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(TL;DR) Does the signal come from only one source, i.e. the so-called canonical (default) tokenization?

The answer is no!

By looking at non-canonical tokenizations, we get consistent improvement in downstream performance!
👇

After all, some non-canonical tokenizations can
have non-negligible mass!

string x = Hypnopaturist
canonical v = [Hyp,nop,atu,rist]

most likely v = [Hyp,no,patu,rist]

canonical prob p(v|x) ≈ 0.0004

most likely prob p(v|x) ≈ 0.9948

Here, Gemma’s canonical tokenization v of x
is much less likely compared to the most likely
(non-canonical) tokenization v.

(2)
Given a string, what’s p(x) under the LLM?

string x = Caterpillar
tokenization v = [C,ater,p,ill,ar]

Common assumption:

p(x) = p(v) 7

What about other tokenizations?

[C,ater,pi,l,lar], [Cat,er,pi,lla,r],
. . . , [C,at,e,r,p,i,l,l,a,r]

are all valid tokenizations!

p(x) =
∑
v

p(v,x) 3

We should not neglect other tokenizations...

(1)
...but the space of tokenizations is

exponential!
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So can we reason probabilistically about this
tokenization space?

(3)

E.g., exactly compute the most likely tok-
enization for autoregressive models?

Answer: No!
😢

Theorem. The most likely tokenization prob-
lem is NP-hard.
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p(¬Canonical|Tokens) ≈ 0.004
p(Canonical|Tokens) ≈ 0.996

Yet experimentally, canonical is often much
more likely in English.

(4)

Read our paper!

https://arxiv.org/abs/2408.08541

Despite this, sampling unconditionally from
the LLM reveals that...
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...they are generating non-canonically for
long texts!

This is especially true for generated non-English
(e.g. code, unicode characters, etc.)

(5)
These generated non-canonical tokeniza-
tions can be more likely than canonical!

x =ーラク
p(v = [ー ラ,ク]|x) = 0.586
p(v = [ー,ラ,ク]|x) = 0.012

p(v = [ー,ラク] |x) = 0.402

x = tongueless
p(v = [ tongue,less]|x) = 0.518
p(v = [ t,ong,uel,ess]|x) = 0.004

p(v = [ tong,uel,ess]|x) = 0.474

x = HEADER_DELIMITER
p(v = [ ,HEADER,_,DELIM,ITER]|x) = 0.412
p(v = [ HEAD,ER,_,DELIM,ITER]|x) = 0.330

p(v = [ HEADER,_,DELIM,ITER]|x) = 0.010

Meaning there is possibly signal in
non-canonical tokenizations!

(6)

So can we aggregate over all tokenizations and exactly compute the marginal
p(x) =

∑
v p(v)?

Answer: No!
😢

Theorem.The marginal string probability problem is #P-hard.
But we can approximate through sequential importance sampling!
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What’s going on here?

Llama2 Gemma Mamba canonical

That’s evidence of signal in non-canonical tokenizations!

(7)
Can we quantify how much signal is in non-canonical tokeniza-
tions?

arg max
x

α · p(v,x|vq)︸ ︷︷ ︸
canonical

+(1− α) · p(¬v,x|vq)︸ ︷︷ ︸
non-canonical
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There is significant signal in non-canonical tokenizations!

(8)

https://arxiv.org/abs/2408.08541

