
Many-to-One Trapdoor Functions

and Their Relation to Public-Key Cryptosystems

Mihir Bellare1, Shai Halevi2, Amit Sahai3, and Salil Vadhan3

1 Dept. of Computer Science & Engineering, University of California at San Diego
9500 Gilman Drive, La Jolla, CA 92093, USA

mihir@cs.ucsd.edu

http://www-cse.ucsd.edu/users/mihir.
2 IBM T. J. Watson Research Center

P.O. Box 704, Yorktown Heights, NY 10598, USA
shaih@watson.ibm.com.

3 MIT Laboratory for Computer Science
545 Technology Square, Cambridge, MA 02139, USA

amits@theory.lcs.mit.edu

salil@math.mit.edu.

URL:http://www-math.mit.edu/~salil.

Abstract. The heart of the task of building public key cryptosystems
is viewed as that of “making trapdoors;” in fact, public key cryptosys-
tems and trapdoor functions are often discussed as synonymous. How
accurate is this view? In this paper we endeavor to get a better under-
standing of the nature of “trapdoorness” and its relation to public key
cryptosystems, by broadening the scope of the investigation: we look at
general trapdoor functions; that is, functions that are not necessarily in-
jective (ie., one-to-one). Our first result is somewhat surprising: we show
that non-injective trapdoor functions (with super-polynomial pre-image
size) can be constructed from any one-way function (and hence it is un-
likely that they suffice for public key encryption). On the other hand, we
show that trapdoor functions with polynomial pre-image size are suffi-
cient for public key encryption. Together, these two results indicate that
the pre-image size is a fundamental parameter of trapdoor functions. We
then turn our attention to the converse, asking what kinds of trapdoor
functions can be constructed from public key cryptosystems. We take a
first step by showing that in the random-oracle model one can construct
injective trapdoor functions from any public key cryptosystem.

1 Introduction

A major dividing line in the realm of cryptographic primitives is that between
“one-way” and “trapdoor” primitives. The former effectively means the primi-
tives of private key cryptography, while the latter are typically viewed as tied
to public key cryptosystems. Indeed, the understanding is that the problem of
building public key cryptosystems is the problem of “making trapdoors.”

H. Krawczyk (Ed.): CRYPTO’98, LNCS 1462, pp. 283–299, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

284 Mihir Bellare et al.

Is it really? It is well known that injective (ie. one-to-one) trapdoor functions
suffice for public key cryptography [Ya,GoMi]. We ask: is the converse true as
well, or can public key cryptosystems exist under a weaker assumption? We take
a closer look at the notion of a trapdoor, in particular from the point of view
of how it relates to semantically secure encryption schemes, and discover some
curious things. Amongst these are that “trapdoor one-way functions” are not
necessarily hard to build, and their relation to public key encryption is more
subtle than it might seem.

1.1 Background

The main notions discussed and related in this paper are one-way func-
tions [DiHe], trapdoor (one-way) functions [DiHe], semantically secure encryp-
tion schemes [GoMi], and unapproximable trapdoor predicates [GoMi].

Roughly, a “one-way function” means a family of functions where each partic-
ular function is easy to compute, but most are hard to invert; trapdoor functions
are the same with the additional feature that associated to each particular func-
tion is some “trapdoor” information, possession of which permits easy inversion.
(See Section 2 for formal definitions.)

In the study of one-way functions, it is well appreciated that the functions
need not be injective: careful distinctions are made between “(general) one-
way functions”, “injective one-way functions,” or “one-way permutations.” In
principle, the distinction applies equally well to trapdoor one-way functions. (In
the non-injective case, knowledge of the trapdoor permits recovery of some pre-
image of any given range point [DiHe].) However, all attention in the literature
has focused on injective trapdoor functions, perhaps out of the sense that this
is what is necessary for constructing encryption schemes: the injectivity of the
trapdoor function guarantees the unique decryptability of the encryption scheme.

This paper investigates general (ie. not necessarily injective) trapdoor one-
way functions and how they relate to other primitives. Our goal is to understand
exactly what kinds of trapdoor one-way functions are necessary and sufficient
for building semantically secure public key encryption schemes; in particular, is
injectivity actually necessary?

Among non-injective trapdoor functions, we make a further distinction based
on “the amount of non-injectivity”, measured by pre-image size. A (trapdoor,
one-way) function is said to have pre-image size Q(k) (where k is the security
parameter) if the number of pre-images of any range point is at most Q(k). We
show that pre-image size is a crucial parameter with regard to building public-
key cryptosystems out of a trapdoor function.

Rather than directly working with public-key cryptosystems, it will be more
convenient to work with a more basic primitive called an unapproximable trap-
door predicate. Unapproximable trapdoor predicates are equivalent to semanti-
cally secure public key schemes for encrypting a single bit, and these in turn are
equivalent to general semantically secure cryptosystems [GoMi].

Many-to-One Trapdoor Functions and Their Relation to Cryptosystems 285

public-key cryptosystems
semantically secure

One-way
functions

poly-bounded pre-image size

Trapdoor functions with

Trapdoor functions with

super-poly pre-image size

Injective

trivial

trivial

trapdoor functions

Unapproximable
trapdoor predicates

[GoMi]

[ImLu]

Theorem 1

Theorem 2

Theorem 3

[Ya]

Fig. 1. Illustrating our results: Solid lines are standard implications; the dotted

line is an implication in the random oracle model.

1.2 Results

We have three main results. They are displayed in Fig. 1 together with known
relations. We now discuss them.

