-freeness notion introduced in [32]. As a sanity check, we
show that if the coercers only see the output of coerced parties (a notion which
we call I/O-incoercibility), then any UC secure protocol is also incoercible.

In addition to flexibility, our definition has the following intuitive properties:

Universal composability and compatibility with standard UC. We prove univer-
sal composition theorems for all the suggested types of incoercibility, which
imply that an incoercible protocol can be composed with any other inco-
ercible protocol. Because our definition builds on top of the UC framework
instead of modifying is (e.g., as in [35,10]), our protocols are automatically
also universally composable with standard (coercible) UC protocols, at the

4

cost, of course, of giving up incoercibility; that is, when composing an in-
coercibly UC protocol with a standard (coercible) UC protocol, we still get
a UC secure protocol. We note in passing that defining incoercibility in UC
has the additional advantage that it protects even against on-line coercer,
e.g., vote-buyer that expect the receipt to be transmitted to them while the
party is voting.

Minimal-knowledge deceptions. The deceivers in the real-world have no knowl-
edge of who is coerced or corrupted, nor do they know which strategy other
coerced parties will follow. Thus they need to deceive assuming that any
party might be an informant.
Last but not least, we present a UC incoercible protocol for arbitrary multi-

party computation which tolerates any number of actively corrupted and any
number of coerced parties (for both semi-honest and active coercion), as long
as there is at least one honest party. Our protocols make use of an arguably
minimal and realistic assumption (see the discussion below), i.e., access to a
simple honestly generated hardware token. To our knowledge, ours is the first
protocol construction, which implements any functionality in the multi-party
(n > 2 parties) setting. In fact, our construction can be seen a compiler, in this
token-hybrid model, of UC secure to incoercible UC secure protocols. Therefore,
when instantiated with a fast UC secure protocol it yields a realistic candidate
for construction for UC secure incoercible e-voting.

Our protocol is proved secure against static coercion/corruption, but our
proofs carry through (with minimal modifications) to the adaptive setting. In
fact, our protocols realize an even stronger security definition in which the co-
ercers, but not the coerced parties (i.e, the deceivers), might coordinate their
strategies. However, we chose to keep the definition somewhat weaker, to leave
space for more solutions or possibly di↵erent assumptions.7

The ideal token assumption. Our protocols assume that each party has access
to a hardware token which might perform fresh encryptions with to some hid-
den keys that are shared among the parties. The goal of the token is to o↵er
the parties a source of hidden randomness that allows them to deceive their co-
ercer. A setup of this type seems to be necessary for such a strong incoercibility
notion when nearly everyone might be corrupted, since if the coerced parties
have no external form of hidden randomness, then it seems impossible for them
to deceive—the coercer might request their entire state and compare it with
messages received by its informants, which would require the coerced party to
align its lie with message it sends to the informants (whose the identities are
unknown).

On top of being minimal in the above sense, our encryption token assumption
is also very easy to implement in reality for a system with a bounded number
of participants—this is typically the case in elections: Let N be an upper bound
on the voters; the voting registration authority (i.e., the token creator and dis-
tributor) computes N keys k1, . . . , kN , one for every potential voter; every pi

7 Recall that our definition does allow coercer coordination through the environment.

5

who registers receives his ith token along with a vector of N random strings
(k1i, . . . , kNi), corresponding to his keys-shares; the last pi who registers (i.e., the
last to be in the registration desk before it closes) receives his token, say the n-th
token, along with the vector (k1n, . . . , kNn) = (k1, . . . , kn)�

Ln
i=1(k1i, . . . , kNi),

where � denotes the component-wise application of the bit-wise xor operation.
Note that the assumption of a hardware token (capturing pre-distributed smart
cards) has been used extensively in practice, e.g., in the university elections in
Austria and even the national elections in Finland and Estonia [14].

Related Literature. The incoercibility literature can roughly be split
in two classes: works that look at the special case of receipt-free vot-
ing [4,34,31,33,22,15,1,26,16,19,15,1,26,20,23,27,28] and works that look at the
more general problem of incoercible realization of arbitrary multi-party func-
tions [9,32,35,10]. Below, we focus on the second class which is closer to our goal
and refer the reader to the full version of this work for a short survey of the
voting-specific literature.

The first to consider incoercibility in the setting of general MPC were Canneti
and Gennaro [9]. They put forth a notion of incoercibility for static o↵-line semi-
honest coercions. Unfortunately their notion is only known to be sequentially
composable and moreover the definition is not compatible with the more general
setting of computing reactive functionalities. On the positive side, deception
strategies are both split and oblivious of other deceivers, and [9] does provide a
construction realizing a large class of (non-reactive) functions f .

Building on the idea of [9], Moran and Naor [32] define a stronger version
of incoercibility against adaptive active coercions using split oblivious deception
strategies. They go on to provide a construction implementing a voting function-
ality. Their model of communication and execution is based on that of [5] and,
thus, provides sequential (but not concurrent or universal) composability [6];
also, similarly to [9], it is not clear how to extend the model in [32] to reactive
functionalities (such as say a commitment scheme).

