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1 Introduction

In this paper we consider directed strongly-connected networks of synchronous �nite-

state automata with in- and out-degree bounded by a constant. In this setting we focus

on the e�ciency of basic network tasks such as the \Firing Synchronization Problem";

the \Network Search and Traversal Problem" and several others (i.e. DFS, BFS, sim-

ulating a step of an undirected graph protocol, etc.). We give O(ND) time solutions

to all these problems, where N is the network size and D is the diameter of the net-

work. Our approach builds upon the best previously known O(N2) algorithms of Even,

Litman and Winkler [ELW-90] and Afek and Gafni [AG-93] for these problems.

1.1 The model

In this paper, we consider directed strongly-connected networks. That is, there may exist

a one-way communication link between two processors without a link in the opposite

direction, but between every pair of nodes there exist a directed path.

In addition to its theoretical interest, uni-directional communication actually occurs

in radio networks (due to di�erent transmission strengths) and in VLSI circuits and also

arises in bi-directional networks where one direction of a bi-directional link has failed.

In this paper we are also concerned with reducing the amount of memory required

per processor. The current technological trend is to implement network protocols in

hardware and to minimize the amount of memory required (for further discussion,

see [MOOY-92, AO-94]). We model processors as identical deterministic �nite-state

machines (i.e. chips) of a constant size (that is, independent of the size of the network)

with a constant number of input and output ports. A �nite alphabet of signals is used.

The network is constructed by connecting the output ports of automata to the input

ports of other automata. Not all input/output ports need be connected. Thus, each

automaton has some of its input and output ports connected to other automata (active

ports), and other ports which are not connected at all (inactive ports). Each automaton

knows which of its ports are active. We also assume that for each pair of processors, in

each direction there is a directed path through the network connecting them. That is,

the resulting graph is strongly-connected.

We assume synchronization: automata make state transitions simultaneously. Thus,

the computation is divided into time-steps, where at the beginning of each time-step,
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each automaton receives a vector of inputs from its input ports, performs a state transi-

tion, and then sends a vector of outputs to its output ports. Initially all automata are in

an identical quiescent state, in which they send an \idle" signal on all out-ports. They

remain quiescent until receiving a non-\idle" signal on an in-port. In the problems we

consider, a user puts one of the nodes into a special \start" state, after which one of the

various tasks (which we describe below) must be performed. Of course, the objective is

to minimize the time to perform the task.

1.2 The �ring synchronization problem

The classic Firing Synchronization Problem (FSP) has a rich history (see, for example,

overview of [M-86]). In essence, it is the problem of achieving micro-synchronization,

given macro-synchronization. That is, given a global pulse, (i.e., given a pulse that all

processors can hear at the same time, coming, say, from a satellite) the network wishes

to establish a consistent time reference point for (some subset of) the processors in the

network. The di�culty is that the network (or a subset of a larger network) may be

such that it is not easily signaled separately by the source of the global pulse, and thus

the source cannot be used to signal a common time reference point for the subset.

More speci�cally, the problem is as follows: given a synchronous network, all pro-

cessors start in an identical \quiescent" state, in which they remain until a user puts

a single processor into a special \start" state. (Processors must remain in \quiescent"

state as long they receive \idle" signals from their neighbors.) Subsequently, at some

time after the initial \start" signal, all processors must simultaneously go into a special

\�re" state (i.e. achieve micro-synchronization). Let the synchronization time be the

number of time-steps after the �rst \start" signal until the processors \�re". The goal

is to minimize this time.

In addition to a large body of work for undirected networks (see [M-86]), the FSP

problem was considered for directed networks of automata in [K-78, HN-81, ELW-90],

where O(N2) was the best previously known synchronization time [ELW-90]. In this

paper, we show how to solve the FSP in O(ND) steps, where D is the diameter of the

network and N the the number of processors:

Theorem 1 There exists anO(ND) �ring synchronization algorithm for strongly-connected

directed networks of automata.
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In order to construct our solution to the �ring problem, we �rst construct an e�cient

solution to the traversal problem on directed networks, as explained below.