One-way functions imply trapdoor functions. Our first result, given in
Theorem 1, may seem surprising at first glance: we show that one-way functions
imply trapdoor functions. We present a general construction which, given an
arbitrary one-way function, yields a trapdoor (non-injective) one-way function.

Put in other words, we show that trapdoor functions are not necessarily hard
to build; it is the combination of trapdoorness with “structural” properties like
injectivity that may be hard to achieve. Thus the “curtain” between one-way
and trapdoor primitives is not quite as opaque as it may seem.

What does this mean for public key cryptography? Impagliazzo and
Rudich [ImRu] show that it would be very hard, or unlikely, to get a proof that
one-way functions (even if injective) imply public key cryptosystems. Hence,
our result shows that it is unlikely that any known technique can be used to
construct public key encryption schemes from generic, non-injective, trapdoor
functions. As one might guess given [ImRu], our construction does not preserve
injectivity, so even if the starting one-way function is injective, the resulting
trapdoor one-way function is not.

Trapdoor functions with poly pre-image size yield cryptosystems. In
light of the above, one might still imagine that injectivity of the trapdoor func-
tions is required to obtain public key encryption. Still, we ask whether the in-
jectivity condition can be relaxed somewhat. Specifically, the trapdoor one-way
functions which we construct from one-way functions have super-polynomial
pre-image size. This leads us to ask about trapdoor functions with polynomially
bounded pre-image size.

286 Mihir Bellare et al.

Our second result, Theorem 2, shows that trapdoor functions with poly-
nomially bounded pre-image size suffice to construct unapproximable trapdoor
predicates, and hence yield public key cryptosystems. This belies the impression
that injectivity of the trapdoor function is a necessary feature to directly build
a public key cryptosystem from it, and also suggests that the super-polynomial
pre-image size in the construction of Theorem 1 is necessary.

From trapdoor predicates to trapdoor functions. We then turn to the
other side of the coin and ask what kinds of trapdoor functions must necessarily
exist to have a public key cryptosystem. Since unapproximable trapdoor pred-
icates and semantically secure public key cryptosystems are equivalent [GoMi]
we consider the question of whether unapproximable trapdoor predicates imply
injective trapdoor functions.

In fact whether or not semantically secure public key cryptosystems imply
injective trapdoor functions is not only an open question, but seems a hard one.
(In particular, a positive answer would imply injective trapdoor functions based
on the Diffie-Hellman assumption, a long standing open problem.) In order to
get some insight and possible approaches to it, we consider it in a random oracle
model (cf. [ImRu,BeRo]). Theorem 3 says that here the answer is affirmative:
given an arbitrary secure public key cryptosystem, we present a function that
has access to an oracle H , and prove the function is injective, trapdoor, and
one-way when H is random.

The construction of Theorem 3 is quite simple, and the natural next ques-
tion is whether the random oracle H can be replaced by some constructible
cryptographic primitive. In the full version of the paper [BHSV], we show that
this may be difficult, by showing that a cryptographically strong pseudorandom
bit generator [BlMi,Ya], which seems like a natural choice for this construc-
tion, does not suffice. The next step may be to follow the approach initiated by
Canetti [Ca]: find an appropriate cryptographic notion which, if satisfied by H ,
would suffice for the correctness of the construction, and then try to implement
H via a small family of functions. However, one should keep in mind that re-
placement of a random oracle by a suitable constructible function is not always
possible [CGH]. Thus, our last result should be interpreted with care.

1.3 Discussion and Implications

Theorems 1 and 2 indicate that pre-image size is a crucial parameter when con-
sidering the power of trapdoor functions, particularly with respect to construct-
ing public-key cryptosystems. The significance and interpretation of Theorem 3,
however, requires a bit more discussion.

At first glance, it may seem that public key cryptosystems “obviously im-
ply” injective trapdoor functions. After all, a public key cryptosystem permits
unique decryptability; doesn’t this mean the encryption algorithm is injective?
No, because, as per [GoMi], it is a probabilistic algorithm, and thus not a func-
tion. To make it a function, you must consider it a function of two arguments,
the message and the coins, and then it may no longer be injective, because two

Many-to-One Trapdoor Functions and Their Relation to Cryptosystems 287

coin sequences could give rise to the same ciphertext for a given message. More-
over, it may no longer have a (full) trapdoor, since it may not be possible to
recover the randomness from the ciphertext. (Public key cryptosystems in the
Diffie and Hellman sense [DiHe] imply injective trapdoor one-way functions as
the authors remark, but that’s because encryption there is deterministic. It is
now understood that secure encryption must be probabilistic [GoMi].)

Theorem 3 has several corollaries. (Caveat: All in the random oracle model).
First, by applying a transformation of [BeRo], it follows that we can construct
non-malleable and chosen-ciphertext secure encryption schemes based on the
Ajtai-Dwork cryptosystem [AjDw]. Second, combining Theorems 3 and 2, the
existence of trapdoor functions with polynomially bounded pre-image size im-
plies the existence of injective trapdoor functions. (With high probability over
the choice of oracle. See Remark 5.) Third, if the Decisional Diffie-Hellman prob-
lem is hard (this means the El Gamal [ElG] cryptosystem is semantically secure)
then there exists an injective trapdoor function.