More recently Unruh and Müller-Quade [35] provided the first universally
composable notion of incoercibility. Due to similarity in goals with our work, we
provide a comparison with our definition and results. In a nutshell, the defini-
tion in [35] specifies the deception strategy D as an extra form of adversary-like
machine. The requirement is that for any such deceiver D in the ideal world,
there exists a corresponding real-world deceiver DS (in [35] DS is called de-
ceiver simulator) such that for any (real-world) adversary A there exists and
(ideal-world) simulator S that makes the ideal world where D controls the co-
erced and S the corrupted parties, indistinguishable from the real world where
DS controls the coerced and A the corrupted parties, in the presence of any en-
vironment Z.8 Importantly, in [35] it is explicitly assumed that the deceiver has
access to a public register indicating which parties are corrupted and which are
deceiving. As already mentioned, the above modelling choices of [35] have the

8 In fact, the model of [35] builds on the externalized UC (EUC) model of Canetti et
al. [7] which is designed to allow for deniable protocols.

6

following side-e↵ects: (1) the real-world deceiving parties are explicitly allowed
out-of-band communication (since deception is coordinated by the monolithic
DS) and (2) they know the identities of the corrupted parties, i.e., of the po-
tentially informants. As discussed above these assumptions are not realistic for
e-voting. Furthermore, the model of execution in [35] considerably deviates from
the GUC model, e.g., it modifies the number of involved ITMs and the cor-
ruption mechanism, which can lead to syntactical incompatibilities with GUC
protocols and issues with composition with (coercible) GUC protocols.9

An alternative approach to universally composable incoercibility was taken in
the most recent revision of Canetti’s UC paper, and adopted in [10] for the two-
party setting. This definition builds on the idea from [9] and is for semi-honest
coercions. Furthermore, the coercion mechanism in the multi-party setting is
unspecified and no composition theorem is proved.10

In terms of protocols, in [10] a two-party protocol in the semi-honest coercion
and corruption model is suggested assuming indistinguishability obfuscation [17].
Their approach is based on Yao’s garble circuits and is specifically tailored to the
two party setting; as they argue, their protocols are not universally composable
under active corruption. On the other hand, in [35] a two-party protocol for
computing a restricted class of two-party functionalities was suggested; also here
it is unclear whether or not this approach can yield a protocol in the multi-party
setting or for a wider class of two-party functionalities. Thus ours is the first
UC secure incoercible multi-party protocol, which can be, for example, used for
receipt-free voting—an inherently multi-party functionality.11

Outline of the Remainder of the Paper. In Section 2 we present our
UC incoercibility definition. Subsequently, in Section 3 we describe instances of
our definitions corresponding to the three standard coercion types, namely, I/O,
receipt-freeness, and active coercion and corresponding composition theorems.
Following that, in Section 4 we provide our UC receipt-free protocol for comput-
ing any given function. Our protocol is simple enough to be considered a good
starting point for an alternative approach to existing e-voting protocol. Finally,
in Section 5 we prove that our receipt-free protocol can withhold even active
coercion attacks. Due to space limitation, the proofs have been moved to the full
version of this work.

Preliminaries and Notation. Our definition of incoercibility builds on the
Universal Composition framework of Canetti [6] from which we inherit the pro-
tocol execution model along with the (adaptive) corruption mechanism. We as-
sume the reader has some familiarity with the UC framework [6] but in the

9 For example, the corruption mechanism as described in [35] does not specify that (let
alone how) the deceiver simulates deception towards the corresponding adversary.

10 Note that the Definition in [10] also changes the underlying model of computation,
which makes it necessary to re-prove composition.

11 Our protocol uses the CLOS protocol [11] in a black-box manner, and it remains
secure even when CLOS is replaced by more e�cient protocols, e.g., the IPS proto-
col [21] in the pre-processing model.

7

following we recall some basic notation and terminology. We denote by ITM the
set of e�cient (e.g. poly-time) ITMs and by [n] the set of integers {1, . . . , n}.
For simplicity, we use the notations “pi” and “party i” interchangeably to refer
to the party with identity i. For a set J ✓ [n] if for each i 2 J the ITM ⇡i

is a protocol machine for party i then we use the shorthand ⇡J to refer to the
|J |-tuple (⇡i1 , . . . ,⇡i|J |). In particular we simply write ⇡ to denote ⇡[n].

A protocol ⇡ UC emulates ⇢ if ⇡ can replace ⇢ in any environment in which
it is executed; similarly, a protocol UC realizes a given functionality F if it UC
emulated the the dummy F-hybrid protocol �, which simply relays inputs from
the environment to F and vice versa. In [6] protocols come with their hybrids
(so the hybrids are not written in the protocol notation); but for sake of clarity
in order to make the hybrid-functionality explicit, we at times write it as a
superscript of the protocol, e.g., we might denote a G-hybrid protocol ⇡ as ⇡G .

