
National University of Singapore
Final Report for CP3106

A Study of Cryptocurrency Investment
with Dollar Cost Averaging

Shanmu Wang
Department of Computer Science

Supervised by
Prof. Bingsheng He

1 December 2022

A Study of Cryptocurrency Investment with Dollar Cost
Averaging

SHANMUWANG∗, School of Computing, National University of Singapore, Singapore

Cryptocurrencies are rising in the digital financial market and have played an essential role in some portfolios
and trading strategies. However, due to the volatility of the cryptocurrency market, investors who do not
want to spend too much effort on this urgently need an investment strategy that can mitigate the time risk
of cryptocurrencies. In this report, we do the back-testing experiments on cryptocurrencies with Dollar
Cost Averaging (DCA) method, demonstrating its potential of eliminating the time risk of investment in
cryptocurrencies. To further improve the performance of DCA, we formalize the problem of finding a day with
a lower price to invest as an Optimal Stopping problem. And we implement Rainbow DQN, a well-performed
reinforcement learning algorithm for solving this problem. Empirical results show that our agent is able to
improve the profits by 2%-4% in the testing price data.

Additional Key Words and Phrases: Dollar Cost Averaging, Optimal Stopping, Deep Q-learning

1 INTRODUCTION
A cryptocurrency is a digital or virtual currency that is secured by cryptography, which makes it
nearly impossible to counterfeit or double-spend [8]. Because cryptocurrencies can be traded 24
h a day, 7 days a week and transactions can take place between individuals, in different venues
across the world, cryptocurrencies are rising in the digital financial market. Figure 1 shows the
total cryptocurrency market cap from 2017.01.01 to 2022.11.01. The rapid growth of the cryptocur-
rency market cap has attracted a lot of investors and more and more financial institutions have
included cryptocurrencies in their portfolios in recent years. On the other hand, researchers have
also conducted a lot of research in cryptocurrency, including portfolio management [12, 14] and
cryptocurrency trading [16, 17], etc.

Fig. 1. The total cryptocurrency market cap [4]

∗Supervised by Prof. Bingsheng He.

Author’s address: Shanmu Wang, E0978376@u.nus.edu, School of Computing, National University of Singapore, 21 Lower
Kent Ridge Rd, Singapore, 119077.

Report for CP3106: Independent Project

2 Shanmu Wang

However, as is shown in Figure 2, cryptocurrencies also have drastic fluctuations and are consid-
ered more volatile than stocks [15]. Although the rapid fluctuations of prices can provide traders
with great money-earning opportunities, it also includes more risk [19]. For a lot of investors who
do not want to spend a plethora of time focusing on the change in the cryptocurrency markets, a
strategy that can eliminate the risk of cryptocurrencies is in demand.

Fig. 2. The price change of BTC during Oct. 2022 [4]

Among a lot of different investment strategies, Dollar Cost Averaging (DCA) is widely rec-
ommended by professional investment advisors and commentators [2]. DCA requires an investor
to invest the same amount of money at regular intervals, typically weekly, monthly, or quarterly
[13]. It allows investors to hedge against regret that results from investing a lot of money during a
market high [13]. As a result, this strategy has the potential to mitigate timing risk, making it most
often employed for riskier investments and suitable for cryptocurrency investment.

By following DCA, an investor ends up purchasing more shares when prices fall and fewer shares
when prices rise. If the investor can invest on the day with the lowest price during each investment
interval, they can end up with more shares at the end and are likely to make more profits. In
practice, an investor can see the current price and previous prices and decide whether to invest
today. This sequential decision-making can be formulated as an Optimal Stopping question,
which is found in areas of statistics, economics, and financial mathematics [9]. However, this still
requires investors to keep a close eye on the cryptocurrency market, which is contrary to our
original intention of introducing DCA.

Since the Reinforcement Learning (RL) methods are widely used in dynamic decision-making
processes, it is natural to use reinforcement learning algorithms to solve the optimal stopping
problems. Reinforcement learning is a branch of Machine Learning. The core idea of RL algorithms
is an agent learns to take action in the environment to maximize a reward signal based on the
feedback from the environment. While RL algorithms are used extensively in missions of playing
games, they are also widely applied in solving financial problems [15].

The remainder of this paper is organized as follows. Section 2 shows the back-testing results on
cryptocurrency with DCA, demonstrating the benefits of DCA. Section 3 first formalizes the optimal
stopping problem and then gives details of the Deep Q-learning RL algorithm and its variants. In
Section 4, we detail how we build up the RL environment for experiments and in Section 5 we
elaborate on the experiment setup. Section 6 gives the empirical results. We conclude this report in
Section 7.

Report for CP3106: Independent Project

A Study of Cryptocurrency Investment with Dollar Cost Averaging 3

2 BACK-TESTING FOR DOLLAR COST AVERAGING
In order to have a clear demonstration of DCA returns, we back-tested DCA methods on different
cryptocurrencies and investment portfolios, using the price data provided by CoinMarkerCap [4].
We show our simulation workflow and experiment results in the following sections.

2.1 Simulation Methodology
In our experiments, we first back-test the return of buying a single cryptocurrency, such as Bitcoin
or Ethereum. Then we try an investment portfolio as detailed in [11], named Bitwise 10 Crypto
Index Fund, which tracks an index of the 10 largest crypto assets and weights the assets by market
capitalization. This portfolio includes established giants like Bitcoin and Ethereum, as well as
up-and-coming assets. In this report, we call Bitwise 10 Crypto Index Fund Index-10 for simplicity.
There is also a portfolio named based on Index-10, which sets a limitation of 20% to the weight of
each cryptocurrency so that the strategy can pay more emphasis to those up-and-coming assets.
We name this strategy as Max-Ratio for simplicity.

The simulation is implemented by three main functions, as is shown in Table 1. Function
ShowEffectiveness takes an input of (BeginDate, Year, Interval), and will first generate the starting
date list from BeginDate to the last day that can support investing for that many years. The function
then passes each date in the starting date list, as well as the year and interval, to the strategy function,
i.e, AtomStrategy and IndexStrategy. The function AtomStrategy takes an input of (StartDate, Year,
Interval, Name), where Name specifies which cryptocurrency to invest. Then the function will
simulate investing in an Interval from the StartDate for Year ; on each investment cycle, the function
will simulate investing 100 USD and get the equivalent crypto asset. At the end, the function
calculate the final amount and change it to the equivalent US dollars at an average price of the last
cycle, and then calculate the Return / Investment Ratio. The workflow for function IndexStategy
is similar, except that at every cycle it needs to read the price and market capitalization of the
top 10 cryptocurrencies and will need to store the amount of each coin with a dictionary. We also
add an argument of Ratio for this function, so that Ratio=1 represents the Index-10 strategy while
Ratio=0.2 represents the Max-Ratio strategy.