Note that in the random oracle model, it is trivial to construct (almost)
injective one-way functions: a random oracle mapping, say, n bits to 3n bits, is
itself an injective one-way function except with probability 2−n over the choice
of the oracle. However, random oracles do not directly or naturally give rise
to trapdoors [ImRu]. Thus, it is interesting to note that our construction in
Theorem 3 uses the oracle to “amplify” a trapdoor property: we convert the
weak trapdoor property of a cryptosystem (in which one can only recover the
message) to a strong one (in which one can recover both the message and the
randomness used).

Another interpretation of Theorem 3 is as a demonstration that there ex-
ists a model in which semantically secure encryption implies injective trapdoor
functions, and hence it may be hard to prove a separation result, in the style
of [ImRu], between injective trapdoor functions and probabilistic encryption
schemes.

2 Definitions

We present definitions for one-way functions, trapdoor functions, and unapprox-
imable trapdoor predicates.

Preliminaries. If S is any probability distribution then x ← S denotes the
operation of selecting an element uniformly at random according to S, and [S] is
the support of S, namely the set of all points having non-zero probability under
S. If S is a set we view it as imbued with the uniform distribution and write
x← S. If A is a probabilistic algorithm or function then A(x, y, · · · ; R) denotes
the output of A on inputs x, y, . . . and coins R, while A(x, y, . . .) is the probability
distribution assigning to each string the probability, over R, that it is output. For
deterministic algorithms or functions A, we write z:=A(x, y, . . .) to mean that the
output of A(x, y, . . .) is assigned to z. The notation Pr [E : R1 ; R2 ; . . . ; Rk]
refers to the probability of event E after the random processes R1, . . . , Rk are
performed in order. If x and y are strings we write their concatenation as x‖y

288 Mihir Bellare et al.

or just xy. “Polynomial time” means time polynomial in the security parame-
ter k, PPT stands for “probabilistic, polynomial time”, and “efficient” means
computable in polynomial time or PPT.

2.1 One-Way and Trapdoor Function Families

We first define families of functions, then say what it means for them to be
one-way or trapdoor.

Families of Functions. A family of functions is a collection F = {Fk}k∈N

where each Fk is probability distribution over a set of functions. Each f ∈ [Fk]
has an associated domain Dom(f) and range Range(f). We require three prop-
erties of the family:

• Can generate: The operation f ← Fk can be efficiently implemented, mean-
ing there is a PPT generation algorithm F -Gen that on input 1k outputs
a “description” of a function f distributed according to Fk. This algorithm
might also output some auxiliary information aux associated to this function
(this is in order to later model trapdoors).
• Can sample: Dom(f) is efficiently samplable, meaning there is a PPT algo-

rithm F -Smp that given f ∈ [Fk] returns a uniformly distributed element of
Dom(f).
• Can evaluate: f is efficiently computable, meaning there is a polynomial time

evaluation algorithm F -Eval that given f ∈ Fk and x ∈ Dom(f) returns
f(x).

For an element y ∈ Range(f) we denote the set of pre-images of y under f by
f−1(y) = { x ∈ Dom(f) : f(x) = y } .

We say that F is injective if f is injective (ie. one-to-one) for every f ∈ [Fk]. If
in addition Dom(f) = Range(f) then we say that F is a family of permutations.
We measure the amount of “non-injectivity” by looking at the maximum pre-
image size. Specifically we say that F has pre-image size bounded by Q(k) if
|f−1(y)| ≤ Q(k) for all f ∈ [Fk], all y ∈ Range(f) and all k ∈ N. We say that
F has polynomially bounded pre-image size if there is a polynomial Q(k) which
bounds the pre-image size of F .

One-wayness. Let F be a family of functions as above. The inverting probability
of an algorithm I(·, ·) with respect to F is a function of the security parameter
k, defined as InvProbF (I, k) def=

Pr
[
x′ ∈ f−1(y) : f ← Fk ; x← Dom(f) ; y ← f(x) ; x′ ← I(f, y)

]
.

F is one-way if InvProbF (I, k) is negligible for any PPT algorithm I.

Trapdoorness. A family of functions is said to be trapdoor if it is possible,
while generating an instance f , to simultaneously generate as auxiliary output
“trapdoor information” tp, knowledge of which permits inversion of f . Formally,
a family of functions F is trapdoor if F -Gen outputs pairs (f, tp) where f is
the “description” of a function as in any family of functions and tp is auxiliary

Many-to-One Trapdoor Functions and Their Relation to Cryptosystems 289

trapdoor information. We require that there exists a probabilistic polynomial
time algorithm F -Inv such that for all k, all (f, tp) ∈ [F -Gen(1k)], and all points
y ∈ Range(f), the algorithm F -Inv(f, tp, y) outputs an element of f−1(y) with
probability 1. A family of trapdoor functions is said to be one-way if it is also a
family of one-way functions.

A good (candidate) example of a trapdoor, one-way function family which is
non-injective is the Rabin family [Rab]: here each function in Fk is four to one.
(Traditionally, this function is used as the basis of a public key cryptosystem by
first modifying it to be injective.)

Remark 1. It is well known that one can define one-way functions either in terms
of function families (as above), or in terms of a single function, and the two
are equivalent. However, for trapdoor functions, one must talk of families. To
maintain consistency, we use the family view of one-way functions as well.

2.2 Trapdoor Predicate Families

We define unapproximable trapdoor predicate families [GoMi]. Recall that such
a family is equivalent to a semantically secure public-key encryption scheme for
a single bit [GoMi].