Finally, we use the following standard UC terminology: we say that a party
(or functionality) P issues a delayed message x for another party P

0 (where x

can be an input or an output for some functionality) to refer to the process in
which P prepares x to be sent to P

0, but requests for the simulator’s approval
before actually sending it. Depending on whether or not this approval request
includes the actual message, we refer to the delayed output as public or private,
respectively. For details on delayed messages we refer to [6].

2 Our UC Incoercibility Definition

Our security notion aims to capture the intuition that deceiving one’s coercer is
as easy as the function we are computing allows it to be. Intuitively, this means
that for any (ideal-world) deception strategy that the coerced party would follow
in the ideal world—where the functionality takes care of the computation—there
exists a corresponding (real-world) deception strategy that he can play in the real
world which satisfies the following property:

The distinguishing advantage of any set of coercers in distinguishing
between executions in which parties deceive and ones where they do not
deceive is the same in the ideal world (where coerced parties follow their
ideal deception strategy DI) as it is in the real world (where parties follow
their corresponding real-world deception strategy DR).

To capture worst-case incoercibility (and get composition) we let the envi-
ronment play the role of the coercer. This makes the ability of coercers to collude
explicit while capturing worst-case and on-line coercion strategies. However, in
order to provide a flexible definition, which for example captures the standard
notion of receipt-freeness, where coerced parties follow their protocol, we de-
fine the e↵ect of a party’s coercion as a transformation applied on its protocol,
which specifies the control the environment/coercer has on a corrupted party.
For example, in the case of receipt-freeness this transformation internally logs
the state of the coerced party, and upon reception of a special message from Z

8

dumi

dum j

Ideal Coercion

S

F
 � c⇡ �!

S

F
DIi

DI j

 � c⇡ �!

A

G π

G

A

π

Real Coercion

(2) DR j

"

#
∆

"
∆± negl

#

πG C-incoercibly realizes F

(1)

Real Deception

8 DI 9 DR s.t. (1) ^ (2)

C j(π)

Ci(π)

φ

Ideal Deception

φ

DRi

Fig. 1: The incoercibility definition. For clarity we explicitly write the hybrids F and
G. The interfaces on the right of F (resp. G) correspond to interfaced of honest parties.
Parties i and j are coerced according to the coercer C. Dashed lines denote communi-
cation tapes to the adversary implicitly modeling a network of insecure channels.

requesting a ”receipt” it hands Z this state. We refer to the next section for a
detailed definition of di↵erent coercion types.

The above idea is demonstrated in Figure 1, were the following four worlds
are illustrated: the ideal world where coerced parties follow their coercer’s in-
structions (top left), the ideal world where coerced parties attempt a deception
(bottom left), the real world where coerced parties follow their coercer’s in-
structions (top right), and the real world where the coerced parties attempt a
deception (bottom right). As sketched above, incoercibility requires that if the
advantage of the best environment (i.e., the one that maximizes its advantage) in
distinguishing the top-left world from the bottom-left world is 0 � 1, then
the advantage of the best environment in distinguishing the top-right world from
the bottom-right world is also �

0 = � (plus/minus some negligible quantity).

The above paradigm captures the intuition of incoercibility, but in order to
get a more meaningful statement we need the incoercible protocol to also be
secure, i.e., implements its specification. This means that when parties do follow
their coercion instructions, the protocol should be a secure implementation of the
given functionality. In the above terminology, there should be a simulator which
makes the top-right world indistinguishable from the top-left world. This has
two implications: First, together with the previous requirement, i.e., that �0 =
�±negl. it implies that the bottom-right world should also be indistinguishable
from the bottom-left world for the same simulator.

9

Second, to ensure that the top two worlds are indistinguishable for natural
coercions, e.g., for receipt-freeness, we need that when the environment sends a
coercion-related message—e.g., a receipt-request—to a coerced party, this mes-
sage is actually answered wether in the real or in the ideal world. In the real
world the coerced protocol will take care of this. Therefore, in the ideal world
we assign this task to the simulator: any messages which is not for the function-
ality is re-routed to the simulator who can then reply with a (simulated) receipt;
formally, this is done by applying a “dummy” ideal-coercion strategy which just
performs the above rerouting. Importantly, to make sure that the receipt is in-
dependent of the actual protocol execution, and in particular independent of the
ideal deception strategy, we do not allow the simulation knowledge of the inputs
of coerced parties, or of the deception strategy (formally, the latter is guaranteed
by ensuring that the ideal deception strategy is applied on messages that are not
given to the simulator.) The detailed definition follows.

Coercions and Deceptions. For a given protocol machine ⇡i we define a co-
ercion C to be a special a mapping from ITMs to ITMs with the same set of
communication tapes. In particular the ITM C(⇡i) has the same set of com-
munication tapes as ⇡i and it models the behaviour the coercer is attempting
to enforce upon party pi running protocol ⇡. Di↵erent types of coercions from
the literature can be captured by di↵erent types of mappings. In the following
section we specify three examples corresponding to the most common coercion
types in the literature.

