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Fig. 1. Images generated with our novel geometric constraint preserve straight lines and perspective. (a) An image generated by stable diffusion v2,
(b) An image generated by our fine-tuned diffusion model, and (c) the depth map and prompt both models were conditioned on.

While perspective is a well-studied topic in art, it is generally taken for
granted in images. However, for the recent wave of high-quality image syn-
thesis methods such as latent diffusion models, perspective accuracy is not
an explicit requirement. Since these methods are capable of outputting a
wide gamut of possible images, it is difficult for these synthesized images
to adhere to the principles of linear perspective. We introduce a novel geo-
metric constraint in the training process of generative models to enforce
perspective accuracy. We show that outputs of models trained with this con-
straint both appear more realistic and improve performance of downstream
models trained on generated images. Subjective human trials show that
images generated with latent diffusion models trained with our constraint
are preferred over images from the Stable Diffusion V2 model 70% of the time.
SOTA monocular depth estimation models such as DPT and PixelFormer,
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fine-tuned on our images, outperform the original models trained on real
images by up to 7.03% in RMSE and 19.3% in SqRel on the KITTI test set for
zero-shot transfer.
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1 INTRODUCTION
"Re-draw The School of Athens in the style of Van Gogh", "Show an
aerial viewpoint of the Washington Monument". The introduction
of recent text-to-image synthesis methods such as latent diffusion
models has drastically increased our creative capabilities. These
models can generate anything from a Renaissance style painting
to an everyday smartphone selfie from just a simple text prompt.
However, as powerful as these models can be, their limited ability
to adhere to physical constraints that are explicitly present in natu-
ral images restricts their potential [Wang et al. 2022]. In contrast,
traditional methods of image generation such as hand-drawn art or
ray-traced images place careful attention on ensuring an accurate
physical environment including geometry and lighting.
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One of the largest advancements in the photo-realism of hand-
drawn art was the development of a system to draw accurate per-
spective geometry in the 1400s. While the gap between real and
generated images is not as large for diffusion models as it was back
then, a greater consideration for perspective accuracy can have a
similarly large impact in the photo-realism of their outputs.
Perspective is one of the most important physical constraints

because it ensures object properties such as size, relative location,
and depth are accurately represented. In a sense, it ensures physical
accuracy [Kadambi 2020]. This allows the use of perspective accurate
data for downstream tasks such as camera calibration [Beardsley
and Murray 1992; Caprile and Torre 1990; Chen and Jiang 1991; He
and Li 2007; Li et al. 2010], 3D reconstruction [Guillou et al. 2000;
Wang et al. 2009], scene understanding [Geiger et al. 2014; Han and
Zhu 2009; Satkin et al. 2012], and SLAM [Camposeco and Pollefeys
2015; Georgis et al. 2022; Lim et al. 2022].

However, current diffusion based image generators such as [Bau
et al. 2021; Radford et al. 2021; Razavi et al. 2019; Rombach et al.
2022b; Yu et al. 2022] do not generate perspectively accurate data [Farid
2022b]. Please refer to Fig. 1(a) for an example of this phenom-
enon. This is because latent diffusion models typically lack the
interpretability necessary for explicit encoding of a physical prior
such as perspective in the model architecture [Kadambi et al. 2023].
By utilizing a novel loss function that ensures the gradient field of
an image aligns with its expected vanishing points, we are able to
encode this physical prior. By enforcing this perspective prior on
generated images, we also increase the accuracy of object properties
important for downstream computer vision tasks and photo-realism.
As it turns out, the perspective correctness of an image has a

strong influence over its overall scene coherence and therefore
realism. This is most likely true because, as mentioned before, per-
spective provides crucial information regarding the size, relative
location, and depth of a scene. To illustrate this, we set up a human
subjective test where the photo-realism of our perspective-corrected
images is put to the test. We show that latent diffusion models which
utilize our novel perspective loss generate images that are rated as
more realistic an overwhelming majority of the time as compared
to images generated by the base diffusion model. We also verify
the visual benefits of our proposed constraint by applying it to the
inpainting task. We show that inpainted images generated from
models trained with our loss consistently appear more perceptually
similar to the original image than images from models without our
loss.
Additionally, images generated with our novel loss prove ben-

eficial to the accuracy of downstream tasks which are inherently
reliant on these same object properties. As proof of this concept, we
fine-tune multiple SOTA monocular depth estimation models such
as DPT [Ranftl et al. 2021] and PixelFormer [Agarwal and Arora
2023]. We show that training on data with accurate perspective leads
to models with higher performance that can capture high-frequency
details to a higher degree.

1.1 Contributions
In summary, we make the following contributions:

• We introduce a novel geometric constraint on the training
process of latent diffusion models to enforce perspective ac-
curacy.
• We show that images from models trained with this con-
straint appear more realistic than models trained without this
constraint 69.6% of the time.
• We demonstrate that downstream tasks which benefit from
more geometrically accurate inputs (such as monocular depth
estimation) improve by up to 7.03% in RMSE and 19.3% in
SqRel.