A predicate in our context means a probabilistic function with domain {0, 1},
meaning a predicate p takes a bit b and flips coins r to generate some output
y = p(b; r). In a trapdoor predicate family P = {Pk}k∈N, each Pk is a probability
distribution over a set of predicates, meaning each p ∈ [Pk] is a predicate as
above. We require:
• Can generate: There is a generation algorithm P -Gen which on input 1k

outputs (p, tp) where p is distributed randomly according to Pk and tp is
trapdoor information associated to p. In particular the operation p ← Pk

can be efficiently implemented.
• Can evaluate: There is a PPT algorithm P -Eval that given p and b ∈ {0, 1}

flips coins to output y distributed according to p(b).
We say P has decryption error δ(k) if there is a PPT algorithm P -Inv who, with
knowledge of the trapdoor, fails to decrypt only with this probability, namely

DecErrP (P -Inv, k) def=

Pr [b′ 6= b : p← Pk ; b← {0, 1} ; y ← p(b) ; b′ ← P -Inv(p, tp, y)] (1)

is at most δ(k). If we say nothing it is to be assumed that the decryption error is
zero, but sometimes we want to discuss families with non-zero (and even large)
decryption error.

Unapproximability. Let P be a family of trapdoor predicates as above. The
predicting advantage of an algorithm I(·, ·) with respect to P is a function of the
security parameter k, defined as PredAdvP (I, k) def=

Pr [b′ = b : p← Pk ; b← {0, 1} ; y ← p(b) ; b′ ← I(p, y)]− 1
2

.

290 Mihir Bellare et al.

We say that P is unapproximable if PredAdvP (I, k) is negligible for any PPT
algorithm I.

3 From One-Way Functions to Trapdoor Functions

In this section we establish the following result:

Theorem 1. Suppose there exists a family of one-way functions. Then there
exists a family of trapdoor, one-way functions.

This is proved by taking an arbitrary family F of one-way functions and “em-
bedding” a trapdoor to get a family G of trapdoor functions. The rest of this
section is devoted to the proof.

3.1 Proof Sketch of Theorem 1

Given a family F = {Fk}k∈N of one-way functions we show how to construct a
family G = {Gk}k∈N of trapdoor one-way functions.

Let us first sketch the idea. Given f ∈ Fk we want to construct g which
“mimics” f but somehow embeds a trapdoor. The idea is that the trapdoor is
a particular point α in the domain of f . Function g will usually just evaluate f ,
except if it detects that its input contains the trapdoor; in that case it will
do something trivial, making g easy to invert given knowledge of the trapdoor.
(This will not happen often in normal execution because it is unlikely that a
randomly chosen input contains the trapdoor.) But how exactly can g “detect”
the trapdoor? The first idea would be to include α in the description of g so that
it can check whether its input contains the trapdoor, but then g would no longer
be one-way. So instead the description of g will include β = f(α), an image of the
trapdoor under the original function f , and g will run f on a candidate trapdoor
to see whether the result matches β. (Note that we do not in fact necessarily
detect the real trapdoor α; the trivial action is taken whenever some pre-image
of β under f is detected. But that turns out to be OK.)

In the actual construction, g has three inputs, y, x, v, where v plays the role
of the “normal” input to f ; x plays the role of the candidate trapdoor; and y is
the “trivial” answer returned in case the trapdoor is detected. We now formally
specify the construction and sketch a prof that it is correct.

A particular function g ∈ [Gk] will be described by a pair (f, β) where
f ∈ [Fk] and β ∈ Range(f). It is defined on inputs y, x, v by

g(y, x, v) =
{

y if f(x) = β
f(v) otherwise. (2)

Here x, v ∈ Dom(f), and we draw y from some samplable superset Sf of
Range(f). (To be specific, we set Sf to the set of all strings of length at most p(k)
where p(k) is a polynomial that bounds the lengths of all strings in Range(f).)
So the domain of g is Dom(g) = Sf ×Dom(f)×Dom(f).

We now give an intuitive explanation of why G is one-way and trapdoor.
First note that for any z it is the case that (z, α, α) is a preimage of z under g,

Many-to-One Trapdoor Functions and Their Relation to Cryptosystems 291

so knowing α enables one to invert in a trivial manner, hence G is trapdoor.
For one-wayness, notice that if g(y, x, v) = z then either f(v) = z or f(x) = β.
Thus, producing an element of g−1(z) requires inverting f at either z or β, both
of which are hard by the one-wayness of F . A formal proof that G satisfies the
definition of a family of one-way trapdoor functions can be found in the full
version of this paper [BHSV].

Remark 2. One can verify that the trapdoor functions g produced in the above
construction are regular (ie. the size of g−1(y) is the same for all y ∈ Range(g))
if the original one-way functions f are regular. Thus, adding regularity as a
requirement is not likely to suffice for making public-key cryptosystems.

4 From Trapdoor Functions to Cryptosystems

Theorem 1 coupled with [ImRu] says that it is unlikely that general trapdoor
functions will yield semantically secure public-key cryptosystems. However, in
our construction of Section 3.1 the resulting trapdoor function was “very non-
injective” in the sense that the pre-image size was exponential in the security
parameter. So, we next ask, what is the power of trapdoor function families with
polynomially bounded pre-image size? We show a positive result:

Theorem 2. If there exist trapdoor one-way function families with polynomially
bounded pre-image size, then there exists a family of unapproximable trapdoor
predicates with exponentially small decryption error.

Theorem 2 extends the well-known result of [Ya,GoMi] that injective trapdoor
functions yield semantically secure public-key cryptosystems, by showing that
the injectivity requirement can be relaxed. Coupled with [ImRu] this also implies
that it is unlikely that the analogue of Theorem 1 can be shown for trapdoor
functions with polynomially bounded pre-image sizes.