To model the ideal-world behavior (intuitively the “e↵ective” behavior) of
a coerced party when obeying its coercer, we use the protocol ITM dum called
the dummy coercion (we at times refer to dum as the extended dummy protocol).
As sketched above, dum ensures that the simulator handles all messages that are
not intended for the functionality. More concretely, the following describes the
behaviour of dum upon receving a message from various parties.

From Z: If the message has the form (x, fid) intended for delivery to functionality
F, dum forwards x to F using a private delayed input (c.f. Page 7). All other
messages from Z are forwarded to the simulator.

From F: Any message from F is delivered to the simulator.

From S: If the message has the form (x, fid) then dum forwards x to F. Otherwise
it forwards the message to Z.

An ideal-world deception strategy corresponds to an attempt of a coerced
party to lie to the environment about its interaction with the ideal functionality
F. Thus, it can be described as a mapping applied on the messages that the
deceiving party exchanges with the functionality and with the environment. To
keep our assumptions minimal, we require the real-world (protocol) deception
strategy to also have the same structure, i.e., be described it as mappings applied
on the messages that the deceiving party pi running a protocol exchanges with
its hybrids and with the environment.12

12 A more liberal, but weaker, definition could allow the real-world deception strategy
to be an arbitrary Turing machine with the same hybrids as pi.

10

Thus, to capture deception by party pi running ITM ⇡i, we define a deception
strategy, denoted by Di(⇡i), to be an ITM which can be described via a triple
(D1i ,⇡i, D

2
i) of interconnected ITMs behaving as follows: ⇡i’s messages to/from

the adversary are not changed, but we place D1i between ⇡i and Z while we place
D

2
i between ⇡i and its hybrids. For notational simplicity we, at times, omit the

argument from Di(·) and write Di instead of Di(⇡i) when the argument is already
clear from the context.

Using these concepts we can now somewhat sharpen the above intuition on
our definition. Informally, a protocol ⇡ UC incoercibly realized a functionality
F with respect to a coercion C (in short: ⇡ C-IUC realizes F) if the following
two conditions are satisfied: (1) for any set J ✓ [n] of coerced parties, when
replacing the honest protocol ⇡i with the wrapped protocol b⇡i = Ci(⇡) for all
i 2 J the resulting network UC realizes the F-dummy protocol �, where the
parties i 2 J use Ci instead of �; and (2) for any player and their ideal deception
DIi = Di(dumi) there exists a real deceiving strategy DRi = D

0
i(Ci(⇡)) such that

no environment can catch coerced parties lying with DIi in ⇢ with probability
better than catching them lying with DRi in ⇡.

To make the above intuition formal, we need the following notation. Let
J ✓ [n] denote the set of coerced parties. (To avoid unnecessarily complicated
statements, we restrict to static coercion, so the set J is chosen by Z at the
beginning of the protocol execution.) The execution of protocol ⇡ with coercion
C corresponds to executing, in the UC model of execution, the protocol which
results by replacing for each party j 2 J it’s protocol machine ⇡j with the
above described Cj(⇡). Much like UC, we write {Exec⇡,C,A,Z(�, z)}�2N,z2{0,1}⇤

to denote the ensemble of the outputs of the environment Z when execut-
ing protocol ⇡ with the above modifications, in the presence of adversary A.
Consistently with the UC literature, we often write Exec⇡,C,A,Z instead of
{Exec⇡,C,A,Z(�, z)}�2N,z2{0,1}⇤ . We also use the notation UC-Exec⇡,A,Z to
denote the analogous ensemble of outputs for a standard UC execution. For
clarity, for the dummy F-hybrid protocol � we might write ExecF,C,S,Z and
UC-ExecF,S,Z instead of Exec�,C,A,Z and UC-Exec�,A,Z , respectively.

Definition 1 (UC Incoercibility). Let ⇡ be an n-party protocol and for an
n-party functionality F let � denote the dummy F-hybrid protocol, and let C

be a coercion. We say that ⇡ C-IUC realizes F if for every i 2 [n] and every
ideal deception strategy DIi there exists an real deception strategy DRi with the
following property. For every adversary A there exists a simulator S such that
for any set DIJ = {DIi : i 2 J } and every environments Z:

Exec�,dumJ ,S,Z
c⇡ Exec⇡,CJ ,A,Z (1)

Exec�,DIJ ,S,Z
c⇡ Exec⇡,DRJ ,A,Z (2)

where dum denotes the dummy coercer described above.

We observe that when no party is coerced, i.e., J = ;, then the definition
coincides with UC security which shows that incoercibility with respect to any
type of coercion also implies standard UC security.

11

3 Types of Coercion

Using our definition we can capture the types of coercion previously considered
(mainly in the e-voting) literature. These types are specified in this section,
where we also prove the composability of the corresponding definitions.

I/O Coercion. As a sanity check we look at a particularly weak form of coer-
cion called input/output (I/O) coercion. Intuitively, this corresponds to a setting
where a party is being coerced to use a particular input and must return the
output of the protocol to the coercer as evidence of it’s actions. We capture this
formally by defining the I/O coercion C

io to be identical to the dummy coercion;
that is for any protocol machine ⇡i C

io(⇡i) = dum(⇡i) = ⇡i. In particular it faith-
fully uses the input to ⇡i supplied by Z and follows the code of ⇡i during the
entire execution, and eventually returns the output back to Z.