1.3 Backwards communication and network traversal

We design a network traversal algorithm which can search and traverse an arbitrary

strongly-connected synchronous network of automata in O(ND) time. The network

traversal algorithm is a fundamental primitive in its own right [GA-84, Kut88, ELW-90,

AG-93]. For example, it can be used to convert protocols designed for a bidirectional

network to run on the underlying undirected graph of the directed network.

The traversal problem is for a special root processor to create a single (and unique to

the network) baton which then visits all the other processors in the network and returns

to the root. Baton is of constant-size (and can be thought of as carrying constant-size

messages with it.) This problem is also known as the \Chinese postman problem",

where one must completely explore an unknown city which has many one-way streets

[AG-93].

In undirected networks, a simple DFS will su�ce to traverse the network. However,

in directed networks, one-way edges may prevent a baton from going \back" on a

directed edge, and a \detour" must be found instead. That is, in directed networks,

the e�ort of traversing the network can be reduced to �nding an e�cient \backwards

communication" procedure: for any directed edge A ! B, the procedure �nds a short

path from B to A, and uses it to simulate moving a message backwards on the edge.

A DFS may then be performed using this procedure to traverse edges in the reverse

direction [GA-84, Kut88, ELW-90, AG-93].

In this paper we show how a single baton can go \backwards" on an edge in an

unknown graph (i.e. without any pre-processing, such as the down-tree of [ELW-90].)

We call such such an algorithm a backwards communication algorithm since the baton

can carry a constant-size message with it:

Theorem 2 There exists an O(D) backwards communication algorithm for strongly-

connected directed networks of automata.

We remark that our theorem is actually stronger than stated, and, in fact, is optimal:

we achieve backwards communication in time proportional to the length of the smallest
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directed cycle that includes the edge in question. (The best previous [ELW-90] solution

for this task takes O(N2) time.)

We use the backwards communication algorithm as a building block in our traversal

algorithm. Previously, (in the setting of strongly-connected bounded degree directed

networks of synchronous automata) [GA-84, AG-93] exhibited a O(N2D) solution for

the traversal problem, and [ELW-90] showed a O(N2) solution. Using our backwards

communication algorithm, in this paper we further reduce this time to O(ND):

Theorem 3 There exists an O(ND) network traversal algorithm for strongly-connected

directed networks of automata.

1.4 Our contribution

The starting point of our investigation is the algorithm of [ELW-90] for these tasks. We

show how to simplify and speed-up the basic approach proposed there. In particular, we

exhibit a new �ring algorithm in which we show that the \down-trees" are not necessary

and that backwards communication can be done in O(D) time, instead of O(N2) time.

In order to design O(D) backwards communication algorithm, we extend the analysis

of \snakes" of [ELW-90], and propose a way to cancel their propagation in the network

when they are no longer needed. We then show how this method can be extended to

other problems as well.

1.5 Other tasks

The traversal and backwards communication algorithms play a central role in the design

of many other protocols for unidirectional networks, which we describe below.

\Wake-up and report when done" is a task requiring a single \root" processor to

send a signal to all the other processors in the network and then go into a special

\done" state only after every processor in the network has received the signal. (There

is no requirement of simultaneity as to when processors receive the signal, as with

�ring synchronization.) An \up-tree" and a \down-tree" are any rooted spanning trees,

where in the \up-tree" edges lead away from the root and in the \down-tree" edges

lead toward the root. \Constructing" one of these trees is the task of each processor

choosing a parent and children such that a coherent tree is formed. We require that
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each node of an up or down tree know which ports lead to its children and its parent.

The \long circuit | slow clock" is the task of �nding an outgoing spanning tree and a

directed cycle through the root of that tree of length between D and 2D. Note that the

length of the cycle is longer than any path in the tree. (Thus, a slow clock may then

be constructed as a baton cycling in the long circuit. During each pass of the baton a

message may be broadcasted to the network using the outgoing spanning tree, so that

the message is guaranteed to reach every processor by the completion of the next pass

of the baton.) Of course, the objective is to minimize the height of the tree and the

diameter of the cycle. In this paper we achieve the following:

Theorem 4 There exist O(ND) algorithms to

� simulate a step of computation on the underlying undirected graph ;

� wake-up the network and report when done ;

� construct an up-tree ;

� construct a down-tree ;

� search ;

� �nd an O(D) long circuit | slow clock.

on strongly-connected directed networks of automata.