2 RELATED WORK

2.1 Synthetic Image Generation
Image generation, while a popular task, has proven to be difficult be-
cause of the high dimensional space and variety of images. One of the
most popular techniques for image generation has been Generative
Adversarial Networks (GANs) [Goodfellow et al. 2020]. While GANs
are capable of high quality image synthesis [Brock et al. 2019], they
are limited by the fact that they are difficult to train, often failing
to converge or collapsing into a mode where all generated images
are the same [Arjovsky et al. 2017; Mescheder et al. 2018]. Another
popular image generation technique is Variational Auto-encoders
(VAEs) [Kingma and Welling 2014] which have stronger theoretical
guarantees, but cannot match GANs in image quality [Child 2021;
Vahdat and Kautz 2020]. Recently, diffusion models [Sohl-Dickstein
et al. 2015] for image generation have grown in popularity. These
models work by reversing a diffusion process which adds noise
to high quality images and are capable of generating high quality
samples from a variety of distributions [Daras et al. 2022; Dhariwal
and Nichol 2021; Ho et al. 2020]. Subsequent works have expanded
the scope even further by adding text guidance to the diffusion
process [Ramesh et al. 2022; Saharia et al. 2022], simplifying the
inverse process [Wallace et al. 2022], and reformulating the diffusion
process to occur in a latent space for speed benefits [Rombach et al.
2022b]. While recent work has explored guiding diffusion models
in various ways [Ho and Salimans 2022; Meng et al. 2023; Rombach
et al. 2022a; Wallace et al. 2023], most diffusion models rely almost
entirely on their vast datasets and text encoders for priors on scene
composition and object properties. Some , but this work generally
focuses on the whether or not objects are present as opposed to
scene physics. This means that there are no explicit guarantees that
generated images will be physically accurate, making them a poor
fit for use in synthetic datasets. Our work aims to add 3D geometry
constraints to image generators in order to improve the quality of
generated images.

2.2 Vanishing Points in Computer Vision
Vanishing points have many varied and important uses in computer
vision. One common use for vanishing points is camera calibration.
Early examples of this include [Beardsley and Murray 1992; Caprile
and Torre 1990; Chen and Jiang 1991] who use vanishing point geom-
etry to compute the intrinsics and extrinsics of one or more cameras
given single or multiple images. Subsequent papers, such as [He and
Li 2007; Li et al. 2010], provided improved techniques that were sim-
pler or required less data and assumptions. In addition, newer works
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Fig. 2. Examples of one, two, and three-point linear perspective. Vanishing points are labeled in blue, perspective lines are in red, and the horizon lines
are in light green. One-point perspective is typically used when there is one focal point of the image or when only one side of an object is visible. Two-point
perspective is used to illustrate multiple sides of an object, while three-point perspective is used for viewpoints that are above or below the horizon line of the
3D scene.

began to not only compute camera parameters, but also use them
to compute 3D reconstructions of single images [Guillou et al. 2000;
Wang et al. 2009]. Beyond camera calibration, vanishing points are
also useful for general scene understanding. [Han and Zhu 2009] use
vanishing points to help create generative grammar for synthetic
scenes, [Geiger et al. 2014] use vanishing points as priors for 3D
scene and traffic understanding, and [Satkin et al. 2012] estimate
3D models from singular images using vanishing point priors. Van-
ishing points are also particularly useful for road detection thanks
to easily identifiable perspective lines, as demonstrated by [Kong
et al. 2009; Liou and Jain 1987]. Vanishing points are also regularly
used in SLAM techniques. [Lee et al. 2009] were one of the first in
this space, using vanishing points to identify the heading of a robot
for navigation. Subsequent works further expanded the capabilities
of SLAM systems built on vanishing points including [Camposeco
and Pollefeys 2015; Georgis et al. 2022; Lim et al. 2022] who use van-
ishing points to identify direction and perform structural mapping
of scenes in real-time. Given the significance of vanishing points in
computer vision, we aim to enhance image generators with accu-
rate perspective, in order to benefit photo-realism and downstream
tasks.

2.3 Monocular Depth Estimation
Supervised methods for monocular depth estimation typically re-
quire paired image and depth data. One of the first works in this
area was Make3D [Saxena et al. 2008] which relied on hand-crafted
features and Markov random fields. Subsequent works then applied
deep learning to the problem, starting with multi-scale convolu-
tional networks [Eigen et al. 2014] and followed by conditional
random fields [Li et al. 2015], residual networks [Laina et al. 2016],
convolutional neural fields [Liu et al. 2015; Xu et al. 2018], and most
recently transformers [Agarwal and Arora 2023; Ranftl et al. 2021,
2020]. Many approaches also take advantage of known geometric
relationships, such as normals [Qi et al. 2018] and planes [Lee et al.
2019; Yang and Zhou 2018]. Newer techniques have also taken an
unsupervised approach [Fei et al. 2019; Wong and Soatto 2019] or
use multi-modal data capture [Singh et al. 2023]. However, most
supervised monocular depth estimation models are limited by the
availability of paired data on which to train as this data is difficult
to collect.

In order to overcome the challenge of a lack of sufficient training
data, many techniques turn to synthetic datasets. The renderers
used to generate the images in these datasets can often generate
corresponding ground-truth data, making it simple to acquire pixel-
aligned ground-truth depth maps. In addition, these renderers of-
ten allow for different types of data, such as varied weather con-
ditions or indoor vs. outdoor scenes, making them an attractive
way to get training data. Examples of such datasets include Vir-
tual KITTI, a photorealistic copy of the popular self-driving dataset
KITTI [Gaidon et al. 2016; Geiger et al. 2013] and SYNTHIA, a
dataset that includes depth and semantic segmentation information
for images of a synthetic city [Ros et al. 2016; Zolfaghari Bengar
et al. 2019]. Although these datasets are often quite realistic, there
are often key differences between synthetic and real images which
leads models trained on synthetic images to achieve lower perfor-
mance when tested on real datasets compared to models trained
and tested on real images. This difference in performance is referred
to as the Sim2Real gap. As monocular depth estimation is a popular
task, many works have attempted to address the problem of the
Sim2Real gap [Cao et al. 2018; Damodaran et al. 2018; Long et al.
2015; Rozantsev et al. 2018; Sankaranarayanan et al. 2018]. How-
ever, all of these techniques approach the problem by attempting
to improve the neural network architectures. On the other hand,
we approach this problem from the perspective of improving the
synthetic data used to train the neural networks.
In addition to monocular depth estimation, the techniques we

describe in the paper can be easily applied to the task of depth com-
pletion as well since the data format is the same for both tasks [Nazir
et al. 2022; Wong et al. 2021; Wong and Soatto 2021].