Function Desicrition
ShowEffectiveness Generate the starting date list and call the strategy function
AtomStrategy The strategy of buying a single cryptocurrency

IndexStrategy
The strategy of buying multiple cryptocurrencies based
on market capitalization
Table 1. Main functions for simulation

2.2 Simulation Setup
Based on the previous price and market capitalization data, we conduct back-testing experiments
from 1 year to 5 years. In detail, we first choose a starting day and then simulate investing 100 USD
every 10 days from that date onwards (Suppose our investment will not affect the price and market
capitalization). After one or several years, we sum up our total crypto assets and exchange them
for the equivalent in US dollars, and then calculate the Return / Investment ratio.

Report for CP3106: Independent Project

4 Shanmu Wang

2.3 Back-testing Results
As described before, we simulate the investment strategies of buying Bitcoin, buying Ethereum,
buying Index-10, and buying Max-Ratio. The result of the 1-year investment is shown in Figure 3.
Each data point (Begin date, Return / Investment) indicates that if we start to invest on the beginning
date, with an investment cycle of 10 days, and invest for 1 year, we get such a Return / Investment
ratio at the end. The blue dotted line is the baseline, which is set to 100%. It is worth noting that
the earliest price data available for ETH was in August 2015, so ETH curves in figures start from
that time. Due to space limitations, we have included more results in Appendix A.

(a) Overview

(b) Details around the baseline

Fig. 3. Back-testing for 1-year investment on different portfolios

Report for CP3106: Independent Project

A Study of Cryptocurrency Investment with Dollar Cost Averaging 5

Since it is obvious that investments made in the early days of cryptocurrencies can reap huge
benefits, and to better demonstrate the returns, we have selected investments with a starting date
after August 2018 for further analysis. The distribution of the Return / Investment for different
strategies and years is shown in Figure 4. And some statistics can be found in Table 2.

(a) BTC (b) ETH

(c) Index-10 (d) Max-Ratio

Fig. 4. Distribution of the Return / Investment for different strategies and years

Larger than 100% 150% 200% 250% 300%

Year 1

BTC 76.4% 41.3% 18.2% 13.1% 11.1%
ETH 78.5% 48.3% 39.8% 32.2% 24.4%

Index-10 75.2% 38.4% 24.5% 14.3% 11.1%
Max-Ratio 63.5% 35.2% 26.9% 16.0% 11.4%

Year 2

BTC 93.4% 88.6% 71.5% 56.8% 44.7%
ETH 100% 93.4% 88.5% 74.9% 70.8%

Index-10 93.0% 84.0% 71.9% 56.6% 50.1%
Max-Ratio 93.2% 74.7% 67.1% 52.7% 47.9%

Year 3

BTC 100% 88.5% 81.4% 77.3% 69.9%
ETH 100% 100% 100% 100% 91.8%

Index-10 100% 90.1% 85.2% 77.5% 73.2%
Max-Ratio 100% 87.7% 78.1% 78.1% 68.5%

Table 2. Statistics of Return / Investment Ratio

From the distribution and statistics, we can obtain some conclusions: whether investing in a
single cryptocurrency or multiple cryptocurrencies with different portfolios, DCA is effective

Report for CP3106: Independent Project

6 Shanmu Wang

in mitigating risk and volatility and earning benefits for investors. In detail, there is a close to
40% probability (even close to 50% if investing in ETH) of gaining 150% in just one year of fixed
investment. This probability even increases to nearly 80% when the period is extended to two years.
And when investing for three years, investors can even be guaranteed a solid return. To further
eliminate the risk, one can also choose to start the round at different times of the year to average
risk or simply extend the investment.
Overall, our back-testing results have shown that the dollar cost averaging strategy has the

ability to mitigate timing risk, making it a suitable strategy for cryptocurrency investment.

2.4 Further Improvement
To further improve the performance of DCA, an intuitionally thought is to develop an agent that is
able to choose a day with a lower price during each investment cycle and purchase the crypto asset
on that day. In other words, every time when a new investment cycle begins, the agent will hold
the money until it thinks the day is suitable to invest.

This can be formulated as an Optimal Stopping question, which is concerned with the problem
of choosing a time to buy based on sequentially observed prices in order to maximize the amount
of chosen cryptocurrency. We will detail this part in the following chapter.

3 OPTIMAL STOPPING PROBLEM AND REINFORCEMENT LEARNING METHODS
As mentioned before, we want to automatically choose a better day during each investment cycle
to purchase the crypto asset(s), which should be able to improve the final profits. This can be
formulated as an Optimal Stopping problem. In this section, we first give a formal definition of the
optimal stopping problem in our scenario. Then we lay a foundation for Reinforcement Learning
and detail the algorithms we used.

3.1 Problem Definition
The optimal stopping problem consists in finding the optimal time to stop in order to maximize an
expected reward. This problem is found in areas of statistics, economics, and financial mathematics
[9]. Some traditional way to solve the optimal stopping problem is by using a regression-based
method to approximate the optimal continuation value at each state of the system. But such
numerical methods do not easily scale to high dimensional problems and assume that the underlying
stochastic model is known. And in most cases, it will require the fine-tuning of basis functions
[5]. Recently, some researchers are using Reinforcement Learning based methods to solve optimal
stopping problems.

In this work, we adopt the following notations:

• A𝑡 : the set of possible actions at time 𝑡
• 𝑆 : the set of all possible states
• 𝑇 : the horizon of the problem, i.e., the investment cycle in our scenario
• Π : the set of all possible policy 𝜋 : 𝑆 → A
• 𝑠𝑡 : the state at time 𝑡
• 𝑠0:𝑇 : a trajectory [𝑠0, . . . , 𝑠𝑇]
• 𝑈𝑡 : the payout received when stopping at time 𝑡 after observing 𝑠0:𝑡

Specifically, A𝑡 := {ℎ𝑜𝑙𝑑, 𝑏𝑢𝑦} for 𝑡 < 𝑇 , and A𝑇 := {𝑏𝑢𝑦}. The stopping time with policy 𝜋 is
defined as: 𝜏𝜋 =𝑚𝑖𝑛{𝑡 ∈ [0, . . . ,𝑇] 𝑠 .𝑡 . 𝜋 (𝑠𝑡) = 𝑠𝑡𝑜𝑝}. In our scenario, at each time prior to the end
day of the investment cycle, the investor decides whether to invest or not, depending on whether
the current payoff is greater than the continuation value, which refers to the max payoff in the

Report for CP3106: Independent Project

A Study of Cryptocurrency Investment with Dollar Cost Averaging 7

remaining days. So an optimal policy 𝜋∗ should be able to do the following decisions:

𝜋∗ (𝑠𝑡) =
{

buy if E [𝑈𝑡 | 𝑠0:𝑡] ≥ E
[
𝑈𝜏𝑡+1

𝜋
| 𝑠0:𝑡

]
hold otherwise

, where 𝜏𝑡𝜋 =𝑚𝑖𝑛{𝑡 ′ ∈ [𝑡, . . . ,𝑇 , 𝑠 .𝑡, 𝜋 (𝑠𝑡 ′) = 𝑏𝑢𝑦}. In other words, if the payoff of stopping at the
current time is greater than the maximum payoff after the current day, 𝜋∗ (𝑠𝑡) = 𝑏𝑢𝑦, otherwise
𝜋∗ (𝑠𝑡) = ℎ𝑜𝑙𝑑 .