Not surprisingly, we already have I/O-incoercible protocols for a wide variety
of functionalities since standard UC realization is equivalent to I/O-incoercible
realization.

Theorem 1. In the static corruption model protocol ⇡ UC realizes functionality
F with static corruptions if and only if ⇡ C

io-IUC realizes F.

An immediate consequence of Theorem 1 and the UC composition theorem
in [6] is that I/O-incoercibility is a composable notion.

Semi-honest Coercion (Receipt-Freeness). The type of incoercibility that
has been mostly considered in the literature is the so-called receipt-freeness. The
idea there is that the coercer expects to be provided with additional evidence of
that a specific input was used. In the most severe case such a proof could, for
example, be the entire view of a coerced party in the protocol execution.

In the following, we define the semi-honest coercion C

sh, which captures re-
ceipt freeness: at a high-level, for a given protocol machine ⇡i the ITM C

sh(⇡i)
behaves identically to ⇡i with the only di↵erence that upon being asked by Z,
ITM C

sh(⇡i) outputs all messages it has received from the adversary and it hy-
brids as well as it’s random coins (i.e., the contents of his random tape). Note
that, as Z already knows the messages it previously sent to C

sh(⇡i), it can now
reconstruct the entire view of pi in the protocol.

Intuitively, the output of Csh(⇡i) can be used as a receipt that pi is running ⇡i

on the inputs chosen by Z as follows. On the one hand, any message pi claims to
have received over the insecure channels can be confirmed to Z by the informant.
On the other hand, for any prefix of receipt causing ⇡i to send a message over the
insecure channel, Z can check with it’s informant if indeed exactly that message
was sent by pi at that point.

Theorem 2. Let C be a semi-honest coercer, i.e., C = C

sh. If protocol ⇡ C-IUC-
realizes functionality F , and protocol � C-IUC-realizes functionality H in the
F-hybrid world, then the composed protocol �⇡

C-IUC-realizes functionality H.

12

Active Coercion. We next turn to defining active coercion. Here, instead of
simply requiring a receipt, the coercer takes complete control over the actions
of coerced parties. We capture this by introducing the fully-invasive—also re-
ferred to as active coercion C

A which allows the environment full control over
the coerced party’s interfaces. Formally, for any (set of) functionalities G and
any G-hybrid protocol ⇡ C(⇡i) = �̄i where �̄i is the G-hybrid dummy coercer’s
protocol, i.e., �̄i = dum

G
i . A universal composition theorem for incoercibility

against active coercion can be proved along the lines of Theorem 2.

4 Reciept-Free-Incoercible Multi-Party Computation

In this section we describe a protocol for IUC realizing any (well-formed [11]) n-
party functionalities F in the presence of semi-honest (i.e. receipt-free) coercions.
Our construction makes black-box use of the UC secure protocol by Canetti et
al. [11] but it can be instantiated also with other (faster) UC secure protocols.
In fact, our construction can be seen as a compiler of UC secure protocols to
IUC secure protocols in the honestly generated hardware-token setting. Thus,
by replacing the call to [11] by a call to a faster UC secure protocol we obtain a
reasonably e�cient candidate for universally composable receipt-free voting.

Our protocol (compiler) assumes access to honestly-generated tamper resis-
tant hardware tokens that perform encryption under a key which is secret shared
among the parties.

Intuitively, the receipt-freeness of the protocol ⇧F can be argued as follows:
because the token does not reveal the encryption keys to anyone, the CPA se-
curity of the encryption scheme ensures that the adversary cannot distinguish
encryptions of some xi from encryption of an x

0
i 6= xi. Thus the real deceiver DRi

for a coerced pi can simply change the input it provides the token according to
the ideal deceiver DIi and report back to Z (as part of the receipt) the actual
reply to the token. Since we assume t+ t

0
< n there is at least one share of the

decryption key unknown to Z and so it can not immediately detect that the ci-
phertext given in the receipt doesn’t encrypt xi. At this point DRi can follow the
rest of the protocol honestly and can report the remainder of it’s view honestly
in the receipt. A formal theorem and proof follow.

The Construction. For simplicity we restrict ourselves to non-reactive func-
tionalities, also known as secure function evaluation (SFE). (The general case
can be reduced to this case by using a suitable form of secret sharing for main-
taining the secret state of the reactive functionality.) Moreover, we describe our
protocols as synchronous protocols, i.e., round-based protocols where messages
sent in some round are delivered by the beginning of the next round; such pro-
tocols can be executed in UC as demonstrated in [24,25]. We point out that
the protocols in [24] assume a global synchronizing clock; however, as noted
in [24,25], when we do not require guaranteed termination, e.g., in fully asyn-
chronous environments, the clock can be emulated by the parties exchanging
dummy synchronization messages. We further assume that the parties have ac-
cess to a broadcast channel.