3 PERSPECTIVE BACKGROUND

3.1 Linear Perspective
Although perspective is a word commonly used in a variety of con-
texts, it has a very specific meaning in terms of art and photography:
techniques used to draw objects in 2D such that their 3D attributes
are correctly modeled. In practice, perspective refers to a multitude
of different techniques which can be used to create a 3D feel, but the
most common technique is called linear perspective. In linear per-
spective, all mutually parallel lines, on the same or parallel planes,
in 3D space, converge to a single point in the image plane which
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Fig. 3. Graphical description of our geometric constraint. Left: A vi-
sualization of how the loss function sweeps lines across the image. Right:
𝐷 (𝑣, x) plotted for the image at right. The red and yellow lines in the left
plot are identified by the corresponding dots.

is referred to as a vanishing point. The only exception to this rule
is sets of lines that are exactly parallel to the camera sensor. In
this case, these lines are also parallel in the image plane. A typical
drawing/image often has anywhere from one to three vanishing
points, with the number of vanishing points determining the style
and view of the drawing/image. Another key component of linear
perspective is the horizon line. The horizon line is a horizontal line
that represents the viewer’s eye level in an image, and typically at
least one of the vanishing points of an image lies on this line. A
visualization of these principles can be found in Fig. 2.

3.2 Perspective Consistency in Images
Perspective in images is not always easy to confirm, as the vanishing
points of an image can only be easily identified with the aid of
parallel lines in 3D space, which may not always exist in images. For
images that do have sets of parallel lines, perspective consistency
can be verified by extending sets of parallel lines in either direction
until they intersect and ensuring that all pairs of lines in a set
intersect at the same point.

Natural Images. By the math of perspective projection for a pin-
hole camera, an point X = (𝑋,𝑌, 𝑍 ) is projected to a point x =

(𝑥,𝑦) = (𝑓 𝑋/𝑍, 𝑓 𝑌/𝑍 ) [Ma et al. 2003]. If we are concerned with a
line 𝐿 = O + 𝑡D, after replacing 𝑋,𝑌, 𝑍 above with the equation for
a line and taking the limit as 𝑡 goes to positive/negative infinity, we
see that the final projected point is dependent on only D. Therefore,
sets of parallel lines, that are not parallel to the camera plane, will
all come together to the same point, known as a vanishing point.

Synthetic Images. Although natural images are forced to follow
perspective rules, there are no such restrictions on synthetic images,
particularly images generated by deep learning approaches. Most
of the loss functions used to train these models are focused on
image quality or how well prompts are followed, meaning physical
properties such as perspective, shadows, or lighting can often be
neglected [Farid 2022a,b]. An example of this can be seen in Fig. 1(a).

4 IMPROVING PERSPECTIVE ACCURACY OF
GENERATED IMAGES

Our fine-tuned model is built on top of the latent diffusion models
introduced by [Rombach et al. 2022b], using code from [Pinkney
2022]. We describe the latent diffusion process in Section 4.1. We

add a new term to the traditional loss function and train on a spe-
cialized dataset that provides ground truth vanishing points. This
new constraint is described in Section 3.2.

4.1 Latent Diffusion Models
Traditional image generation diffusion models are concerned with
a forward diffusion process over images x0,...,x𝑇 :

𝑞(x𝑡 |x𝑡−1) = N(
√
𝛼𝑡x𝑡−1, (1 − 𝛼𝑡 )I), (1)

where 𝑞 is the forward diffusion function, 𝑡 is the current time step,
and I is the identity. 𝛼𝑡 = 1− 𝛽𝑡 and 𝛽1,...,𝛽𝑇 compose a pre-selected
variance schedule. The reverse process is then parameterized as:

𝑝 (x𝑡−1 |x𝑡 ) = N(`\ (x𝑡 , 𝑡),Σ(x𝑡 , 𝑡)), (2)

where 𝑝 is defined as the reverse diffusion function and Σ(x𝑡 , 𝑡) is
typically set to time-dependent constants. `\ (x𝑡 , 𝑡) is defined as:

`\ (x𝑡 , 𝑡) =
1
√
𝛼𝑡

(
x𝑡 −

𝛽𝑡√
1 − 𝛼𝑡

𝜖\ (x𝑡 , 𝑡)
)
, (3)

where𝛼𝑡 = Π𝑡
𝑖=1𝛼𝑖 , and 𝜖\ (x𝑡 , 𝑡) is a learned function parameterized

by a UNet model [Ronneberger et al. 2015] with learned parameters
\ . Based on this, the traditional diffusion model loss is as follows:

𝐿DM = Ex,𝜖∼N(0,1),𝑡
[
∥𝜖 − 𝜖\ (x𝑡 , 𝑡)∥22

]
. (4)

More details and derivations can be found in [Ho et al. 2020]. Latent
diffusion models work very similarly, but perform the forward and
reverse diffusion processes in latent spaces. Specifically, an encoder
and decoder are introduced to translate to and from the latent space.
The encoder is defined as: E : 𝑋 ∈ 𝑅𝐻×𝑊 ×3 ↦→ 𝑍 ∈ 𝑅ℎ×𝑤×3, while
the decoder is defined as:D : 𝑍 ∈ 𝑅ℎ×𝑤×3 ↦→ 𝑋 ∈ 𝑅𝐻×𝑊 ×3, where
ℎ = 𝐻/𝑓 , 𝑤 = 𝑊 /𝑓 and 𝑓 is a downsampling factor. With this
formulation, the loss function now becomes:

𝐿LDM = EE(x),𝜖∼N(0,1),𝑡
[
∥𝜖 − 𝜖\ (𝑧𝑡 , 𝑡)∥22

]
, (5)

where the image 𝑥𝑡 is replaced by its latent space representation 𝑧𝑡 .
In order to add perspective priors to a latent diffusion model, we

add an additional perspective loss term. At a high level, this loss
works by sweeping lines extending out from a vanishing point over
the image and calculating the sum of image gradients across the line,
as illustrated in Fig. 3. Pseudocode for this algorithm is shown in
Alg. 1. This sum is designed to represent how "edge-like" the region
along that line is in the image. We can then write our new loss as:

𝐿DM = EE(x),𝜖∼N(0,1),𝑡
[
∥𝜖 − 𝜖\ (𝑧𝑡 , 𝑡)∥22

]
+

_Ex,𝜖∼N(0,1),𝑣
[
𝐿persp (x̂, x, vx)

]
.