The sequential decision-making problem described above can be seen as an analogy of a standard
reinforcement learning notation:

𝑄 (𝑠, 𝑎) =
{

𝑟 (𝑠, buy), if 𝑎 = buy
𝑟 (𝑠, hold) + 𝛾E [max (𝑄 (𝑠′, buy) , 𝑄 (𝑠′, hold))] , otherwise

In this notation, 𝑄 (𝑠, 𝑎) refers to the quality of action 𝑎 under state 𝑠 , 𝑟 (𝑠, 𝑎) refers to the reward
by taking action 𝑎 under state 𝑠 , 𝑠′ is the next state, and 𝛾 is the discounted factor. A policy for
such an optimal stopping problem is to choose the action depending on which action has a higher
Q-value.

3.2 Reinforcement Learning: DQN and its variants
3.2.1 Basic Idea. Reinforcement Learning is a branch of machine learning. The basic idea of
reinforcement learning is an agent learning to take action in the environment to maximize a reward
signal by the feedback from the environment. In detail, at each discrete time step 𝑡 , the agent
observes the state 𝑠𝑡 provided by the environment and does the action 𝑎𝑡 , and then the environment
provides the reward 𝑟𝑡 for this action and next state 𝑠𝑡+1. Specifically, in our scenario, an agent
decides whether to buy or to hold after observing the price movement and then gets the reward
from this action. During the training process, the agent continuously upgrades its strategy based
on feedback from the environment.

3.2.2 Deep Q-learning. The DQN (Deep Q-Network) algorithm was developed by DeepMind in
2015 [18]. Among various RL algorithms, Deep Q-leaning Network (DQN) and its variants have
been proven to be useful in many missions with discrete action space. Compared to traditional
Q-learning, Deep Q-learning uses a neural network to substitute the Q-table, which makes it
possible for missions with large state and/or action spaces to learn Q value estimates for each state
and action pair independently. Specifically, DQN uses a neural network to approximate the action
values for a given state 𝑠 . At each step, the agent chooses an action 𝜖-greedily with respect to the
action values based on the current state and adds a transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1, 𝑑𝑜𝑛𝑒𝑡) to a replay buffer,
where 𝑑𝑜𝑛𝑒𝑡 indicates whether current episode ends. The parameters 𝜃 of the neural network are
optimized by using gradient descent to minimize the loss 𝛿𝑡 (𝜃) =

[
(𝑦𝑡 −𝑄 (𝑠𝑡 , 𝑎𝑡 ;𝜃))2] , where

𝑦𝑡 = 𝑟 +𝛾 max𝑎′ 𝑄
(
𝑠𝑡+1, 𝑎

′;𝜃
)
, and 𝑡 is a time step randomly picked from the replay memory. 𝑦𝑖 −𝑄

represents TD (temporal difference) error. The gradient of the loss is then back-propagated into
the parameters 𝜃 of the action network. The term 𝜃 represents the parameters of a target network,
which is a periodic copy of the action network. At each step, gradient descent is performed on a
mini-batch sampled uniformly from the replay buffer. The pseudo-code is shown as Algorithm 1.

3.2.3 Workflow of the Basic DQN Algorithm. To make the process as clear as possible, we illustrate
the workflow of a DQN agent in our scenario, as is shown in Figure 5. In our scenario, a trajectory
consists of𝑇 states, where𝑇 is the investment cycle. Each time when the environment resets or the
last episode ends, the training process will move to a new trajectory. And for 𝑖 in 1 to 𝑇 , the DQN
takes as input of state 𝑠𝑖 , and either choose an action randomly with probability 𝜖 or selects the
action with max output Q value with probability 1−𝜖 . After that, the agent does the selected action

Report for CP3106: Independent Project

8 Shanmu Wang

Algorithm 1: Deep Q-learning with experience replay
input :A set of𝑀 episodes {𝑠𝑖0:𝑇 }

𝑀
𝑖=1

initialize : replay buffer 𝐷 to capacity 𝐶 of episodes
initialize :action-value network 𝑄 with random weights 𝜃
initialize : target-value network 𝑄 with random weights 𝜃
for episode 𝑖 to𝑀 do

for 𝑡 = 0 to 𝑇 do
With probability 𝜖 choose a random action 𝑎𝑡
Otherwise select 𝑎𝑡 = arg max𝑎 𝑄

(
𝑠𝑖𝑡 , 𝑎;𝜃

)
Execute action 𝑎𝑡 and observe reward 𝑟𝑡 , store transition

(
𝑠𝑖𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠

𝑖
𝑡+1, 𝑑𝑜𝑛𝑒𝑡

)
in

𝐷 . If 𝐷 is full, drop the oldest episode.
end
if enough experiences in 𝐷 then

Sample a random mini-batch of 𝑁 transitions from 𝐷

for every transition (𝑠 𝑗 , 𝑎 𝑗 , 𝑟 𝑗 , 𝑠 𝑗+1, 𝑑𝑜𝑛𝑒 𝑗) in mini-batch do

𝑦 𝑗 =

{
𝑟 𝑗 if 𝑑𝑜𝑛𝑒 𝑗

𝑟 𝑗 + 𝛾 max𝑎′ 𝑄
(
𝑠 𝑗+1, 𝑎

′;𝜃
)

otherwise.
end
Calculate the loos L = 1/N

∑𝑁−1
𝑗=0

(
𝑦 𝑗 −𝑄

(
𝑠 𝑗 , 𝑎 𝑗

))2

Perform gradient descent on L with respect to network parameters 𝜃
Every𝑈 episodes reset target network 𝑄 = 𝑄

end
end

and then reaches the next state 𝑠𝑖+1 and gets the reward 𝑟𝑖 . Then the transition (𝑠𝑖 , 𝑎𝑖 , 𝑠𝑖+1, 𝑟𝑖 , 𝑑𝑜𝑛𝑒𝑖)
will be stored in replay buffer, where 𝑑𝑜𝑛𝑒𝑖 indicates whether current episode ends. If 𝑎𝑖 = 𝐻𝑜𝑙𝑑 ,
we step to the next state and repeat the process. If we reach a day when 𝑎𝑡 = 𝐵𝑢𝑦 or 𝑡 = 𝑇 , this
episode ends and we run into a new episode to continue the training process. If there are enough
experiences in the replay buffer, we sample a minibatch of transitions, compute the TD loss, and
use gradient descent to update the weights of the neural networks. The rewards from the episode
are then summed up to get a score for this episode, which can be used as an important indicator of
the agent’s training process.