Regarding an \O(D) long circuit | slow clock" we mean that it takes O(ND) time to

setup and then O(D) time for each cycle of the slow clock.

1.6 Organization of the rest of the paper

In section 2 we describe an O(ND) algorithm for the Firing Synchronization Problem,

assuming an O(D) backwards communication algorithm. In section 3 we present an

O(D) backwards communication algorithm. In section 4 we describe other applications

of the techniques developed in sections 2 and 3. Section 5 contains conclusions and

open problems.
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2 The �ring synchronization algorithm

We give solutions to the Firing Synchronization Problem (FSP) for progressively more

general families of graphs, ending with the general problem. We show how to solve the

general problem in O(ND) time assuming an O(D) backwards communication algo-

rithm, which we describe in the next section. We �rst survey the preexisting techniques

which we will use in our general solution.

2.1 Background: Firing on the directed ring and on the ring-of-trees

We start with the case of directed rings. In fact, for directed rings an O(D) a solution

already exists and was given by [K-78, HN-81]. (For a description of their algorithm also

see [ELW-90].) For the sake of completeness, here we describe the idea for rings whose

diameter is a power of two (the algorithm can be easily extended to non-power-of-two

diameter rings as well, see [K-78, HN-81]). First, note that the synchronous network can

simulate a constant number of messages that travel at di�erent speeds relative to one

another. (This can be done since \slower" messages can by design skip a pre-determined

constant number of steps after crossing each edge. We call this constant-size messages

tokens .) Initially, the initiator node simultaneously sends four tokens, traveling at

speeds 1, 2, 3, and 4 respectively. (That is, the speed-4 token travels four times faster

than the speed-1 token.) Tokens 1 and 3 meet at a point on the opposite side of the

ring from the initiator node. Simultaneously tokens 2 and 4 meet at the initiator node.

Both of these nodes now act as initiator nodes and repeat the process. One may remark

that the two halves are no longer rings. The computation of each is identical, however,

so that messages coming o� of one end of one half are identical to those simultaneously

coming on the other end from the other half. Thus each computes as a ring of half the

size. Finally when all nodes become initiator nodes (i.e. when each node is an initiator

node and its predecessor on the ring is also an initiator node) the ring \�res".

The above solution can also be extended to the ring-of-trees, which is de�ned as

follows: A ring-of-trees is a ring with an initiator node on the ring and additional

directed trees attached to the ring. The root of each tree lies on the ring, and the edges

of the tree are directed away from the root. Further, the path from the initiator node

to any leaf of any of the trees (around the ring and then down the tree) is shorter than

the path from the initiator node to itself around the ring.
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For any ring-of-trees, let D0 denote the diameter of the ring. [K-78, HN-81] have

shown that there exists an O(D0) FSP algorithm for any ring-of-trees. The proof is an

extension of the solution to the ring (see, [K-78, HN-81, ELW-90]), and the algorithm is

identical: Every processor executes the ring algorithm described above, (independent of

whether it is on the ring or in one of the trees) sending its output to all its output ports.

It is not hard to see that all the nodes which are located at the same distance from

the initiator node (going forward along directed edges) have the same computational

transcript. Thus a node on a tree �res at the same time as the ring node which is at

the same distance from the initiator as it is. As we saw before, all ring nodes �re at the

same time. Thus, all nodes in the network �re at the same time.

2.2 Firing on an arbitrary network

Next, we reduce the problem of �ring on an arbitrary strongly-connected directed graph

to that of �ring on a ring-of-trees.

One of the building blocks of our construction for the general directed graph is the

backwards communication algorithm, which we describe in the next section (section 3).