(6)

where _ is a weight factor for our perspective loss, vx is a set of
vanishing points in image space and x̂ is our reconstructed image,
which can be written as:

x̂ = D
(

1
√
𝛼𝑡

(
z𝑡 −

√︁
1 − 𝛼𝑡𝜖\ (𝑧𝑡 , 𝑡)

))
. (7)

where 𝑡 is randomly chosen between 0 and 𝑇 for each iteration. In
order to define 𝐿persp, we first define some intermediate quantities:
• 𝐺x represents the gradients of an image x computed with a
3x3 Sobel filter.
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ALGORITHM 1: Algorithm to compute perspective loss

Function perspective_loss(x, x̂, vx )
Input : Image x̂
Input :Ground Truth image x
Input :Vanishing Points vx

𝐺x ← img_derivative(x)
𝐺x̂ ← img_derivative(x̂)
𝑙𝑜𝑠𝑠 ← 0.0
foreach 𝑣 ∈ vx do

𝜙min, 𝜙max ← calc_image_angle(𝑣)
for 𝑖 ← 0; 𝑖 < 𝑁 ; 𝑖 = 𝑖 + 1 do

𝑎𝑛𝑔𝑙𝑒 ← 𝑖
𝑁
∗ (𝜙max − 𝜙min ) + 𝜙min

𝑑 ← calc_perp_vec(𝑎𝑛𝑔𝑙𝑒)
𝑝 ← get_line_pixels(𝑣, 𝑎𝑛𝑔𝑙𝑒)
𝐷 (𝑖 ) ← ∑

𝑝 |𝐺x̂ · 𝑑 |
𝐷gt (𝑖 ) ←

∑
𝑝 |𝐺x · 𝑑 |

𝑙𝑜𝑠𝑠 ← 𝑙𝑜𝑠𝑠 + norm(𝐷 − 𝐷gt )
end
𝑙𝑜𝑠𝑠 ← 𝑙𝑜𝑠𝑠/|v |

end
return 𝑙𝑜𝑠𝑠

end

• 𝜙min and 𝜙max represent the minimum and maximum angle
from the vanishing point to a corner of the image relative to
the x-axis.
• 𝜙0,...,𝜙𝑛 represent 𝑛 equally-spaced angles between 𝜙min and
𝜙max.
• 𝑣 represents a particular vanishing point in the set vx.
• 𝑙𝑖 (𝑣, 𝑘) represents a point at time 𝑘 on a ray 𝑙𝑖 (𝑣) starting at
𝑣 in the direction of 𝜙𝑖 .
• 𝑑𝑖 (𝑣) represents a vector perpendicular to the line 𝑙𝑖 (𝑣).

Using these, we define:

𝐷𝑖 (𝑣, x) =
∫ 𝑘1

𝑘0

𝑑𝑖 ·𝐺x (𝑙𝑖 (𝑣, 𝑘))𝑑𝑘, (8)

where 𝑘0 and 𝑘1 represent the times of the intersection of 𝑙𝑖 (𝑣) with
x. 𝐷𝑖 (𝑣, x) is then our measure of how "edge-like" the region along
this ray is, and we can then define:

𝐿persp (x̂, x, vx) =
1
|vx |

∑︁
𝑣∈vx

| |𝐷 (𝑣, x̂) − 𝐷 (𝑣, x) | |2 . (9)

In practice, the integral in Eq. 8 becomes a sum over the image pixels
that the line intersects.

5 EXPERIMENTS
In order to evaluate our proposed constraint, we conduct compre-
hensive experiments. In Section 5.1, we detail how we fine-tune
latent diffusion models with the proposed constraint, in Section 5.2,
we detail how we fine-tune monocular depth estimation models on
images generated from our fine-tuned models. In Section 5.3, we
describe how we evaluate the photo-realism of images generated
from our fine-tuned models, and in Section 5.4, we describe our
ablation studies.

5.1 Training Latent Diffusion Models
For all of our image generation experiments, we build off the depth-
conditioned Stable Diffusion V2 model from [Rombach et al. 2022b].
This model is trained on LAION 5B, a database of 5.85 billion image
caption pairs [Schuhmann et al. 2022]. In this paper, we refer to this
model as the baseline model.

Datatsets. In order to fine-tune the baseline model, we use the
HoliCity dataset [Zhou et al. 2020]. This dataset provides 50,078 real
images taken in London along with ground truth vanishing points
for each image. We use MiDaS [Ranftl et al. 2020] to compute a
depth prediction for each image which is then used as conditioning
for the latent diffusion model.1 This is the same procedure used to
originally train the depth-conditioned model [Rombach et al. 2022b].
Captions used for conditioning are generated for each image using
the BLIP captioning model [Li et al. 2022].

Training Details. The code for our fine-tuned model is built using
PyTorch on top of [Pinkney 2022], which is built on top of the
original code released by [Rombach et al. 2022b]. The original code
from [Pinkney 2022] is built on top of Stable Diffusion v1, so part
of the modifications made by us include updating the code to be
compatible with Stable Diffusion v2 checkpoints, including updating
the encoder/decoder and dataloaders. We update the loss function
of the baseline model to the loss function detailed in Eq. 6. We train
at an image resolution of 512×512 with a learning rate of 1e-6 and
_ = 0.01. We train for 4 epochs or approximately 200k steps with an
effective batch size of 16 after gradient accumulation. At this point,
the perspective loss had saturated. All models were trained on 4
RTX3090 GPUs. Results are shown in Section 6.1.