3.2.4 Extensions to DQN. Deep Q-learning has attracted a lot of interest since it was introduced.
However, there are some problems with the basic DQN algorithm, including overestimation, long
training time, and so on. Our previous experiments with basic DQN also show that the performance
is not satisfactory. Actually, many researchers have proposed a lot of improvements to the DQN
algorithm. In the following paragraphs, we will give an introduction to six useful extensions to
DQN, which can be fruitfully combined as the Rainbow DQN [10].
Double Q-learning: Conventional Q-learning is affected by an overestimation bias, which

harms learning [10]. Double DQN [22] was introduced later that proposed the use of two different
sets of parameters, one for choosing the best action and another for evaluating such actions. As
in DQN, Double DQN still estimates the value 𝜖-greedily according to the current values, using
a network with parameters 𝜃𝑡 . However, Double DQN uses the second set of weights 𝜃 ′𝑡 to fairly
evaluate the value of this policy. This second set of weights can be updated symmetrically by
switching the roles of 𝜃 and 𝜃 ′ [22]. In short, it is like 2 function approximators aggregating on

Report for CP3106: Independent Project

A Study of Cryptocurrency Investment with Dollar Cost Averaging 9

…

…

.

1.034 =

.

2.103 (, , ,)

…

.

4.230 =

= =

, , , , ;

=

………

Fig. 5. The workflow of a DQN agent

each other’s choice of the best action, which solves the problem of overestimation and helps to
learn.

Prioritized replay: As is shown in Algorithm 1, basic DQN samples mini-batch uniformly from
the replay buffer. In [20], researchers proposed to use a Prioritized Experience Replay Buffer instead
of a normal replay buffer. Prioritized replay gives more priority to important experiences based on
TD error so that the algorithm can sample more frequently those transitions that are much to learn.
To be more specific, the prioritized replay buffer samples transitions with probability 𝑝𝑖 relative to
the last encountered absolute TD error |𝛿𝑖 |:

𝑝𝑖 ∝
����𝑟𝑖+1 + 𝛾 max

𝑎′
𝑄 (𝑠𝑖+1, 𝑎

′;𝜃) −𝑄 (𝑠𝑖 , 𝑎𝑖 ;𝜃)
����𝜔 ,

where 𝜔 is a hyper-parameter that determines the shape of the distribution [20]. Since TD error
indicates how far the value is from its next-step bootstrap estimate, prioritized replay helps the
agent to learn faster.

In practice, we set the priority of transition 𝑖 as 𝑝𝑖 = |𝛿𝑖 | + 𝜖 , where 𝜖 is a small positive constant.
We add this term in order to guarantee all transactions can be possibly sampled. Then we define
the probability of sampling transition 𝑖 as

𝑃 (𝑖) =
𝑝𝛼
𝑖∑
𝑘 𝑝

𝛼
𝑘

,

The exponent 𝛼 determines how much prioritization is used, with 𝛼 = 0 corresponding to the
uniform case.

However, prioritized replay introduces bias because it doesn’t sample experiences uniformly at
random due to the sampling proportion corresponding to TD error. We can correct this bias by
using importance-sampling (IS) weights

𝑤𝑖 =
(1
𝑁

· 1
𝑃 (𝑖)

)𝛽
. These weights will be folded into the Q-learning update by using𝑤𝑖𝛿𝑖 instead of 𝛿𝑖 . And it fully
compensates for the non-uniform probabilities 𝑃 (𝑖) if 𝛽 = 1. In typical reinforcement learning
scenarios, the unbiased nature of the updates is most important near convergence at the end of

Report for CP3106: Independent Project

10 Shanmu Wang

training [20]. Therefore we can define a schedule on the exponent 𝛽 that reaches 1 only at the end
of learning, adjusting the amount of importance-sampling correction over time.

Dueling networks: Dueling networks [23] explicitly separates the representation of state values
and action advantages. The dueling architecture features two streams of computation, the value and
advantage streams, sharing a convolutional encoder, and are merged by a special aggregator [10], as
is shown in Figure 6. The dueling architecture represents both the value𝑉 (𝑠) and advantage𝐴(𝑠, 𝑎)
functions with a single deep model whose output combines the two to produce a state-action value
𝑄 (𝑠, 𝑎). The value function𝑉 measures how good it is to be in a particular state 𝑠 , and the advantage
function 𝐴 measures the relative advantage of action 𝑎. This final Q value can be computed by:

𝑄 (𝑠, 𝑎;𝜃, 𝛼, 𝛽) = 𝑉 (𝑠;𝜃, 𝛽) +
(
𝐴(𝑠, 𝑎;𝜃, 𝛼) − 1

|A|
∑︁
𝑎′

𝐴(𝑠, 𝑎′;𝜃, 𝛼)
)
,

where 𝜃 denotes the parameters of the convolutional layers, while 𝛼 and 𝛽 are the parameters of
the two streams of fully-connected layers, and |A| is the shape of action space.

Fig. 6. The dueling architecture

Multi-step learning: Multi-step learning [21] proposed to use n-step return rather than using
1-step return to calculate Q values so that the target value does not rely on just the current reward
and can be more accurate. We define the truncated 𝑛-step return from a given state 𝑠𝑡 as

𝑟
(𝑛)
𝑡 ≡

𝑛−1∑︁
𝑘=0

𝛾
(𝑘)
𝑡 𝑟𝑡+𝑘+1 .

A multi-step variant of DQN is then defined by minimizing the alternative loss:(
𝑟
(𝑛)
𝑡 + 𝛾 (𝑛)

𝑡 max
𝑎′

𝑄
(
𝑠𝑡+𝑛, 𝑎

′;𝜃
)
−𝑄 (𝑠𝑡 , 𝑎𝑡 ;𝜃)

)2

Distributional RL: Distributional RL introduces the use of distribution of Q values instead of
using average estimated Q values since these values can be diverse in a different situation and
hence causing the value to be inaccurate [10].
In [1], the authors argued the importance of learning the distribution of returns instead of the

expected return. In detail, they model the value distribution using a discrete distribution parameter-
ized by 𝑁 ∈ N and 𝑉MIN,𝑉MAX ∈ R, and whose support is the set of atoms {𝑧𝑖 = 𝑉MIN + 𝑖△𝑧 : 0 ≤
𝑖 < 𝑁 }, △𝑧 := 𝑉𝑀𝐴𝑋 −𝑉𝑀𝐼𝑁

𝑁−1 [1]. A distributional variant of Q-learning is then derived by first con-
structing a new support for the target distribution, and then minimizing the Kullbeck-Leibler
divergence between the distribution 𝑑𝑡 and the target distribution

𝑑 ′𝑡 = (𝑟𝑡+1 + 𝛾𝑡+1𝑧, 𝑝𝜃 (𝑠𝑡+1, 𝑎
∗
𝑡+1)),

𝐷𝐾𝐿 (𝜙𝑧𝑑 ′𝑡 ∥𝑑𝑡).