In this section, we will assume that the following two versions are possible to implement

in O(D) time and without side-e�ects (once the procedure is �nished) for the rest of

the network: The simplest version sends a message from node B to node A where there

is an edge from A! B. The second version can send a message from node B to node

A where there is only a marked directed path from A to B. (A marked path is a path

in which each node knows the in-port and out-port that connect to the previous and

next nodes in the path respectively. Thus messages which are labeled as being \on

the path" can pass down the path without carrying with them any further routing

information.) Additionally, the second variant �nds a shortest directed path from B to

A. We elaborate how this can be done in section 3.

With the above two variants of the backwards communication algorithm we can

now explain the general outline of our �ring algorithm. The basic idea is to build a

BFS tree and then to �nd a cycle (from the root to a leaf of the BFS tree and back to

the root) which is longer then the height of the BFS tree. The BFS tree together with

this cycle cover the entire graph and form a ring-of-trees. Hence we can �re. Below,

we describe the actual �ring synchronization algorithm, together with an analysis of its

running time.
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FIRING SYNCHRONIZATION ALGORITHM

Stage One A spanning BFS tree is built, with the root as the initiator

node. The initiator node releases a wakeup message that propagates in all directions.

When a quiescent node �rst receives this message, the in-port by which it is received

is designated as the parent of that node in the BFS tree. The node echoes the wakeup

message to all out-ports. All subsequent incoming copies of this message are ignored.

The edges in this tree point away from the root. Each node is aware of its parent

in the tree, but not its children. In particular, no node at this stage of the algorithm

knows if it is a leaf or not. (Notice that for the wakeup message to reach all nodes takes

O(D) time.)

Stage Two The leaf with the longest return cycle is found. This second stage

starts one time-step after the �rst stage starts (the messages of stage two never catch

up to the messages of stage one). Now we de�ne the procedure of the second stage:

De�ne the return cycle of a leaf in the BFS tree to be the directed cycle consisting of

the path from the root to the leaf in the tree, together with the shortest path in the

graph from the leaf back to the root. Recall that the idea is to �nd a return cycle which

is longer than the height of the BFS tree. The longest return cycle will do.

The root node creates a baton which performs a DFS traversal of the BFS tree

created in stage one. Whenever the baton must backtrack, the backwards communi-

cation algorithm is used. Using the backwards communication algorithm, a traversal

baton can detect if the current processor is a leaf: if none of the processors connected

to out-port ports of the current node have the current node as their parent in the BFS

tree, then the current processor is a leaf. Hence, checking if a node is a leaf takes O(D)

steps.

When the DFS traversal baton comes to a leaf node, it establishes a marked path

(of length at most D) from the leaf back to the root of the BFS tree. (This is done

using the second version of the backwards communication algorithm. The algorithm

requires an already established marked path in the other direction, for which we use

the current path from the root to the leaf at which the baton is currently located in the

BFS tree.) Finding this path back to the root also takes O(D) steps.

The longest cycle found so far, the Current Longest Return Cycle (CLRC), is also

kept marked. Each time the DFS baton �nds a new leaf, the length of its return cycle
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is compared with that of the CLRC and the longer cycle becomes the new CLRC. (The

precise mechanism for this comparison is given below.) Notice that at the end of the

DFS, the CLRC is the longest return cycle.

To compare the CLRC to the return cycle of the current leaf that the DFS baton

is occupying, we run a \race". That is, the DFS baton (using the marked path to the

root established above) signals the root to send send two tokens traveling at the same

speed around the two cycles. The token which looses the race was on the longer of the

two cycles. That cycle becomes the new CLRC. The two cycles are noti�ed of their

new status by messages sent from the root.

Since each such race takes O(D) time and there are at most N leaves, running races

for all the leaves takes O(ND) time. Thus the entire DFS, including the races, takes

O(ND) time.

Stage Three An embedded spanning ring-of-trees is constructed and fired.

Notice that the longest return cycle found above together with the tree form a ring-of-

trees. This ring-of-trees spans the graph, and the diameter of its ring is at most 2D.

Using the algorithm of the previous subsection, the embedded ring of trees is �red in

O(D) steps.

Thus, we have proved the following:

Theorem 5 There exists anO(ND) �ring synchronization algorithm on strongly-connected

directed networks.

3 The backwards communication algorithm

Suppose we have two nodes, A and B, and we would like to send a message from B to

A, such that only A gets the message, A knows that it is the intended recipient of the

message, B knows when A has gotten the message, and at the end of the transaction,

the rest of the graph is left undisturbed.

If there is an edge from B to A, this is trivial. Now suppose there is an edge from A

to B. Can we somehow use this communication link to get information to move in the

opposite direction? Recall that the graph is strongly-connected. So B can broadcast
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a message in all directions (ooding the network), and it will get to all nodes in O(D)

time. So the di�culty is not in getting the message to A, it is in getting the message

only to A. This is accomplished by the backwards communication algorithm.