13

Without loss of generality, we assume that the functionality F being com-
puted has a global output obtained by evaluating the function f on the vector
of inputs. The case of local (a.k.a. private) and/or randomized functionalities
can be dealt with by using standard techniques (c.f. [29].) Furthermore, as is
usual with UC functionalities, we assume that F delivers its outputs in a de-
layed manner—whenever an output is ready for some party the simulator S is
notified and F waits for S’s permission to deliver the output.13Finally, to ensure
properly synchronized simulation, we need to allow S to know when honest par-
ties hand their input to the functionality. Thus we assume that the functionality
F informs the simulator upon reception of any input xi from an honest party pi.
We point out that as we allow a dishonest majority, we are restricted to security
with abort, i.e., upon receiving a special message (abort) from the simulator,
the functionality F sets all outputs of honest parties to a special symbol ?.

Finally, our protocols makes use of an authenticated additive n-out-of-n se-
cret sharing. Informally, this is an additive secret sharing where each share is
authenticated by a digital signature for which every party knows the verification
key, buy no party knows the signing key. We refer to the full version for a formal
specification of our scheme.

In the remainder of this section we present our protocol and prove its secu-
rity. We start by describing the hardware token that our protocol needs. The
token functionality TThEnc captures a threshold authenticated encryption token
and is described in Figure 2. The token is parameterized by an IND-CPA secure
symmetric key encryption scheme (Gen, Enc, Dec) and an existentially unforge-
able signature scheme (Gen0, Sign, Ver). Initially the token generates signature
key pair (sk, vk). Then upon request from any party i (or the adversary when
pi is corrupt) it generates a random encryption key ki for pi and uses vk to
compute an n-out-of-n authenticated sharing ki. Each party j 2 [n] requests it’s
share hkiij . Subsequently, whenever pi requests an encryption of some message
m from the token, TThEnc computes a fresh encryption of m under key ki and
hands the result to pi.

Given hybrid access to TThEnc (P), our protocol ⇡F for Csh-incoercibly (UC)
securely realizing any given functionality F proceeds in three sequential phases:

1. In the setup phase, for each player (at their behest) an encryption key is
generated and shared with an n-out-of-n authenticated secret sharing. For-
mally, for each i 2 [n] a message (keygen, i) is sent by pi to the token.14

Shares are then delivered to parties when they send a keyShare to TThEnc.
2. In the second phase, each pi asks the token to encrypt its inputs xi under

key ki, i.e., inputs (encrypt, xi, i) to the token TThEnc (P).
3. Finally, in a third phase, the parties invoke a UC secure SFE protocol, e.g.,

the one from [11] denoted by ⇧CLOS, to implement the functionality bF.

13 Because we restrict to public-output functions, we can wlog assume that the output
is issued in a public delayed manner (c.f., Section 1).

14 Presumably in a real world setting this phase will be executed on behalf of the
players by the authority in charge of running the election. Then the tokens with an
intialized state can be distributed to the players.

14

Roughly speaking, bF receives from each player as input a ciphertext and
one key-share for each of the decryption keys k1, . . . , kn, reconstructs the
decryption keys from the shares, and uses them to decrypt the ciphertexts
to obtain plaintexts {xi}i2[n]. If either reconstruction (i.e. signature verifi-
cation) or decryption fails then F outputs ?. Otherwise it computes and
outputs a fresh n-out-of-n authenticated sharing of the value f(x1, . . . , xn).
We refer to the full version for a formal description of protocol ⇧F and
functionality bF.

Functionality TThEnc (P)

The token functionality is parameterized by a symmetric-key CPA encryp-
tion scheme (Gen, Enc, Dec), an existentially unforgeable signature scheme
(Gen0, Sign, Ver), and a security parameter �.

Upon receiving message (keygen, i) from party i 2 P (or the adversary) if pi
is honest and a message (keygen, i) has already been received from pi then
ignore it; otherwise execute the following steps:
1. Sample ki Gen(1�).

2. Sample an n-out-of-n authenticated sharing {hkiij}j2[n] of ki.

Upon receiving message (keyShare, i, j) from party pi 2 P, if share hkiij has
not already been sampled then send ? to pi. Otherwise send it to party i.

Upon receiving message (encrypt,m, i) from party pi for some m 2 {0, 1}⇤, if
a key ki has not already been sampled then send ? to pi. Otherwise compute
a fresh encryption ei = Encki(m) and send it to pi.

Fig. 2: Threshold Encryption Token Functionality

The security of protocol ⇧F is argued as follows: As long as there is at
least one honest party, the adversary will not get information about any of the
encryption keys ki. This follows from the security of the encryption scheme
(Gen, Enc, Dec) used by the token and the privacy of the protocol ⇧CLOS. Thus
the simulator can simulate the entire protocol execution by simply using en-
cryptions of random messages to simulate the tokens responses and storing local
(simulated) copied of coerced parties. The unforgeability of the signatures used
by the token to authenticate the shares will guarantee that the adversary can-
not alter the input of honest or coerced parties by giving faulty inputs to the
execution of ⇧CLOS.