Report for CP3106: Independent Project

A Study of Cryptocurrency Investment with Dollar Cost Averaging 11

Z

f(Z)

E(Z)

Z

f(Z)

state
Neural

Network

state
Neural

Network

z0 z1 z2 z3 z4 z5 z6

Fig. 7. The comparison of DQN and Distributional RL

Here𝜙𝑧 is a L2-projection of the target distribution onto the fixed support 𝑧, and𝑎∗𝑡+1 = arg max𝑎 𝑄 (𝑠𝑡+1, 𝑎;𝜃)
is the greedy action. Due to the space limitation, we refer readers to [1] for more details.
The parameterized distribution can be represented by a neural network, as in DQN, but with

𝑎𝑡𝑜𝑚_𝑠𝑖𝑧𝑒 × 𝑎𝑐𝑡𝑖𝑜𝑛_𝑑𝑖𝑚 outputs. In DQN, the neural network outputs the expected return of an
action, but in distributional RL, the neural network outputs parameterized distribution for each
action, as is shown in Fig. 7. A softmax is applied independently for each action dimension of the
output to ensure that the distribution for each action is appropriately normalized. To estimate
Q-values, we can use the inner product of each action’s softmax distribution and the set of atoms
{𝑧𝑖 }:

𝑄 (𝑠𝑡 , 𝑎𝑡) =
∑︁
𝑖

𝑧𝑖𝑝𝑖 (𝑠𝑡 , 𝑎𝑡),

where 𝑝𝑖 is the probability of 𝑧𝑖 , i.e, the output of softmax.
Noisy Nets: Noisy Nets [7] were introduced to add noise to the network parameters so that it

explores more. Such noise is applied to the output streams of the network, which is typically a
liner layer. A normal linear layer of a neural network with 𝑝 inputs and 𝑞 outputs is represented by
𝑦 = 𝑤𝑥 +𝑏, where 𝑥 ∈ R𝑝 is the layer input,𝑤 ∈ R𝑞×𝑝 , and 𝑏 ∈ R the bias. Then the corresponding
noisy linear layer is defined as:

𝑦 = (𝜇𝑤 + 𝜎𝑤 ⊙ 𝜖𝑤)𝑥 + 𝜇𝑏 + 𝜎𝑏 ⊙ 𝜖𝑏,

where 𝜇𝑤 + 𝜎𝑤 ⊙ 𝜖𝑤 and 𝜇𝑏 + 𝜎𝑏 ⊙ 𝜖𝑏 replace 𝑤 and 𝑏 in the first linear layer equation, and ⊙
denotes the element-wise product. The parameters 𝜇𝑤 ∈ R𝑞×𝑝 , 𝜇𝑏 ∈ R𝑞, 𝜎𝑤 ∈ R𝑞×𝑝 and 𝜎𝑏 ∈ R𝑞
are learnable, whereas 𝜖𝑤 ∈ R𝑞×𝑝 and 𝜖𝑏 ∈ R𝑞 are noise random variables. Over time, the network
learns to ignore the noisy stream at different rates in different parts of the state space, allowing
state-conditional exploration with a form of self-annealing [10].

Rainbow DQN: The Rainbow DQN [10] makes a combination of the aforementioned extensions
and provides very good performance in many missions. The performance of Rainbow DQN across
57 Atari games is shown in Figure 8, which shows that all of the extensions contribute to the
final performance and prioritized replay buffer, multi-step learning, and distributional RL are more
important. Each extension and its contribution is summarized in Table 3.
Since each of these extensions has been proven useful, in our project, we add all of these

extensions to the basic DQN. In detail, the network structure is constructed with the thoughts of
dueling network and distributional RL, while some of the linear layers are replaced with noisy
linear layers. We use two networks to do the selection and evaluation separately. The replay buffer

Report for CP3106: Independent Project

12 Shanmu Wang

is changed to the prioritized buffer and we use the multi-step return to calculate Q values. We will
detail the network structure and hyperparameters in Section 5.

(a) Rainbow DQN and other baselines (b) Rainbow DQN and ablations

Fig. 8. The performance of Rainbow DQN [10]

Extension Description Contribution

Double Q learning
Use two networks to
decouple the selection
from the evaluation

Tackle overestimation bias

Prioritized Replay

Replay buffer that
gives more priority
to important experiences
based on TD error

Prioritize important transitions;
help agent learn faster

Dueling Networks

Use two streams
to separately estimate
state-value and the
advantages for each action

Lead to stable and fast learning

Multi-step learning
Use n-step return
instead of 1-step return
to calculate Q-value

Help agent learn faster

Distributional RL

Use the distribution of
Q values instead of
using average estimated
Q values

Enable accurate Q-value estimation

Noisy Nets Add noise to
the network parameters

Lead to state-conditional exploration

Table 3. The summary of the extensions

Report for CP3106: Independent Project

A Study of Cryptocurrency Investment with Dollar Cost Averaging 13

4 REINFORCEMENT LEARNING ENVIRONMENT
4.1 Overview of the Environment
As stated before, the core idea of RL algorithms is to interact with the environment, update iteratively,
and eventually obtain a trading strategy to maximize the expected return. So it is vital to set up an
environment for any RL mission. OpenAI Gym [3] provides standardized environments for various
DRL tasks. In this project, we build a standard OpenAI gym-style environment named CryptoEnv.
In addition to implementing the basic functions, such as reset and step, we also implement some
functions to facilitate the training and evaluation process. The main APIs are given in Table 4. More
details are elaborated as follows.

Function Description

env=CryptoEnv(data)
Return an environment instance of the CryptoEnv
class with price data and default 𝑡𝑤𝑖𝑛𝑑𝑜𝑤 and 𝑇𝑐𝑦𝑐𝑙𝑒 .

env.reset() Reset the environment and return a random episode
env.step() Move a step, return the reward and next state
env.getPrice() Obtain the original and normalized price list of the current cycle

Table 4. The main APIs in CryptoEnv

4.2 State
When applying reinforcement learning to financial problems, the agent’s state is primarily modeled
with price-based features [6]. In our scenario, we also adopt a price-based feature with the form of
𝑠𝑡 = [𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒, 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑖𝑐𝑒,𝑤𝑖𝑛𝑑𝑜𝑤 𝑝𝑟𝑖𝑐𝑒𝑠]. On day 𝑡 , we obtain the state 𝑠𝑡 as follows:

(1) remaining time: this is computed by (𝑇 − 𝑡)/𝑇 , where 𝑇 is the investment cycle and 𝑡

indicates which day are we in this cycle.
(2) relative value: to get the relative price, we first select the price on the day before the start

of the current investment cycle as reference price 𝑝𝑟 , and then subtract the reference price
from today’s price 𝑝𝑡 . After that, we use a sigmoid function to normalize the difference and
get the relative value:

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑖𝑐𝑒 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑝𝑡 − 𝑝𝑟)

(3) window price: window price is a list of price data for the previous 𝑡𝑤𝑖𝑛𝑑𝑜𝑤 days from today.
And a Max-Min normalization is applied so that the price data should range from 0 to 1.

In conclusion, our state is a 1 × (𝑡𝑤𝑖𝑛𝑑𝑜𝑤 + 2) vector with all of its elements ranging from 0 to 1.