The types of messages employed by this algorithm, their uses, and their rules of

propagation are detailed below. After that follows a top-down description of the al-

gorithm itself. We extend the idea of snakes (and their propagation), introduced in

[ELW-90]. A snake is a message consisting of many characters that follow each other

through the graph. Many types of snakes can be constructed. We use two particu-

lar kinds, growing snakes and dying snakes and introduce abort messages to remove

unwanted growing snakes.

Growing Snakes Our communication alphabet contains a �nite number of growing-

snake characters g1; : : : ; g� (where � is the degree of the network) and a tail character, t.

As we will detail below, B will release growing snakes in order to \�nd" A. B releases

growing snakes by simultaneously outputting the character gi through out-port i, for

each out-port, and on the next time-step simultaneously outputting the tail character,

t, through each out-port.

Growing snakes propagate as follows: Upon receiving its �rst growing snake char-

acter, (ties are broken by choosing the in-port of least index) a quiescent processor

changes its state to the tree state and sets its parent pointer (used in the next sec-

tion) to the in-port by which the character was received. During the next time-step,

this character is rebroadcast through all out-ports. The tree node then continues to

re-broadcast through all out-ports each growing snake character of this snake as they

arrive, until the tail is received. Instead of re-broadcasting the tail, for each out-port

i, the node sends the character gi (to record in the snake that at this node it was sent

through out-port i). During the next time-step, a new tail is broadcast, completing the

snake, which is now one character longer than before. All snakes other than the very

�rst to arrive are ignored and thus vanish.

Abort messages At some point we no longer need the growing snakes moving through

the network, or the tree structure of parent pointers they have made. To do that, B

releases abort messages. These are single characters that travel three times the speed

of growing snakes. (As mentioned in section 2.1, messages of di�erent speeds are easily

simulated.) On contact they eliminate growing snakes and return tree nodes to the
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quiescent state (also un-setting parent pointers).

Abort messages propagate in such a way as to always follow growing snakes: Any

tree node receiving an abort message by its parent in-port (from any other in-port it

will be ignored) broadcasts it to all out-ports, un-sets its parent pointer, and reverts to

the quiescent state. Any snake character currently waiting to be broadcast is forgotten.

Abort messages are ignored by quiescent nodes, so they vanish when the tree is gone.

(We explain how and when abort messages are used below.)

Dying snakes Our alphabet also contains dying-snake characters d1; : : : ; d�. Upon

receiving the �rst dying-snake character di, the node temporarily stores the value of i,

but does not output the character (the character is lost and the value of i is forgotten

when the snake passes). All subsequent characters of the snake are passed to out-port

i. (Unlike the growing-snakes above, we will never use these snakes in a manner which

will require a dying snake tail character, or in which it will be possible for two dying

snakes to collide.) Notice that additional message characters may be appended to the

end of the snake, and passed along with it. (In fact, we add our message M to the end

of the dying snake.) Dying snake characters travel at the same speed as growing snake

characters. Note, however, that the front of a dying snake moves at half the speed of

the tail. It is delayed one time-step at each node while the lead character is consumed.

Also, since the snake is getting shorter and shorter, there is a (unique) node where the

snake vanishes completely.

The interaction of growing snakes, dying snakes, and abort messages The

graph simulates two levels of message interaction. The propagation of growing snakes

and abort messages occurs within the �rst level, whereas dying snakes propagate in

the second. Messages do not interact across the two levels. The following fact about

growing and dying snakes was used in [ELW-90]: If a growing snake happens to return

to its point of origin and is than mutated into a dying snake, it will retrace its path

again. The �rst traversal of the path will be recorded in the growing snake and this

information will be used by the dying snake to duplicate the path. This allows messages

to be sent backwards along A! B, since we can get the \address" of A encoded into a

snake at B. We now show the following new lemmas about growing and dying snakes.

Lemma 1 Suppose there is an edge from A to B and B is the initiator node of growing

snakes. Then the �rst growing snake which returns to B via A traversed the smallest cycle
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in the graph which includes the edge from A to B.