5.1.1 Inpainting. In addition to text-to-image generation, we also
test the value of our constraint for the inpainting task where a model
is asked to fill in masked regions of an image. Applying our proposed
constraint to the inpainting task does not require any extra training,
as we are able to take our general text-to-image diffusion models
and perform inpainting using the techniques described by [Lugmayr
et al. 2022]. We evaluate the results using the LPIPS metric [Zhang
et al. 2018] as is the norm for the inpainting task. LPIPS measures
the perceptual similarity between two images using features from
deep neural networks, in particular AlexNet. Results are shown in
Fig. 7 and Table 4 and are discussed in Section 6.1.1

5.2 Training Monocular Depth Estimation Models
In order to evaluate the performance from another perspective, we
also conduct an experiment on the effect of our new images on
monocular depth estimation models. In particular, we fine-tune
DPT-Hybrid [Ranftl et al. 2021] and PixelFormer [Agarwal and
Arora 2023] on images generated from both the baseline model
and our fine-tuned model. DPT-Hybrid is originally trained on MIX
6, a collection of 10 datasets described in [Ranftl et al. 2021], and
PixelFormer is originally trained on the KITTI dataset. In order to
generate these images, we rely on the SYNTHIA-AL [Zolfaghari Ben-
gar et al. 2019] and Virtual KITTI 2 [Cabon et al. 2020; Gaidon et al.
1The HoliCity dataset also provides ground truth depth images, however, they are
derived from a CAD model, meaning they are missing finer details such as people, cars,
and trees.
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2016] datasets. SYNTHIA-AL contains 70,000 images and Virtual
KITTI 2 contains 2,656 images. We take only depth maps from both
datasets, and use them as conditioning to generate synthetic images
using the base, and our latent diffusion models. In addition, we use
BLIP [Li et al. 2022] to generate captions for all images. For Virtual
KITTI 2, we take 8 random crops per image. We also generate dif-
fusion images with 4 different seeds, resulting in a total of 84,992
images derived from the Virtual KITTI 2 dataset. For SYNTHIA,
we use the original images, resulting in a total of 70,000 images.
Combined, our dataset is 154,992 images and covers various city
and driving scenes. We refer to this dataset as All. We additionally
train the depth estimation models on images generated only from
vKITTI, and refer to this dataset as vKITTI. We additionally append
the name of the model used to generate different datasets so that
All Enhanced refers to the full set of 155k images generated by
our Enhanced model while All Base refers to the full set of images
generated by the Baseline model. Results of fine-tuning on these
datasets are discussed in Section 6.2.

Training Details. For DPT-Hybrid, we train with a learning rate
of 5e-6 for 19,500 steps with a batch size of 16. We use a scale and
shift invariant loss as described in [Eigen et al. 2014; Ranftl et al.
2021]. For PixelFormer, we train with a learning rate of 4e-6 for
20,800 steps with a batch size of 8. We train on 1 RTX3090 GPU
using the same loss as DPT.

Test Sets. We evaluate the trained depth estimation models on
commonly used real datasets KITTI [Geiger et al. 2012] and the
outdoor subset of DIODE [Vasiljevic et al. 2019]. We use the Eigen
split for KITTI [Eigen et al. 2014] and a test set of 500 images from
DIODE.

Metrics. In order to evaluate the performance of the models, we
follow the procedure used by [Ranftl et al. 2021] and we adopt
common depth estimation metrics: Absolute relative error (Abs Rel),
Square relative error (Sq Rel), Root mean squared error (RMSE), Log
RMSE (RMSE log), and Threshold Accuracy (𝛿𝑖 ) at thresholds 𝜏𝑖 ’s =
1.25, 1.252, 1.253 as used in [Agarwal and Arora 2023; Ranftl et al.
2021, 2020].

5.3 Human Subjective Test Methodology
In order to evaluate the photo-realism of images generated by
our fine-tuned models, we run human subjective tests on the Pro-
lific [Academic Ltd 2023] website. We ran two tests, one comparing
our enhanced model with the baseline model and one comparing our
enhanced model with an ablation model. We set up the test as a rank-
ing task where participants are asked to rank sets of three images
(Real, Baseline, Ours or Real, Ablation, Ours) in order of photo-
realism. The real images come from the HoliCity dataset [Zhou
et al. 2020], a landscapes dataset from Kaggle [Rougetet 2020], and
an animal images dataset from Kaggle [Awais 2020]. The baseline,
ablation, and enhanced (ours) images are generated using depth
maps extracted from the real image by MiDaS [Ranftl et al. 2020]
and prompts from the BLIP captioning model [Li et al. 2022]. Partic-
ipants were shown all three images side by side in random order.
Please refer to Fig. 4 for a visualization of the testing setup. We
recruit 50 participants across the world and ask them to rate 80 sets

Fig. 4. A screenshot of the graphical user interface for the human
subjective test we performed on the Prolific platform. Annotators are
asked to rank the image by realism, with "1" being the most and "3" being
the least real. Images include one generated from a baseline model, one
generated from our enhanced model, and one real image in random order.

of images. Participants were given up to 90 minutes to complete the
task. Results from this test are in Section 6.3 and Fig. 11.

5.4 Ablation Study
In order to evaluate the benefits of our proposed constraint, we
additionally fine-tune the baseline model on the same dataset but
without our updated loss. We refer to this model as the Ablation
model. We additionally generate the same synthetic datasets and
train the same monocular depth estimation models described in
Section 5.2. Results are shown in Section 6.4. An ablation study was
also done for the human subjective tests and for the inpainting task.
Results are described in Section 6.3 and shown in Fig. 11, Fig. 7, and
Table 4.