4.1 Proof of Theorem 2

Let F = {Fk}k∈N be a family of trapdoor one-way functions with pre-image size
bounded by a polynomial Q. The construction is in two steps. We first build
an unapproximable family of trapdoor predicates P with decryption error 1/2−
1/ poly(k), and then reduce the decryption error by repetition to get the family
claimed in the theorem.

The first step uses the Goldreich-Levin inner-product construction [GoLe].
This construction says that if f is a one-way function, one can securely encrypt
a bit b via f(x), r, σ where σ = b⊕ (x� r) with r a random string, x ∈ Dom(f),
and � denoting the inner-product mod 2. Now, if f is an injective trapdoor func-
tion, then with the trapdoor information, one can recover b from f(x), r, and σ
by finding x and computing b = σ ⊕ (x � r). If instead f has polynomial-size
pre-images, the “correct” x will only be recovered with an inverse polynomial
probability. However, we will show that the rest of the time, the success proba-
bility is exactly 50%. This gives a noticeable (1

2 + 1
poly(k)) bias towards the right

292 Mihir Bellare et al.

value of b. Now, this slight bias needs to be amplified, which is done by repeat-
ing the construction many times in parallel and having the decryptor take the
majority of its guesses to the bit in the different coordinates. A full description
and proof follow.

We may assume wlog that there is a polynomial l(k) such that Range(f) ⊆
{0, 1}l(k) for all f ∈ [Fk] and all k ∈ N. We now describe how to use the
Goldreich-Levin inner-product construction [GoLe] to build P = {Pk}k∈N. We
associate to any f ∈ [Fk] a predicate p defined as follows:

Predicate p(b) // Takes input a bit b
x← Dom(f) // Choose x at random from the domain of f

r← {0, 1}l(k) // Choose a random l(k)-bit string
σ := b⊕ (x� r) // XOR b with the GL bit
Output (f(x), r, σ)

Here ⊕ denotes XOR (ie. addition mod 2) and � denotes the inner-product
mod 2. The generator algorithm for P will choose (f, tp)← F -Gen(1k) and then
output (p, tp) with p defined as above. Notice that p is computable in PPT if f
is.

The inversion algorithm P -Inv is given p, the trapdoor tp, and a triple
(y, r, σ). It first runs the inversion algorithm F -Inv of F on inputs f, tp, y to
obtain x′, and then outputs the bit b′ = σ⊕ (x′�r). It is clear that the inversion
algorithm is not always successful, but in the next claim we prove that it is
successful appreciably more often than random guessing.

Claim. P is an unapproximable trapdoor predicate family, with decryption error
at most (1/2)− 1/[2Q(k)].

Proof. We know that F is one-way. Thus, the inner product is a hardcore bit
for F [GoLe]. This implies that P is unapproximable. It is left to show that the
decryption error of P is as claimed, namely that DecErrP (P -Inv, k) (as defined
in Equation (1)) is at most (1/2)− 1/[2Q(k)].

Fix f, tp, b, let x, r be chosen at random as by p(b), let y = f(x), let σ =
b ⊕ (x � r), let x′ ← F -Inv(f, tp, y), and let b′ = σ ⊕ (x′ � r). Notice that if
x′ = x then b′ = b, but if x′ 6= x then the random choice of r guarantees that
b′ = b with probability at most 1/2. (Because F -Inv, who generates x′, gets no
information about r.) The chance that x = x′ is at least 1/Q(k) (because F -Inv
gets no information about x other than that f(x) = y) so

DecErrP (P -Inv, k) ≤
(

1− 1
Q(k)

)
· 1
2

as desired. ut
Now, we can iterate the construction q(k) def= Θ(kQ(k)2) times independently
and decrypt via a majority vote to reduce the decryption error to e−k. In more
detail, our final predicate family P q = {P q

k }k∈N is like this. An instance pq ∈ [P q
k]

is still described by a function f ∈ [Fk] and defined as pq(b) = p(b)‖ · · · ‖p(b),
meaning it consists of q(k) repetitions of the original algorithm p on independent

Many-to-One Trapdoor Functions and Their Relation to Cryptosystems 293

coins. The inversion algorithm P q-Inv is given the trapdoor tp and a sequence
of triples

(y1, r1, σ1)‖ · · · ‖(yq(k), rq(k), σq(k)) .

For i = 1, . . . , q(k) it lets b′i = P -Inv(p, tp, (yi, ri, σi)). It outputs b′ which
is 1 if the majority of the values b′1, . . . , b

′
q(k) are 1, and 0 otherwise. Cher-

noff bounds show that DecErrP q(P q-Inv, k) ≤ e−k. Furthermore standard “hy-
brid”arguments [GoMi,Ya] show that P q inherits the unapproximability of P .
This concludes the proof of Theorem 2.

Remark 3. Notice that Theorem 2 holds even if the family F only satisfies a
very weak trapdoor property — namely, that F -Inv produces an element of
f−1(y) with probability at least 1/p(k) for some polynomial p. Essentially the
same proof will show that P -Inv can guess b correctly with probability at least
1/2 + 1/[2Q(k)p(k)].