Let us denote by �(AB) the length of the smallest directed cycle in the graph which

includes an edge from A to B. Also, de�ne unit speed to be the speed of the head of a

growing snake.

Lemma 2 Suppose there is an edge from A to B and B is the initiator node of growing

snakes. Then by the time the tail of the growing snake returns to B via A, 2�(AB)

time-steps have elapsed and all growing snakes are within a distance of 2�(AB) from B.

B releases the abort messages simultaneous with the arrival of the tail of the growing

snake from A. Recall that, while the growing snakes have a 2� head start, abort

messages travel three times as fast as the heads of growing snakes. Hence:

Lemma 3 �(AB) steps after the simultaneous release of the abort messages and the last

character of the dying snake, the dying snake arrives back at A, and all growing snakes,

abort messages, and the BFS tree pointers are gone.

Thus our abort messages cleanup the graph in O(D) time, and A and B know

when this process is done. The baton may now travel backwards again on some other

edge without interference from the previous backwards communication process. This is

the key point of our algorithm, which allows us to avoid a costly \down-tree" [GA-84,

AG-93, ELW-90] construction, the bottleneck of the previous solutions.

Consider a setting where B has a message M that it would like to communicate to

A, and A has an edge to B, as above. The algorithm is as follows:

THE BACKWARDS COMMUNICATION ALGORITHM

� First, B generates growing snakes out of all of its out-ports. Notice that as they

spread throughout the graph, the tree created by their propagation is a BFS

tree.

� When B receives a snake back again along the edge from A, it immediately

mutates it into a dying snake (Each gi character becomes a di character, and

the tail character is eliminated) and passes it on according to the dying-snake

protocol. To the end of this snake, B appends the message M .
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� Simultaneous with this release of the messageM , B releases the abort messages

through all out-ports. They eliminate the growing snakes and the BFS tree and

return all nodes to the quiescent state, before vanishing themselves.

� The dying snake returns to A by the shortest path and vanishes there. That

is, when a node �nds that the �rst character after the lead character (which it

eliminates of course) of a dying snake is a marked message M (that is, none

of the snake is left), then this node knows that it is A, the node for which

the message is intended. A can then keep M , and read any message that it is

carrying.

Remark 1: For any directed edge e of the network, recall that �(e) denotes the length

of the smallest directed cycle which includes e. Let �(V;E) denote the maximum �(e)

for all the edges in the network (V;E). Notice that � � (D + 1) on any strongly-

connected di-graph and that our backwards communication algorithm actually works

in time O(�).

Remark 2: Notice that the requirement that A have an edge to B is unnecessarily

strong. The algorithm can easily be adapted for the case where A has only a marked

path to B as follows. Upon reaching A, the growing snake ceases to grow and simply

passes unchanged down the marked path. Upon reaching B, the snake becomes a dying

snake, and proceeds as before.

4 Applications

We now describe how the other aforementioned tasks can be implemented. Simulating

one step of an undirected graph protocol on the underlying undirected graph is achieved

as follows. A lead node creates a BFS tree and performs a DFS traversal of it, as in the

Firing Synchronization algorithm. When the traversal baton visits a node, it traverses

all forward and backward edges adjacent to the node, simulating the necessary messages

to be sent in each direction. This takes O(D) time for each node (since the graph is of

constant degree), hence it takes O(ND) time altogether.

The wake-up and report when done is also accomplished by a DFS traversal, using

backwards communication when necessary. An up-tree is basically a BFS tree and as

such may be constructed identically. It is traversed later by a DFS so that each node
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may determine which of its out-ports are actually its children in the BFS tree. The

down tree can be constructed by doing a DFS traversal of backward edges (of course

using backwards communication algorithm). The long circuit | slow clock is equivalent

to �nding a cycle longer than the tree depth. Our FSP algorithm found such a cycle of

length O(D). Hence we are done.

5 Conclusions and open problems

We show that by allowing O(ND) time many basic uni-directional network problems

can be solved for bounded degree synchronous network. In this paper we did not

address the question of fault-tolerance (i.e., self-stabilization [AO-94]). It would be

interesting to address this question as well. Additionally, it is not clear if O(ND) is the

best possible running time for FSP or the other problems mentioned above. The only

known lower bound for the above problems is the trivial 
(D).
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