6 RESULTS
This results section is split into sub-sections according to the exper-
iments described in Section 5. In Section 6.1, we describe the results
of fine-tuning latent diffusion models. In Section 6.2, we discuss the
results of fine-tuning SOTA monocular depth estimation models on
our generated images. In Section 6.3, we discuss the results of our
human subjective test, and in Section 6.4, we discuss the results of
our ablation tests.

6.1 Fine-tuned Latent Diffusion Models
We show some representative generations from our fine-tuned
model in Fig. 5. In the figure, we show the depth maps used to
condition the diffusion models along with generations from the
baseline model and our enhanced model. Images from the base-
line model tend to suffer from curved lines and distortions that
affect perspective accuracy. In particular, the baseline model tends
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Fig. 5. Images from our model are better at preserving straight lines. Examples of outputs from the base model and from our enhanced model. The
depth maps these outputs are conditioned on are put at the top. Inlets show specific regions of interest.
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Fig. 6. Despite being fine-tuned on images of city scenes, our model is able to generate high-quality images of varied settings including nature
landscapes, indoor scenes, and pictures of animals. Images were taken from a landscapes dataset [Rougetet 2020], an animal dataset [Awais 2020], and
the indoor subset of the DIODE dataset [Vasiljevic et al. 2019].

Original Masked Baseline No Loss (Ablation) Enhanced (Ours)

Fig. 7. The proposed geometric constraint provides benefits for the inpainting task on diverse scenes. Images reconstructed with our enhanced
model consistently outperform the baseline and ablation models on LPIPS scores (shown in the top right, lower is better).

to have trouble accurately generating regions with windows, high-
frequency details such as many parallel horizontal or vertical lines,
and corners. We also draw perspective lines on images from the
baseline and our models in Fig. 8. Images from our model tend to
have more coherent perspective lines and more accurate vanishing
points. In addition, in both figures, because of the aforementioned

distortions, the baseline images look further from the distribution
of natural images than images from our model. Since our enhanced
model is fine-tuned on a dataset of mainly only cityscapes, we also
generate varied nature, animal, and indoor scenes to verify that this
fine-tuning does not limit the ability of the model to generate other
types of images. Some representative images are shown in Fig. 6.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: August 2023.
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Depth Baseline Enhanced Depth Baseline Enhanced

Fig. 8. Images from our model have more consistent vanishing point lines. This figure shows examples of stable diffusion outputs from the baseline
model and from our model with perspective loss along with perspective lines for the image. The depth maps these outputs are conditioned on are put in the
left-hand column. Note that for the baseline image in the first row, the lines do not intersect at a single vanishing point, violating perspective geometry. These
violations can sometimes result in curved lines as seen in the baseline image in the second row.

6.1.1 Inpainting. We evaluate the inpainting performance of our
models using both qualitative (Fig. 7) and quantitative (Table 4)
results. All three models of interest, the baseline model, ablation
model, and enhanced model were tested on the combination of
two datasets: the HoliCity validation set [Zhou et al. 2020] and a
landscape dataset [Rougetet 2020]. The LPIPS metric [Zhang et al.
2018], which measures perceptual similarity using features from
deep image networks, was used to compare models as is the norm
for the inpainting task. We used the official implementation pro-
vided by [Zhang et al. 2018]. Note that lower is better for the LPIPS
metric. As seen in Table 4, our enhanced model consistently out-
performs both the baseline model and ablation model, with a 7.1%
improvement over the baseline model and a 3.6% improvement over
the ablation model on the combined dataset.

6.2 Monocular Depth Estimation
In order to evaluate the performance of our fine-tuned depth esti-
mation models, we use both qualitative and quantitative measures.
A qualitative comparison is shown in Fig. 9, while quantitative
comparisons are in Table 1 and Table 2.

DPT-Hybrid. We fine-tune one model from the base DPT-Hybrid
using the generated vKITTI datasets and then test the model on both
the original KITTI test set (Eigen Split) and a subset of the DIODE
Outdoor test set. Results are in Table 1. The models fine-tuned on
images generated from our diffusion model outperform the original
DPT-Hybrid model on all metrics on both datasets and outperform
the model fine-tuned on images generated by the baseline model
on all metrics for KITTI and all but one metric (SqRel) for DIODE
Outdoor. In addition, for the DIODE Outdoor dataset, the original
DPT-Hybrid model outperforms the base model on five out of eight
metrics, but outperforms our model on no metrics. In particular, our
model shows a 7.03% improvement in RMSE and a 19.3% improve-
ment in SqRel over the original model while also demonstrating
a 3.4% improvement in SqRel and a 2.2% improvement in SiLog
over the baseline model. Fig. 9 also shows qualitative comparisons
between the original DPT-Hybrid model and the model fine-tuned
on images generated by our enhanced diffusion model. Each set of
images contains the input image, ground truth depth map (dilated
with a 3×3 kernel), and error maps from both the original model
and our enhanced model. Additionally, the RMSE values for each of
the depth predictions are shown in the top right of the error maps.

The depth models from our model capture more high-frequency
detail such as corners and poles, and also consistently have lower
RMSE values.

PixelFormer. We fine-tune the base PixelFormer using both the
generated vKITTI dataset and the full generated dataset and eval-
uate on the DIODE Outdoor test set. Results are shown in Table 2.
The model fine-tuned on images from our diffusion model outper-
forms the original model and the models trained on images from
the baseline model on all metrics. Our model trained on the vKITTI
dataset achieves a 4.1% improvement in RMSE over the original
model, while our model trained on the entire dataset achieves an
11.6% improvement in SiLog over the original model and a 2.4% im-
provement over the model trained on baseline images. Additionally,
the original model outperforms the baseline model trained on the
entire dataset on five of eight metrics, but outperforms the model
trained on our images on no metrics.