5 From Cryptosystems to Trapdoor Functions

In this section we investigate the relation between semantically secure public
key cryptosystems and injective trapdoor functions. It is known that the exis-
tence of unapproximable trapdoor predicates is equivalent to the existence of
semantically secure public-key encryption [GoMi]. It is also known that injective
trapdoor one-way functions can be used to construct unapproximable trapdoor
predicates [Ya] (see also [GoLe]). In this section, we ask whether the converse is
true:

Question 1. Can unapproximable trapdoor predicates be used to construct in-
jective trapdoor one-way functions?

Note the importance of the injectiveness condition in Question 1. We already
know that non-injective trapdoor functions can be constructed from trapdoor
predicates (whether the latter are injective or not) because trapdoor predicates
imply one-way functions [ImLu] which in turn imply trapdoor functions by
Theorem 1.

We suggest a construction which requires an additional “random looking”
function G and prove that the scheme is secure when G is implemented as a
random oracle (to which the adversary also has access). Hence, IF it is possible
to implement using one-way functions a function G with “sufficiently strong
randomness properties” to maintain the security of this scheme, then Question 1
would have a positive answer (as one-way functions can be constructed from
unapproximable trapdoor predicates [ImLu]).

The key difference between trapdoor functions and trapdoor predicates is
that predicates are probabilistic, in that their evaluation is a probabilistic process.
Hence, our construction is essentially a de-randomization process.

Suppose we have a family P of unapproximable trapdoor predicates, and we
want to construct a family F of injective one-way trapdoor functions from P . A

294 Mihir Bellare et al.

first approach would be to take an instance p of P and construct an instance f
of F as

f(b1b2 · · · bk‖r1‖ · · · ‖rk) = p(b1; r1)‖ · · · ‖p(bk; rk),
where k is the security parameter. Standard direct product arguments [Ya] im-
ply that F constructed in this manner is one-way. However, F may fail to be
trapdoor; the trapdoor information associated with p only allows one to recover
b1, . . . , bk, but not r1, . . . , rk.

Our approach to fixing this construction is to instead have r1, . . . , rk deter-
mined by applying some “random-looking” function G to b1, . . . , bk:

f(b1b2 · · · bk) = p(b1; r1)‖ · · · ‖p(bk; rk), where r1‖ · · · ‖rk = G(b1 · · · bk).
Since G must be length-increasing, an obvious choice for G is a pseudo-random
generator. A somewhat circular intuitive argument can be made for the secu-
rity of this construction: If one does not know b1, . . . , bk, then r1, . . . , rk “look
random,” and if r1, . . . , rk “look random,” then it should be hard to recover
b1, . . . , bk by the unapproximability of P . In the full version of the paper [BHSV],
we show that this argument is in fact false, in that there is a choice of an un-
approximable trapdoor predicate P and a pseudorandom generator G for which
the resulting scheme is insecure.

However, it is still possible that there are choices of functions G that make the
above secure. Below we show that the scheme is secure when G is implemented
as a truly random function, ie. a random oracle (to which the adversary also
has access). Intuitively, having access to the oracle does not help the adversary
recover b1 · · · bk for the following reason: the values of the oracle are irrelevant
except at b1 · · · bk, as they are just random strings that have nothing to do with
b1 · · · bk or f(b1 · · · bk). The adversary’s behavior is independent of the value of
the oracle at b1 · · · bk unless the adversary queries the oracle at b1 · · · bk. On
the other hand, if the adversary queries the oracle at b1 · · · bk, it must already
“know” b1 · · · bk. Specifically, if the adversary queries the oracle at b1 · · · bk with
non-negligible probability then it can invert f with non-negligible probability
without making the oracle call, by outputting the query. We now proceed with
a more formal description of the random oracle model and our result.

The random oracle model. In any cryptographic scheme which operates
in the random oracle model, all parties are given (in addition to their usual re-
sources) the ability to make oracle queries [BeRo]. It is postulated that all oracle
queries, independent of the party which makes them, are answered by a single
function, denoted O, which is uniformly selected among all possible functions
(where the set of possible functions is determined by the security parameter).

The definitions of families of functions and predicates are adapted to the ran-
dom oracle model in a straightforward manner: We associate some fixed poly-
nomial Q with each family of functions or predicates, such that on security
parameter k all the algorithms in the above definitions are given oracle access
to a function O : {0, 1}∗ → {0, 1}Q(k). The probabilities in these definitions are
then taken over the randomness of these algorithms and also over the choice of
O uniformly at random among all such functions.

Many-to-One Trapdoor Functions and Their Relation to Cryptosystems 295

Theorem 3. If there exists a family of unapproximable trapdoor predicates, then
there exists a family of injective trapdoor one-way functions in the random oracle
model.

Remark 4. Theorem 3 still holds even if the hypothesis is weakened to only re-
quire the existence of a family of unapproximable trapdoor predicates in the
random oracle model. To see that this hypothesis is weaker, note that a family
of unapproximable trapdoor predicates (in the standard, non-oracle model) re-
mains unapproximable in the random oracle model, as the oracle only provides
randomness which the adversary can generate on its own.

See Sections 1.2 and 1.3 for a discussion of the interpretation of such a result.
We now proceed to the proof.

5.1 Proof of Theorem 3

Let P = {Pk}k∈N be a family of unapproximable trapdoor predicates. Let q(k)
be a polynomial upper bound on the number of random bits used by any p ∈
Pk. When used with security parameter k, we view the oracle as a function
O : {0, 1}∗ → {0, 1}kq(k).

We define a family F = {Fk}k∈N of trapdoor functions in the random oracle
model as follows: We associate to any p ∈ [Pk] the function f defined on input
b1 . . . bk ∈ {0, 1}k by

f(b1 · · · bk) = p(b1; r1)‖ · · · ‖p(bk; rk),
where

r1‖ · · · ‖rk = O(b1 · · · bk), ri ∈ {0, 1}q(k) .