4.3 Reward
The reward is fully governing the agent’s behavior; thus, a good choice of reward function is critical
for the desired type of strategy and its performance. Since we attempt to implement an agent that
can find the lowest priced investment day within an investment cycle, it is intentional to reward
our agent if it can get a low price to invest or hold our money when faced with a high price, and
punish the agent if it does the opposite.

In detail, our reward scheme is based on the logit function F (𝑥) = 𝑙𝑛 𝑥
1−𝑥 , which is actually the

inverse of the sigmoid function. The image of this function is shown as Figure 9. In our scenario,
the reward scheme is as follows:

Report for CP3106: Independent Project

14 Shanmu Wang

Fig. 9. The image of the logit function

(1) First we get the prices of the current investment cycle and do a Max-Min-Normalization so
that each price is normalized to 0 to 1. Let 𝑝𝑖 is the normalized price of 𝑖 − 𝑡ℎ day.

(2) If the agent decide to buy on the 𝑖 − 𝑡ℎ day or 𝑖 equals to investment cycle 𝑇 , we calculate
the reward through: 𝑟 = −F (𝑝).

(3) If the agent decide to hold on the 𝑖 − 𝑡ℎ day, we calculate the reward through: 𝑟 = 𝛼F (𝑝),
where 𝛼 ∈ [0, 1]. The factor 𝛼 is to prevent dilution of the final reward, and we set it as 0.5
based on the empirical results.

We now give an example to show our reward scheme:
Example: Let’s say the agent is in an episode with the following original price list 𝑝:

𝑝 = [1200.37, 1175.95, 1187.87, 1187.13, 1205.01, 1176.9, 1169.28, 1167.54, 1172.52],

where 𝑝1 is the first day’s price, 𝑝2 is the second day’s price, and so on. After the Max-Min-
Normalization, we get the normalized price list 𝑝′:

𝑝′ = [0.876, 0.224, 0.543, 0.523, 0.999, 0.250, 0.046, 0.001, 0.133] .

Note that we adjust the normalized price from 1 to 0.999 and 0 to 0.001 in order to avoid the
divide-by-zero error. Let’s assume our agent holds on the first day and decide to buy on the second
day in this investment cycle:
(1) Hold on the first day: we have 𝑝′1 = 0.876, which indicates the first day’s price is a very high

price during the current cycle. So if our agent decides to hold our money on this day, we should
give a reward instead of punishment. The reward is: 𝑟1 = 𝛼F (𝑝′1) = 0.5 × 𝑙𝑛 0.876

1−0.876 = 0.978
(2) Buy on the second day: we have 𝑝′2 = 0.224. Though not the best time to invest, this day is

still a good choice. So we compute the reward as:
𝑟2 = −F (𝑝′2) = −𝑙𝑛 0.224

1−0.224 = 1.243
Since our agent decides to buy, this episode ends, and we can compute the score of this episode as
𝑠𝑐𝑜𝑟𝑒 =

∑𝑡
𝑖=1 𝑟𝑖 , where 𝑡 =𝑚𝑖𝑛{𝑡 ∈ [1, . . . ,𝑇], 𝑠 .𝑡,𝑄 (𝑠𝑡) = 𝐵𝑢𝑦}.

5 EXPERIMENT SETUP
5.1 Hyperparameters
Based on the hyperparameters chosen by other reinforcement learningmethods applied for financial
problems and our empirical results, the hyperparameters for our mission are determined as shown
in Table 5.

Report for CP3106: Independent Project

A Study of Cryptocurrency Investment with Dollar Cost Averaging 15

Hyperparameters Value

Environment Parameters
𝑡𝑤𝑖𝑛𝑑𝑜𝑤 30
𝑇𝑐𝑦𝑐𝑙𝑒 9

Basic Parameters

learning rate 5 × 10−4

memory size 10000
batch size 128

target update step𝑈 100
discounted factor 𝛾 0.95

Prioritized Experience Replay
𝛼 0.2
𝛽 0.6
𝜖 1 × 10−6

Distributional RL
𝑉𝑀𝐼𝑁 0
𝑉𝑀𝐴𝑋 20

atom size 51
N-step Learning n step 3

Table 5. Hyperparameters of our experiments

5.2 Network Structure
The network architecture in our experiment is shown as Figure 10, where we use Relu for activation.
In our scenario, the state input is a 1 × 32 vector. The feature layer is a normal linear layer. The
feature will be fed to two streams: the value stream consists of two noisy linear layers, and output
the value function with a size of 1 × 𝑎𝑡𝑜𝑚_𝑠𝑖𝑧𝑒 , i.e, 1 × 51; the advantage stream has the symmetric
architecture but outputs a vector of 1 × (𝑎𝑐𝑡𝑖𝑜𝑛_𝑑𝑖𝑚 × 𝑎𝑡𝑜𝑚_𝑠𝑖𝑧𝑒), i.e, 1 × 102. These two outputs
are then aggregated to obtain the final 𝑄 (𝑠, 𝑎) as is mentioned in Section 3.2.4.

Linear Layer

State
1×32

1×128

Noisy
Linear Layer

1×128

Noisy
Linear Layer

1×51

1×128

Noisy
Linear Layer

1×102

Noisy
Linear Layer

Aggregation
Layer

Buy

Hold

Q(s,a)
Action Values

Value Stream

Advantage Stream

Fig. 10. The network architecture

Report for CP3106: Independent Project

16 Shanmu Wang

5.3 Data Splitting
Unlikemissions of playing games, where reinforcement learning algorithms perform verywell, there
is a limit to the amount of data we can use in a financial problem. In some game environments, we
could easily train for millions of steps and also test numerous times. However, most RL algorithms
designed for financial problems take price-based features as the state, and the price data, in most
cases, is limited. For our scenario, this limitation is even more apparent due to the short history of
cryptocurrencies.
Since Bitcoin and Ethereum are two cryptocurrencies that attract a lot of attention in the

cryptocurrency market, we conduct our experiments based on these two currencies. Bitcoin has a
record price dating back as far as 2013, and we trace back 3472 days of price data from 2013.05.06 to
2022.11.07. However, early price changes are too old to be a good reference and even might harm
the training if involved, so those early price data are discarded. The rest of the data is split into
training and test data at a ratio of 0.85 to 0.15. At last, we split the price data of Bitcoin as follows:
(1) Training: from 2020.05.09 to 2022.06.23, 775 days
(2) Testing: from 2022.06.24 to 2022.11.07, 136 days
The price data of Ethereum can be traced back to 2015.08.07. And we split the price data of

Ethereum as follows:
(1) Training: from 2020.07.11 to 2022.07.02, 721 days
(2) Testing: from 2022.07.03 to 2022.11.07, 127 days

In both cases, price data prior to the training period is not considered during training or testing.
The data splitting is shown in Figure 11, where the data shaded in green is used for training, and

the data shaded in red is used for testing.