Theorem 3. Let F be a n-party well-formed functionality as above. Further
let (Gen, Enc, Dec) be an encryption scheme secure against chosen plaintext at-
tacks (IND-CPA) and (Gen0, Sign, Ver) be an existentially unforgeable signature
scheme. Then the protocol ⇧F C

sh-incoercibly (UC) securely realizes the func-
tionality F in the static corruption model in the presence of any t corrupted and
t

0 coerced parties where t+ t

0
< n.

5 Active-Incoercible Multi-Party Computation

In this section we consider the strongest form of coercion, namely active coer-
cions. Recall that these essentially turn a coerced party into a dummy party

15

with all interaction driven by Z. It turns out that the protocol from the pre-
vious section achieving semi-honest-incoercibility can also be shown to achieve
full active-incoercibility. There are two key di↵erences between the two security
notions which must be addressed in the proof.

1. In a simulation for a semi-honest coerced party pi, the simulator S must
maintain a simulated internal state of pi so that it can always respond to
a reciept request from Z. However no such requirement is placed on S for
active coercions making the job of S easier in this respect.

2. On the other hand, say Z instructs a coerced (non-deceiving) party pi to give
input x to F. In both the semi-honest and active case in the ideal worlds pi
will forward x to F. Moreover in the semi-honest case pi would use x as input
to the honest protocol. However case of an active coercion Z is essentially
running the protocol on behalf of pi as it wishes. Thus their is no guarantee
that x will be the e↵ective input of pi in such a protocol execution. So S
must now extract the e↵ective input of pi during the protocol execution and
force pi to submit that as input to F in place of x. (Indeed, this is where S
uses the property that parties have delayed input to F.) Otherwise the two
world would, in general, be distinguishable.

Theorem 4 (Active-incoercibility). Let F be a n-party well-formed func-
tionality as above. Further let (Gen, Enc, Dec) be an encryption scheme secure
against chosen plaintext attacks (IND-CPA) and (Gen0, Sign, Ver) be an existen-
tially unforgeable signature scheme. Then the protocol ⇧F C

A-incoercibly (UC)
securely realizes the functionality F in the static corruption model in the presence
of any t corrupted and t

0 coerced parties where t+ t

0
< n.

6 Acknowledgements

Rafail Ostrovsky was supported in part by NSF grants 09165174, 1065276,
1118126 and 1136174, US-Israel BSF grant 2008411, OKAWA Foundation Re-
search Award, IBM Faculty Research Award, Xerox Faculty Research Award, B.
John Garrick Foundation Award, Teradata Research Award, Lockheed-Martin
Corporation Research Award, and the Defense Advanced Research Projects
Agency through the U.S. O�ce of Naval Research under Contract N00014 -
11 -1-0392. The views expressed are those of the author and do not reflect the
o�cial policy or position of the Department of Defense or the U.S. Government.
Vassilis Zikas was supported in part by the Swiss National Science Foundation
(SNF) via the Ambizione grant PZ00P-2142549.

References

1. M. Backes, C. Hritcu, and M. Ma↵ei. Automated verification of remote electronic
voting protocols in the applied pi-calculus. In CSF, pages 195–209. IEEE Computer
Society, 2008.

16

2. M. Backes, B. Pfitzmann, and M. Waidner. The reactive simulatability
(RSIM) framework for asynchronous systems. Information and Computation,
205(12):1685–1720, December 2007.

3. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In 20th
ACM STOC, pages 1–10. ACM Press, May 1988.

4. J. C. Benaloh and D. Tuinstra. Receipt-free secret-ballot elections (extended ab-
stract). In 26th ACM STOC, pages 544–553. ACM Press, May 1994.

5. R. Canetti. Security and composition of multiparty cryptographic protocols. Jour-
nal of Cryptology, 13(1):143–202, 2000.

6. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, Oct.
2001.

7. R. Canetti, Y. Dodis, R. Pass, and S. Walfish. Universally composable security
with global setup. In S. P. Vadhan, editor, TCC 2007, volume 4392 of LNCS, pages
61–85. Springer, Feb. 2007.

8. R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky. Deniable encryption. In B. S.
Kaliski Jr., editor, CRYPTO’97, volume 1294 of LNCS, pages 90–104. Springer,
Aug. 1997.

9. R. Canetti and R. Gennaro. Incoercible multiparty computation (extended ab-
stract). In FOCS, pages 504–513. IEEE Computer Society, 1996.

10. R. Canetti, S. Goldwasser, and O. Poburinnaya. Adaptively secure two-party com-
putation from indistinguishability obfuscation. In Y. Dodis and J. B. Nielsen, ed-
itors, TCC 2015, Part II, volume 9015 of LNCS, pages 557–585. Springer, Mar.
2015.

11. R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-
party and multi-party secure computation. In 34th ACM STOC, pages 494–503.
ACM Press, May 2002.

12. D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally secure pro-
tocols (extended abstract). In 20th ACM STOC, pages 11–19. ACM Press, May
1988.