The generator F -Gen takes input 1k, runs (p, tp) ← P -Gen(1k) and outputs
(f, tp) where f is as defined above. It is clear that f can be evaluated in poly-
nomial time using the evaluator P -Eval for p.

Notice that f can be inverted given the trapdoor information. Given f, tp,
and y1‖ · · · ‖yk = f(b1 . . . bk), inverter F -Inv computes bi = P -Inv(p, tp, yi) for
i = 1, . . . , k, and outputs b1 . . . bk. Furthermore, f is injective because P has
zero decryption error: in this inversion process, P -Inv correctly returns bi, so we
correctly recover the full input. It remains to show that F is one-way.

Claim. F is one-way.

We prove this claim by describing several probabilistic experiments, modifying
the role of the oracle with each experiment. The first arises from the definition
of a family of one-way functions in the random oracle model. Let A be any PPT,
let k be any positive integer, and let q = q(k).

Experiment 1.
(1) Choose a random oracle O : {0, 1}∗ → {0, 1}kq(k).
(2) Choose p← Pk

296 Mihir Bellare et al.

(3) Select b1, . . . , bk uniformly and independently from {0, 1}.
(4) Let r1‖ · · · ‖rk = O(b1 · · · bk), where |ri| = q(k) for each i.
(5) Let x = p(b1; r1)‖ · · · ‖p(bk; rk).
(6) Compute z ← AO(1k, p, x).

We need to prove the following:

Claim. For every PPT A, the probability that z = b1 · · · bk in Experiment 1 is
a negligible function of k.

To prove Claim 5.1, we first analyze what happens when the ri’s are chosen
independently of the oracle, as in the following experiment: Let A be any PPT,
let k be any positive integer, and let q = q(k).

Experiment 2.
(1)–(3) As in Experiment 1.
(4) Select r1, . . . , rk uniformly and independently from {0, 1}q.
(5)–(6) As in Experiment 1.

Claim. For every PPT A, the probability that z = b1 · · · bk in Experiment 2 is
a negligible function of k.

Claim 5.1 follows from standard direct product arguments [Ya,GNW]. Specifi-
cally, Claim 5.1 is a special case of the uniform complexity version of the Con-
catenation Lemma in [GNW, Lemma 10].

Claim. For every PPT A, the probability that O is queried at point b1 · · · bk

during the execution of AO(1k, p, x) in Step 6 of Experiment 2 is a negligible
function of k.

Proof. Suppose that the probability that O is queried at point b1 · · · bk was
greater that 1/s(k) for infinitely many k, where s is a polynomial. Then we could
obtain a PPT A′ that violates Claim 5.1 as follows. Let t(k) be a polynomial
bound on the running time of A. A′ does the following on input (1k, p, x):
(1) Select i uniformly from {1, . . . , t(k)}.
(2) Simulate A on input (1k, p, x), with the following changes:

(1) Replace the oracle responses with strings randomly selected on-line,
with the condition that multiple queries at the same point give the
same answer.

(2) Halt the simulation at the i’th oracle query and let w be this query.
(3) Output w.
Then A′, when used in Experiment 2, outputs b1 · · · bk with probability greater
that 1/(s(k)t(k)) for infinitely many k, which contradicts Claim 5.1. ut
In order to deduce Claim 5.1 from Claims 5.1 and 5.1, we give an equivalent
reformulation of Experiment 1: Let A be any PPT, let k be any positive integer,
and let q = q(k).

Many-to-One Trapdoor Functions and Their Relation to Cryptosystems 297

Experiment 3.
(1)–(3) As in Experiment 1.
(4) Select r1, . . . , rk uniformly and independently from {0, 1}q.
(5) Let x = p(b1; r1)‖ · · · ‖p(bk; rk).
(6) Modify O at location b1 · · · bk to have value r1‖ · · · ‖rk.
(7) Compute z ← AO(1k, p, x).

We now argue that Experiment 3 is equivalent to Experiment 1. In
Experiment 1, r1, . . . , rk are uniformly and independently distributed in {0, 1}q
and after Step 5 of Experiment 1 the only information about the oracle that has
been used is that r1‖ · · · ‖rk = O(b1 · · · bk). Thus, the final distribution on all
random variables are identical in the two experiments and it suffices to prove
Claim 5.1 for Experiment 3 rather than Experiment 1.

Proof. Let E be the event that z = b1 · · · bk in Experiment 3. Let F be the event
that O is queried at point b1 · · · bk during the execution of AO(p, x) in Step 7 of
Experiment 3. To show that E occurs with negligible probability, it suffices to
argue that both F and E ∧ F occur with negligible probability.

First we show that F occurs with negligible probability. Notice that whether
or not AO queries O at b1 · · · bk in Experiment 3 will not change if Step 6
is removed. This is because its behavior cannot be affected by the change in
O(b1 · · · bk) until it has already queried that position of the oracle. If Step 6 is
removed from Experiment 3, we obtain Experiment 2. Hence, the probability of
F is negligible by Claim 5.1.

Similarly, the probability that [z = b1 · · · bk and AO never queries the oracle
at b1 · · · bk] will not change if Step 6 is removed. Thus, the probability of E ∩ F
is bounded above by the probability that z = b1 · · · bk in Experiment 2, which is
negligible by Claim 5.1. ut

Remark 5. If the family of unapproximable trapdoor predicates we start with has
negligible decryption error, then the family of trapdoor functions we construct
will in general also have negligible decryption error and may fail to be injective
with some small probability.