6.3 Human Subjective Tests
Results from the human subjective tests are shown in Fig. 11. (a)
shows the comparison between our enhanced model and the base-
line model while (b) compares our enhanced model and the ablation
model. Over all trials, images from our enhanced model appear more
photo-realistic than images from the baseline model 69.6% of the
time and appear more photo-realistic than images from the ablation
model 67.5% of the time. In addition, the average rank of our images
(between 1 and 3, lower is better) compared to the baseline was
1.9345 vs 2.4383 and was 1.9584 vs 2.4011 compared to the ablation
model. The differences in average rank between our enhanced im-
ages and the baseline images (0.5038) and the difference between
our images and the ablation images (0.4427) are also consistently
less than the difference in average rank between our enhanced im-
ages and real images (0.3072 and 0.318 respectively). Overall, the
results show that our proposed geometric constraint helps improve
the photo-realism of generated images, as our enhanced images are
consistently preferred over images from both the baseline model
and ablation model.

6.4 Ablation Study
To evaluate the value of our proposed constraint, we perform ex-
tensive comparison between our enhanced model and the ablation
model which was fine-tuned on the same dataset but without our
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Input Original Original Error RMSE: 6.746

Ground Truth Ours Ours Error RMSE: 5.968

Input Original Original Error RMSE: 7.158

Ground Truth Ours Ours Error RMSE: 6.325

Input Original Original Error RMSE: 5.307

Ground Truth Ours Ours Error RMSE: 4.178

Input Original Original Error RMSE: 7.052

Ground Truth Ours Ours Error RMSE: 6.022

Fig. 9. Qualitative comparisons of DPT-Hybrid fine-tuned on the data from our fine-tuned models and the original DPT-Hybrid model. The depth
maps produced by models trained on images from our enhanced model capture more high-frequency detail than the models trained on images from the
baseline model. The RMSE error of the outputs of our model is also consistently lower.

Depth No Loss Enhanced Depth No Loss Enhanced

Fig. 10. The proposed perspective constraint is responsible for the increase in perspective accuracy of generated images more than the dataset
the diffusion models were fine-tuned on. The depth maps these outputs are conditioned on are put in the left-hand column. Note that the images without
our loss suffer from more distortions and curved lines and are less photo-realistic.
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Table 1. Monocular Depth Estimation performance of DPT-Hybrid fine-tuned on our data compared to the base DPT-Hybrid model. The original
DPT-Hybrid model was trained on a dataset referred to as MIX 6, which is a collection of 10 datasets as described in [Ranftl et al. 2021]. Fine-tuned models
were trained on synthetic datasets generated by either the base stable diffusion model or our fine-tuned model. The best performing model is in bold and the
second best is underlined.

Model Description Test Set RMSE ↓ RMSE log ↓ AbsRel ↓ SqRel ↓ SiLog ↓ 𝛿1 ↑ 𝛿2 ↑ 𝛿3 ↑

DPT-Hybrid
Original

KITTI
5.0287 0.1874 0.1328 0.9705 18.6320 0.8385 0.9552 0.9855

Fine-tuned on vKITTI Base 4.7680 0.1800 0.1286 0.8104 17.8890 0.8401 0.9587 0.9881
Fine-tuned on vKITTI Enhanced 4.6749 0.1760 0.1250 0.7827 17.4836 0.8496 0.9608 0.9890

DPT-Hybrid
Original DIODE

Outdoor

9.5311 0.5667 0.4593 7.0644 52.6255 0.4709 0.6588 0.7759
Fine-tuned on vKITTI Base 9.4863 0.5669 0.4560 6.7930 52.6316 0.4705 0.6586 0.7758

Fine-tuned on vKITTI Enhanced 9.4854 0.5663 0.4559 6.8371 52.5902 0.4713 0.6595 0.7763

Table 2. Monocular Depth Estimation performance of PixelFormer fine-tuned on our data compared to the base PixelFormer model (trained on
KITTI) on the DIODE outdoor dataset. Fine-tuned models were trained on synthetic datasets generated by either the base stable diffusion model or our
fine-tuned model. The best performing model is in bold and the second best is underlined.

Model Description Test Set RMSE ↓ RMSE log ↓ AbsRel ↓ SqRel ↓ SiLog ↓ 𝛿1 ↑ 𝛿2 ↑ 𝛿3 ↑

PixelFormer
Original DIODE

Outdoor

8.8726 0.7041 1.4532 21.8911 66.0165 0.3254 0.5586 0.7075
Fine-tuned on vKITTI Base 8.5381 0.6891 1.4140 21.8363 64.5891 0.3294 0.5651 0.7209

Fine-tuned on vKITTI Enhanced 8.4728 0.6870 1.3738 19.3406 64.4721 0.3329 0.5677 0.7245

PixelFormer
Original DIODE

Outdoor

8.8726 0.7041 1.4532 21.8911 66.0165 0.3254 0.5586 0.7075
Fine-tuned on All Base 8.5296 0.7109 1.4768 22.0467 66.6546 0.3270 0.5531 0.7038

Fine-tuned on All Enhanced 8.5109 0.7027 1.4408 21.5139 65.8426 0.3360 0.5635 0.7116

Table 3. Ablation Study: Monocular Depth Estimation performance of DPT-Hybrid fine-tuned on data from a model trained with no loss
compared to the model trained with our loss. The best performing model is in bold.