(a) For BTC price data

(b) For ETH price data

Fig. 11. The data splitting for training and testing

Report for CP3106: Independent Project

A Study of Cryptocurrency Investment with Dollar Cost Averaging 17

6 EMPIRICAL RESULTS
6.1 Training Results
As mentioned before, we train our Rainbow DQN agent for 100,000 steps, and the episode score
is shown as Figure 12. We do 3 experiments with different seeds, and the line in the figure is the
average of 3 experiments while the shade indicates the standard error. As is shown in the figure, in
both environments, the agent begins to converge after around 30,000 steps and reaches an average
episode score of around 7. And the volatility of the score in the BTC environment is larger than
that in the ETH environment, which could be due to the greater range of price fluctuations in BTC.

(a) Score changes in BTC environment (b) Score changes in ETH environment

Fig. 12. Episode score v.s. the timesteps. Curves are smoothed with a moving average of 10 points

6.2 Testing Results
Then we apply the trained models to the test data respectively, assuming that we start to invest on
the first day.

Test results on BTC: the best results on BTC is shown as Figure 13. The buying days selected
by our agent are marked with dots, where a red dot indicates a price below the average price of the
current cycle and a green dot indicates the opposite. Among 15 investments during the test period,
there are 12 times we buy with a price lower than the average price.
Starting on the first day and following our trained agent, the amount we end up earning after

15 cycles of investment, compared to always investing on the first or last day or investing at the
average price (hypothetically), is shown in Table 6.

Compared with Improvement

Buy on the first day 2.29%
Buy on the last day 2.92%
Buy on a random day 2.64%
Buy on average price 1.65%

Table 6. The performance of the trained agent on BTC test data

Then we use the test price data to generate a test environment, which will generate all the
possible episodes, i.e, all 9 consecutive days in the test period. We test our trained agent on all the

Report for CP3106: Independent Project

18 Shanmu Wang

Fig. 13. The performance of the trained agent on BTC test data

episodes, and for each episode, we compute the improvement compared with buying on the first
day, last day, random day, and buying with average price. The average of the improvements over
all the episodes is shown in Table 7.

Compared with Improvement

Buy on the first day 2.30%
Buy on the last day 2.25%
Buy on a random day 1.92%
Buy on average price 2.25%

Table 7. The average performance over all episodes on BTC test data

Test results on ETH: similarly, the best results on ETH are shown as Figure 14. Among 14
investments during the test period, there are 10 times we buy with a price lower than the average
price.

Fig. 14. The performance of the trained agent on ETH test data

Report for CP3106: Independent Project

A Study of Cryptocurrency Investment with Dollar Cost Averaging 19

Again, starting on the first day and following our trained agent, the amount we end up earning
after 14 cycles of investment, compared to always investing on the first or last day or investing at
the average price (hypothetically), is shown in the Table 8.

Compared with Improvement

Buy on the first day 1.16%
Buy on the last day 6.47%
Buy on a random day 2.98%
Buy on average price 2.83%

Table 8. The performance of the trained agent on ETH test data

Also, we use the ETH test price data to generate a test environment and test our trained agent
on all the episodes. The average of the improvements over all the episodes is shown in Table 9.

Compared with Improvement

Buy on the first day 1.22%
Buy on the last day 6.71%
Buy on a random day 3.89%
Buy on average price 4.71%

Table 9. The average performance over all episodes on ETH test data

Statistics show that our agents can earn over 2%-4% compared to investing at average prices,
which is a decent performance. In conclusion, by applying our agent to the test price data that it
had never seen before, we show that our Rainbow DQN agents have learned how to make profits
among the weekly or monthly fluctuations of the cryptocurrency market, and also the models have
generalization capability

6.3 Test with Different Investment Cycles
As mentioned in Section 4, our state is set as

𝑠𝑡 = [𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒, 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑖𝑐𝑒,𝑤𝑖𝑛𝑑𝑜𝑤 𝑝𝑟𝑖𝑐𝑒𝑠]
The remaining time is computed by (𝑇 − 𝑡)/𝑇 , where 𝑇 is the investment cycle and 𝑡 indicates
which day in this cycle. Since the remaining time is normalized by dividing 𝑇 , it is possible to
conduct some experiments to test our trained agent’s performance with different investment cycles.
Our agents are trained in the environment with the 𝑡𝑤𝑖𝑛𝑑𝑜𝑤 of 30 days and 𝑇𝑐𝑦𝑐𝑙𝑒 of 9 days. We

test our agents on the test price data, but with an investment cycle different from 9 days. Specifically,
the investment cycle ranges from 5 days to 14 days. The results are shown in Table 10. The statistics
show that even though the investment cycle is different from that during the training process, our
agents still earn more profits compared to investing at the average price of each cycle. However,
the performance of the agent does degrade when it is applied to a different investment cycle.
One possible reason for this degradation is that the possible values of the remaining time

are discrete and are determined as the cycle is determined. To explain it further, since the re-
maining time is computed by (𝑇 − 𝑡)/𝑇 , all the possible values during the training process is
[0.89, 0.78, 0.67, 0.56, 0.44, 0.33, 0.22, 0.11, 0] . However, the possible values of the remaining time

Report for CP3106: Independent Project

20 Shanmu Wang

change a lot even with a slight change of 𝑇 , which might account for the degradation of the
performance.

Test set Compared with 𝑇 = 9 𝑇 = 5 𝑇 = 6 𝑇 = 7 𝑇 = 8

BTC Test

Buying on first day 2.29% 1.09% 0.66% 1.46% 1.03%
Buying on last day 2.92% 0.77% 0.77% 0.74% 1.85%

Buying on random day 2.64% 0.95% 0.76% 0.74% 1.87%
Buying on average price 1.65% 1.10% 1.26% 0.90% 1.05%

ETH Test

Buying on first day 1.16% -0.55% -1.08% -0.48% -1.06%
Buying on last day 6.47% 1.72% 2.38% 1.76% 2.28%

Buying on random day 2.98% 0.62% -1.71% -0.70% 0.70%
Buying on average price 2.83% 0.90% 0.43% 0.41% 1.04%

Test set Compared with 𝑇 = 10 𝑇 = 11 𝑇 = 12 𝑇 = 13 𝑇 = 14

BTC Test

Buying on first day 1.77% 0.42% 0.60% 4.47% 1.90%
Buying on last day 1.45% 0.18% 0.64% 2.47% 1.37%

Buying on random day 4.84% 2.50% -0.97% 1.18% 0.20%
Buying on average price 2.42% 2.10% 1.06% 2.40% 0.38%

ETH Test

Buying on first day -2.33% -0.49% -0.34% -2.36% -0.58%
Buying on last day 2.47% 3.56% 4.94% 1.36% 3.68%

Buying on random day 2.00% 5.00% 4.13% 3.00% 3.36%
Buying on average price 1.62% 3.67% 3.85% 0.19% 1.35%

Table 10. Test agent with different investment cycles

6.4 Summary of Results
In this section, we have shown the effectiveness of reinforcement learning methods for solving
optimal stopping problems. To be more specific, we demonstrate that our method is able to help
investors to find a lower price to invest during each investment cycle when they are following the
dollar cost averaging strategy, and thus help them to grab more profits. Combined with our RL
method, DCA can be a strategy that can not only eliminate the timing risk but also improve the
probability of earning profits.