By first reducing the decryption error of the predicate family to exp(−Ω(k3))
as in the proof of Theorem 2 and then using the oracle to derandomize the
inversion algorithm, one can produce an injective family that has zero decryption
error with probability 1−2−k (where the probability is just taken over the choice
of the oracle).

Acknowledgments

The first author was supported by a 1996 Packard Foundation Fellowship in
Science and Engineering, and by NSF CAREER Award CCR-9624439. The third
and fourth authors were supported by DOD/NDSEG Graduate Fellowships and
partially by DARPA grant DABT-96-C-0018.

298 Mihir Bellare et al.

The starting point of this research was a question posed to us by Shafi Gold-
wasser, namely whether trapdoor permutations could be built from the assump-
tions underlying the Ajtai-Dwork cryptosystem.

Thanks to Oded Goldreich and the members of the Crypto 98 program com-
mittee for their comments on the paper.

References

AjDw. M. Ajtai and C. Dwork. A public-key cryptosystem with worst-case /
average-case equivalence. Proceedings of the 29th Annual Symposium on
the Theory of Computing, ACM, 1997. 287

AMM. Adleman, Manders and Miller. On taking roots in finite fields. Proceed-
ings of the 18th Symposium on Foundations of Computer Science, IEEE,
1977.

BHSV. M. Bellare, S. Halevi, A. Sahai, and S. Vadhan. Many-to-one trapdoor
functions and their relation to public-key cryptosystems. Full version of this
paper, available via http://www-cse.ucsd.edu/users/mihir.

BeRo. M. Bellare and P. Rogaway. Random oracles are practical: a paradigm
for designing efficient protocols. Proceedings of the First Annual Conference
on Computer and Communications Security, ACM, 1993. 286, 287, 294

Be. E. Berlekamp. Factoring polynomials over large finite fields. Mathematics
of Computation, Vol. 24, 1970, pp. 713–735.

BlMi. M. Blum and S. Micali. How to generate cryptographically strong se-
quences of pseudo-random bits, SIAM Journal on Computing, Vol. 13, No. 4,
850-864, November 1984. 286

Ca. R. Canetti. Towards realizing random oracles: Hash functions that hide all
partial information. Advances in Cryptology – Crypto 97 Proceedings, Lec-
ture Notes in Computer Science Vol. 1294, B. Kaliski ed., Springer-Verlag,
1997. 286

CGH. R. Canetti, O. Goldreich and S. Halevi. The random oracle model,
revisited. Proceedings of the 30th Annual Symposium on the Theory of
Computing, ACM, 1998. 286

DiHe. W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans.
Info. Theory, Vol. IT-22, No. 6, November 1976, pp. 644–654. 284, 284, 284,
287

DDN. D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. Pro-
ceedings of the 23rd Annual Symposium on the Theory of Computing, ACM,
1991.

ElG. T. El Gamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Trans. Inform. Theory, Vol. 31, 1985, pp. 469–472.
287

GoLe. O. Goldreich and L. Levin. A hard predicate for all one-way functions.
Proceedings of the 21st Annual Symposium on the Theory of Computing,
ACM, 1989. 291, 292, 292, 293

GoMi. S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Com-
puter and System Sciences, Vol. 28, April 1984, pp. 270–299. 284, 284, 284,
284, 286, 286, 287, 289, 289, 291, 293, 293

GNW. O. Goldreich, N. Nisan, and A. Wigderson. On Yao’s XOR Lemma.
Electronic Colloquium on Computational Complexity, TR95-050. March
1995. http://www.eccc.uni-trier.de/eccc/ 296, 296

Many-to-One Trapdoor Functions and Their Relation to Cryptosystems 299

HILL. J. Håstad, R. Impagliazzo, L. Levin and M. Luby. Construction of a
pseudo-random generator from any one-way function. Manuscript. Earlier
versions in STOC 89 and STOC 90.

ImLu. R. Impagliazzo and M. Luby. One-way Functions are Essential for
Complexity-Based Cryptography. Proceedings of the 30th Symposium on
Foundations of Computer Science, IEEE, 1989. 293, 293

ImRu. R. Impagliazzo and S. Rudich. Limits on the provable consequences of
one-way permutations. Proceedings of the 21st Annual Symposium on the
Theory of Computing, ACM, 1989. 285, 285, 286, 287, 287, 291, 291

NaYu. M. Naor and M. Yung. Public-Key Cryptosystems Provably Secure
against Chosen Ciphertext Attacks. Proceedings of the 22nd Annual Sym-
posium on the Theory of Computing, ACM, 1990.

Rab. M. Rabin. Digitalized Signatures and Public Key Functions as Intractable
as Factoring. MIT/LCS/TR-212, 1979. 289

Ya. A. Yao. Theory and applications of trapdoor functions. Proceedings of the
23rd Symposium on Foundations of Computer Science, IEEE, 1982. 284,
286, 291, 293, 293, 294, 296

	Introduction
	Background
	Results
	Discussion and Implications

	Definitions
	One-Way and Trapdoor Function Families
	Trapdoor Predicate Families

	From One-Way Functions to Trapdoor Functions
	Proof Sketch of Theorem 1

	From Trapdoor Functions to Cryptosystems
	Proof of Theorem 2

	From Cryptosystems to Trapdoor Functions
	Proof of Theorem 3