Model Description Test Set RMSE ↓ RMSE log ↓ AbsRel ↓ SqRel ↓ SiLog ↓ 𝛿1 ↑ 𝛿2 ↑ 𝛿3 ↑

DPT-Hybrid Fine-tuned on vKITTI No Loss KITTI 5.5733 0.2159 0.1573 1.1084 21.3919 0.7803 0.9389 0.9807
Fine-tuned on vKITTI Enhanced 4.6749 0.1760 0.1250 0.7827 17.4836 0.8496 0.9608 0.9890

DPT-Hybrid Fine-tuned on vKITTI No Loss DIODE
Outdoor

9.5241 0.5728 0.4573 6.7422 53.1904 0.4670 0.6581 0.7737
Fine-tuned on vKITTI Enhanced 9.4854 0.5663 0.4559 6.8371 52.5902 0.4713 0.6595 0.7763

PixelFormer Fine-tuned on vKITTI No Loss DIODE
Outdoor

8.5054 0.7047 1.3889 20.3750 66.5519 0.3184 0.5543 0.7035
Fine-tuned on vKITTI Enhanced 8.4728 0.6870 1.3738 19.3406 64.4721 0.3329 0.5677 0.7245

Table 4. Inpainting Quantitative Results: Images generated by our
enhanced model out-perform both the baseline Stable Diffusion
V2 model and Ablations on the LPIPS metric. Our enhanced model
performs best on all three datasets, while the ablationmodel is outperformed
by the baseline model when tested on only landscapes. Lower is better for
all columns.

Dataset Holicity Nature All

# of Images 250 320 570

Baseline 0.1367 0.1584 0.1488
Ablation 0.1147 0.1659 0.1434
Ours 0.1138 0.1573 0.1382

proposed constraint. We include qualitative results in Fig. 10. The
edges and corners of our images are more consistent than similar
features in the baseline model’s images. We also include quanti-
tative comparisons between depth estimation models trained on
the vKITTI dataset from our enhanced diffusion model and depth
estimation models trained on the vKITTI dataset from our no loss
diffusion model. The results from this experiment, for both DPT-
Hybrid and PixelFormer, are shown in Table 4. The models trained
on our enhanced model images outperform the models trained on
the no loss model images on all metrics except for one (SqRel for
DPT-Hybrid trained on the vKITTI dataset and tested on DIODE
Outdoor). In addition, our model demonstrates significant improve-
ments, up to 16.11% on RMSE, compared to the no loss model. These
results demonstrate that the superior performance of downstream
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Fig. 11. Images from our enhanced model consistently appear more
photo-realistic than images from the baseline model (a) and our
ablation model (b) according to the results of the subjective human
tests. Top. How often each set of images was ranked lower. Our enhanced
images were ranked as more photo-realistic (lower) than baseline images in
69.6% of trials and were ranked as more photo-realistic than the ablation
images in 67.5% of trials.Bottom.Average ranking for our images, real images,
and comparison images. Although real images are consistently ranked the
lowest, our images beat out both baseline and ablation images and are closer
to real than the comparison.

models trained on our enhanced dataset is a result of our proposed
constraint rather than a result of the new images introduced in fine-
tuning. Beyond downstream tasks, the human subjective tests also
show that our enhanced images are considered more photo-realistic
than images from the ablation model 67.5% of the time (Fig. 11). In
addition, quantitative and qualitative results (Fig. 7 and Table 4)
on the inpainting task further highlight the improvement between
our enhanced model and the ablation model. Combined, results
from downstream tasks, human subjective tests, and the inpainting
task demonstrate that the improvements achieved by our enhanced
model are the result of our proposed geometric constraint rather
than a result of fine-tuning on new images.

7 DISCUSSION

7.1 Limitations
One of the key limitations of our approach is that fine-tuning the
diffusion model requires a dataset of images with vanishing points.
However, these can be approximated using vanishing point detec-
tion tools [Lin et al. 2022; Liu et al. 2021]. Another limitation of
our approach is the generation speed of latent diffusion models. On
average, it takes ~3 seconds to generate a single image on 1 RTX3090,
meaning generating a dataset of 150,000 images takes ~125 hours on
1 RTX3090. This significantly limits the potential size of synthetic
datasets generated by latent diffusion models. Another limitation is
that although our images are improved compared to the baseline
model’s images, they are still not quite at the level of real images
as shown by our subjective test results. For example, Fig. 12 shows
an image of Big Ben, and, although perspective lines are accurately
depicted in the output, certain semantic details of the image are

Real Ours Enhanced

Fig. 12. Outputs from stable diffusion are still unable to make certain
semantic judgments. Note that the clock shown on Big Ben is not func-
tional and has no hour or minute hand.

missing, the most obvious of which is that the clock is missing hands
to show time. Other examples of this include nonsensical road signs
or abstract store logos or flags.

7.2 Societal Impact
As always, there are downsides in improvements to generative
models. As we increase the photo-realism of synthetic images, the
potential for malicious use in the spread of disinformation also
grows. In addition, perspective has been used as a tool to identify
synthetic images from diffusion models [Corvi et al. 2022]. With
the addition of our constraint, these tools could lose their efficacy,
further increasing the potential for misuse of diffusion models.

7.3 Future Work
The current work is limited to 3D geometry perspective constraints,
but there are still many other physical properties that affect the real-
ism of generated images. One such example is lighting and shadow
consistency [Farid 2022a,b] and semantic and physical consistency.
Images generated by diffusion models often break physical laws, for
example by having people walking on water. Future work can ex-
plore other constraints to help fulfill these physical laws and further
increase photo-realism and the performance of downstream tasks.

7.4 Conclusions
In the 1400s, Leon Alberta Battisti established the foundations for
perspective in art, which pushed the boundaries of hand-drawn
realism. In this work, we propose a first attempt at a novel geo-
metric constraint which encodes perspective into latent diffusion
models. We demonstrate that introducing these physically-based 3D
perspective constraints improves both photo-realism on subjective
tests and downstream performance on monocular depth estimation.
We hope that our work can be a small step in our community effort
to improve the realism of image synthesis.
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