13. D. Chaum, M. Jakobsson, R. L. Rivest, P. Y. A. Ryan, J. Benaloh, M. Kuty-
lowski, and B. Adida, editors. Towards Trustworthy Elections, New Directions in
Electronic Voting, volume 6000 of Lecture Notes in Computer Science. Springer,
2010.

14. E. E. Commision. Internet voting in estonia, October 2013.
15. S. Delaune, S. Kremer, and M. Ryan. Coercion-resistance and receipt-freeness in

electronic voting. In CSFW, pages 28–42. IEEE Computer Society, 2006.
16. S. Delaune, S. Kremer, and M. Ryan. Verifying privacy-type properties of electronic

voting protocols: A taster. In Chaum et al. [13], pages 289–309.
17. S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate

indistinguishability obfuscation and functional encryption for all circuits. In 54th
FOCS, pages 40–49. IEEE Computer Society Press, Oct. 2013.

18. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In A. Aho, editor, 19th
ACM STOC, pages 218–229. ACM Press, May 1987.

19. J. Heather and S. Schneider. A formal framework for modelling coercion resistance
and receipt freeness. In D. Giannakopoulou and D. Méry, editors, FM, volume 7436
of Lecture Notes in Computer Science, pages 217–231. Springer, 2012.

17

20. M. Hirt and K. Sako. E�cient receipt-free voting based on homomorphic encryp-
tion. In B. Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS, pages
539–556. Springer, May 2000.

21. Y. Ishai, M. Prabhakaran, and A. Sahai. Founding cryptography on oblivious
transfer - e�ciently. In D. Wagner, editor, CRYPTO 2008, volume 5157 of LNCS,
pages 572–591. Springer, Aug. 2008.

22. H. L. Jonker and E. P. de Vink. Formalising receipt-freeness. In S. K. Katsikas,
J. Lopez, M. Backes, S. Gritzalis, and B. Preneel, editors, ISC, volume 4176 of
Lecture Notes in Computer Science, pages 476–488. Springer, 2006.

23. A. Juels, D. Catalano, and M. Jakobsson. Coercion-resistant electronic elections.
In Chaum et al. [13], pages 37–63.

24. J. Katz, U. Maurer, B. Tackmann, and V. Zikas. Universally composable syn-
chronous computation. In A. Sahai, editor, TCC 2013, volume 7785 of LNCS,
pages 477–498. Springer, Mar. 2013.

25. E. Kushilevitz, Y. Lindell, and T. Rabin. Information-theoretically secure protocols
and security under composition. In J. M. Kleinberg, editor, 38th ACM STOC, pages
109–118. ACM Press, May 2006.

26. R. Küsters and T. Truderung. An epistemic approach to coercion-resistance for
electronic voting protocols. In 2009 IEEE Symposium on Security and Privacy,
pages 251–266. IEEE Computer Society Press, May 2009.

27. R. Küsters, T. Truderung, and A. Vogt. Verifiability, privacy, and coercion-
resistance: New insights from a case study. In IEEE Symposium on Security and
Privacy, pages 538–553. IEEE Computer Society, 2011.

28. R. Küsters, T. Truderung, and A. Vogt. A Game-Based Definition of Coercion-
Resistance and its Applications. Journal of Computer Security (special issue of
selected CSF 2010 papers), 20(6/2012):709–764, 2012.

29. Y. Lindell and B. Pinkas. A proof of security of Yao’s protocol for two-party
computation. Journal of Cryptology, 22(2):161–188, Apr. 2009.

30. U. Maurer and R. Renner. Abstract cryptography. In B. Chazelle, editor, ICS
2011, pages 1–21. Tsinghua University Press, Jan. 2011.

31. M. Michels and P. Horster. Some remarks on a receipt-free and universally ver-
ifiable mix-type voting scheme. In K. Kim and T. Matsumoto, editors, ASI-
ACRYPT’96, volume 1163 of LNCS, pages 125–132. Springer, Nov. 1996.

32. T. Moran and M. Naor. Receipt-free universally-verifiable voting with everlasting
privacy. In C. Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 373–
392. Springer, Aug. 2006.

33. T. Okamoto. Receipt-free electronic voting schemes for large scale elections. In
B. Christianson, B. Crispo, T. M. A. Lomas, and M. Roe, editors, Security Pro-
tocols, 5th International Workshop, volume 1361 of LNCS, pages 25–35, Paris,
France, Apr. 7–9 1997. Springer.

34. K. Sako and J. Kilian. Receipt-free mix-type voting scheme - a practical solution
to the implementation of a voting booth. In L. C. Guillou and J.-J. Quisquater,
editors, EUROCRYPT’95, volume 921 of LNCS, pages 393–403. Springer, May
1995.

35. D. Unruh and J. Müller-Quade. Universally composable incoercibility. In T. Rabin,
editor, CRYPTO 2010, volume 6223 of LNCS, pages 411–428. Springer, Aug. 2010.

36. A. C.-C. Yao. Protocols for secure computations (extended abstract). In 23rd
FOCS, pages 160–164. IEEE Computer Society Press, Nov. 1982.

18

	Incoercible Multi-Party Computation and Universally Composable Receipt-Free Voting