7 CONCLUSIONS
In this report, we have done back-testing experiments of cryptocurrency investment with the dollar
cost averaging method, demonstrating that this method has the ability to mitigate timing risk in
cryptocurrency markets. We formalized the problem of finding a day with a lower price to invest
as an optimal stopping problem and implemented a Rainbow DQN agent to solve this problem and
conduct experiments based on Bitcoin and Ethereum price data. We trained and tested the agent
on the historical price data, which shows a decent performance. We also tested the performance of
our trained agents under different investment cycles. The results also outperformed buying at the
average price of each cycle. This work will be implemented into Kreek, a startup by the research
group. The future work includes training the model based on other cryptocurrencies, training the
model with different investment cycles, and so on.

Report for CP3106: Independent Project

A Study of Cryptocurrency Investment with Dollar Cost Averaging 21

REFERENCES
[1] Marc G Bellemare, Will Dabney, and Rémi Munos. 2017. A distributional perspective on reinforcement learning. In

International Conference on Machine Learning. PMLR, 449–458.
[2] Michael J Brennan, Feifei Li, and Walter N Torous. 2005. Dollar cost averaging. Review of Finance 9, 4 (2005), 509–535.
[3] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech Zaremba.

2016. Openai gym. arXiv preprint arXiv:1606.01540 (2016).
[4] Coinmarketcap. 2022. Cryptocurrency Market Capitalizations | CoinMarketCap. https://coinmarketcap.com/
[5] Abderrahim Fathan and Erick Delage. 2021. Deep reinforcement learning for optimal stopping with application in

financial engineering. arXiv preprint arXiv:2105.08877 (2021).
[6] Thomas G Fischer. 2018. Reinforcement learning in financial markets-a survey. Technical Report. FAU Discussion

Papers in Economics.
[7] Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex Graves, Vlad Mnih, Remi

Munos, Demis Hassabis, Olivier Pietquin, et al. 2017. Noisy networks for exploration. arXiv preprint arXiv:1706.10295
(2017).

[8] Jake Frankenfield. 2022. Cryptocurrency. https://www.investopedia.com/terms/c/cryptocurrency.asp
[9] Calypso Herrera, Florian Krach, Pierre Ruyssen, and Josef Teichmann. 2021. Optimal stopping via randomized neural

networks. arXiv preprint arXiv:2104.13669 (2021).
[10] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan Horgan, Bilal

Piot, Mohammad Azar, and David Silver. 2018. Rainbow: Combining improvements in deep reinforcement learning. In
Thirty-second AAAI conference on artificial intelligence.

[11] Bitwise Investments. 2022. BITW | Bitwise 10 Crypto Index Fund. https://bitwiseinvestments.com/crypto-funds/bitw
[12] Anton Kajtazi and Andrea Moro. 2019. The role of bitcoin in well diversified portfolios: A comparative global study.

International Review of Financial Analysis 61 (2019), 143–157.
[13] Karyl B Leggio and Donald Lien. 2003. An empirical examination of the effectiveness of dollar-cost averaging using

downside risk performance measures. Journal of Economics and Finance 27, 2 (2003), 211–223.
[14] Weiyi Liu. 2019. Portfolio diversification across cryptocurrencies. Finance Research Letters 29 (2019), 200–205.
[15] Xiao-Yang Liu, Hongyang Yang, Jiechao Gao, and Christina Dan Wang. 2021. FinRL: Deep reinforcement learning

framework to automate trading in quantitative finance. In Proceedings of the Second ACM International Conference on
AI in Finance. 1–9.

[16] Igor Makarov and Antoinette Schoar. 2020. Trading and arbitrage in cryptocurrency markets. Journal of Financial
Economics 135, 2 (2020), 293–319.

[17] Katiuscia Mannaro, Andrea Pinna, and Michele Marchesi. 2017. Crypto-trading: Blockchain-oriented energy market.
In 2017 AEIT International Annual Conference. IEEE, 1–5.

[18] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves,
Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. 2015. Human-level control through deep reinforcement
learning. nature 518, 7540 (2015), 529–533.

[19] Ujan Mukhopadhyay, Anthony Skjellum, Oluwakemi Hambolu, Jon Oakley, Lu Yu, and Richard Brooks. 2016. A
brief survey of Cryptocurrency systems. In 2016 14th Annual Conference on Privacy, Security and Trust (PST). 745–752.
https://doi.org/10.1109/PST.2016.7906988

[20] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. 2015. Prioritized experience replay. arXiv preprint
arXiv:1511.05952 (2015).

[21] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An introduction. MIT press.
[22] Hado Van Hasselt, Arthur Guez, and David Silver. 2016. Deep reinforcement learning with double q-learning. In

Proceedings of the AAAI conference on artificial intelligence, Vol. 30.
[23] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas. 2016. Dueling network

architectures for deep reinforcement learning. In International conference on machine learning. PMLR, 1995–2003.

Report for CP3106: Independent Project

https://coinmarketcap.com/
https://www.investopedia.com/terms/c/cryptocurrency.asp
https://bitwiseinvestments.com/crypto-funds/bitw
https://doi.org/10.1109/PST.2016.7906988

22 Shanmu Wang

A BACK-TESTING RESULTS FOR MORE YEARS
Back-testing results for more years are shown as follows. These results show that Dollar Cost
Averaging (DCA) method is able to eliminate the timing risk in cryptocurrency investment and the
longer the investment period, the higher the chance of obtaining high returns.

(a) Overview

(b) Details around the baseline

Fig. 15. Back-testing for 2-year investment on different portfolios

Report for CP3106: Independent Project

A Study of Cryptocurrency Investment with Dollar Cost Averaging 23

(a) Overview

(b) Details around the baseline

Fig. 16. Back-testing for 3-year investment on different portfolios

Report for CP3106: Independent Project

24 Shanmu Wang

(a) Overview

(b) Details around the baseline

Fig. 17. Back-testing for 4-year investment on different portfolios

Report for CP3106: Independent Project

A Study of Cryptocurrency Investment with Dollar Cost Averaging 25

(a) Overview

(b) Details around the baseline

Fig. 18. Back-testing for 5-year investment on different portfolios

Report for CP3106: Independent Project

	Abstract
	1 Introduction
	2 Back-testing for Dollar Cost Averaging
	2.1 Simulation Methodology
	2.2 Simulation Setup
	2.3 Back-testing Results
	2.4 Further Improvement

	3 Optimal Stopping Problem and Reinforcement Learning Methods
	3.1 Problem Definition
	3.2 Reinforcement Learning: DQN and its variants

	4 Reinforcement Learning Environment
	4.1 Overview of the Environment
	4.2 State
	4.3 Reward

	5 Experiment Setup
	5.1 Hyperparameters
	5.2 Network Structure
	5.3 Data Splitting

	6 Empirical Results
	6.1 Training Results
	6.2 Testing Results
	6.3 Test with Different Investment Cycles
	6.4 Summary of Results

	7 Conclusions
	References
	A Back-testing Results for More Years

