
CP3106: A Study of Cryptocurrency Investment
with Dollar Cost Averaging
Reinforcement Learning for Optimal Stopping Problem

Wang Shanmu, Supervised by Professor He Bingsheng

Department of Computer Science, National University of Singapore



Table of contents

1. Introduction

2. Back-testing for Dollar Cost Averaging

3. Optimal Stopping Problem and Reinforcement Learning Methods

4. Environment for Reinforcement Learning

5. Experiment Setup

6. Empirical Results

7. Conclusion

1



Introduction



Cryptocurrency: Overview

A CRYPTOCURRENCY is a digital or virtual currency that is secured by
cryptography.

Technology
• Blockchain
• Digital Signature
• Smart Contract
• …

Feature
• Trade Anytime
• Trade Anywhere
• Rapid Growth
• …

CP3106: Research Project 2



Cryptocurrency: Rapid Growth

The rapid growth of the cryptocurrency market cap has attracted a
lot of financial institutions as well as individual investors

M
a

rk
e

t 
C

a
p

2
4

h
 V

o
l

2017 2018 2019 2020 2021 2022

2018 2020 2022

$0

$1 T

$2 T

$3 T

0

Market Cap 24h Vol

201820182018 20202020 2022

Figure 1: The total cryptocurrency market cap [3]

CP3106: Research Project 3



Cryptocurrency: Drastic Fluctuations

Cryptocurrencies are considered more volatile than stocks

Figure 2: The price change of BTC during Oct. 2022 [3]

Greater money-earning opportunities, but also more risks!

CP3106: Research Project 4



Dollar Cost Averaging

Dollar Cost Averaging (DCA) requires an investor to invest the same
amount of money at regular intervals, typically weekly, monthly or
quarterly, which has the potential to mitigate timing risk.

CP3106: Research Project 5



Dollar Cost Averaging: Further Improvement

• If the investor can invest on the day with the lowest price during
each investment interval, they can end up with more shares at
the end and are likely to make more profits

• In practice, an investor can see the current price and previous
prices and decide whether to invest today

• This sequentially decision making can be formulated as an
Optimal Stopping question

• We can apply Reinforcement Learning (RL) methods in such a
dynamic decision-making process.

CP3106: Research Project 6



Dollar Cost Averaging: Further Improvement

• If the investor can invest on the day with the lowest price during
each investment interval, they can end up with more shares at
the end and are likely to make more profits

• In practice, an investor can see the current price and previous
prices and decide whether to invest today

• This sequentially decision making can be formulated as an
Optimal Stopping question

• We can apply Reinforcement Learning (RL) methods in such a
dynamic decision-making process.

CP3106: Research Project 6



Dollar Cost Averaging: Further Improvement

• If the investor can invest on the day with the lowest price during
each investment interval, they can end up with more shares at
the end and are likely to make more profits

• In practice, an investor can see the current price and previous
prices and decide whether to invest today

• This sequentially decision making can be formulated as an
Optimal Stopping question

• We can apply Reinforcement Learning (RL) methods in such a
dynamic decision-making process.

CP3106: Research Project 6



Dollar Cost Averaging: Further Improvement

• If the investor can invest on the day with the lowest price during
each investment interval, they can end up with more shares at
the end and are likely to make more profits

• In practice, an investor can see the current price and previous
prices and decide whether to invest today

• This sequentially decision making can be formulated as an
Optimal Stopping question

• We can apply Reinforcement Learning (RL) methods in such a
dynamic decision-making process.

CP3106: Research Project 6



Presentation Structure

The remainder of this presentation is organized as follows:

1. show the back-testing results on cryptocurrency with DCA
2. formalize the optimal stopping problem and introduce the
reinforcement learning algorithms

3. show how we build up the RL environment for experiments and
elaborate the experiment setup

4. give the empirical results and conclusions

CP3106: Research Project 7



Back-testing for Dollar Cost
Averaging



Back-testing for DCA: Portfolios for Cryptocurrencies

To demonstrate the benefits of Dollar Cost Averaging, we back-tested
DCA method on different cryptocurrencies and investment portfolios:

• Bitcoin (BTC): Simply invests in Bitcoin
• Ethereum (ETH): Simply invests in Ethereum
• Bitwise 10 Crypto Index Fund (Index-10) [1]: tracks an index of
the 10 largest crypto assets and weights the assets by market
capitalization

• Max-Ratio: Similar to Index-10, but sets a limitation of 20% to
the weight of each cryptocurrency.

CP3106: Research Project 8



Back-testing Toolkit

ShowEffectiveness generates the starting date list and then passes
each date in this list, as well as the year and the interval, to the
strategy function

AtomStrategy and IndexStrategy will simulate investing in an Interval
from the StartDate for Year, and output the Return / Investment
Ratio at the end.

Function Desicrition

ShowEffectiveness
Generate the starting date list and
call the strategy function

AtomStrategy The strategy of buying a single cryptocurrency

IndexStrategy
The strategy of buying multiple crypto-
currencies based on market capitalization

CP3106: Research Project 9



Back-testing for DCA: Violin Plots

Investments with a starting date after August 2018: The longer the
investment, the higher the probability of earning more

Figure 3: Distribution of the Return / Investment for different years

CP3106: Research Project 10



Back-testing for DCA: Statistics

Larger than 100% 150% 200% 250% 300%
Year 1 BTC 76.4% 41.3% 18.2% 13.1% 11.1%

ETH 78.5% 48.3% 39.8% 32.2% 24.4%
Index-10 75.2% 38.4% 24.5% 14.3% 11.1%
Max-Ratio 63.5% 35.2% 26.9% 16.0% 11.4%

Year 2 BTC 93.4% 88.6% 71.5% 56.8% 44.7%
ETH 100% 93.4% 88.5% 74.9% 70.8%

Index-10 93.0% 84.0% 71.9% 56.6% 50.1%
Max-Ratio 93.2% 74.7% 67.1% 52.7% 47.9%

Year 3 BTC 100% 88.5% 81.4% 77.3% 69.9%
ETH 100% 100% 100% 100% 91.8%

Index-10 100% 90.1% 85.2% 77.5% 73.2%
Max-Ratio 100% 87.7% 78.1% 78.1% 68.5%

CP3106: Research Project 11



Back-testing for DCA: Summary

Our back-testing results have shown that:

• Dollar Cost Averaging strategy has the ability to mitigate timing
risk, making it a suitable strategy for cryptocurrency

• To further eliminate the risk, one can also choose to start the
round at different times of a year to average risk or simply
extend the investment

Further Improvement:

• Recall: we want to develop an agent that is able to choose a day
with a lower price during each investment cycle and purchase
the crypto asset on that day

CP3106: Research Project 12



Optimal Stopping Problem and
Reinforcement Learning Methods



Optimal Stopping: Definition

The optimal stopping problem consists in finding the optimal time to
stop in order to maximize an expected reward. In this work, we adopt
the following notations:

• At : the set of possible actions at time t
• S : the set of all possible states
• T : the horizon of the problem, i.e., the investment cycle in our
scenario

• st : the state at time t
• π : a policy map S to A,π : S→ A, i.e., π(st) = at
• s0:T : a trajectory [s0, . . . , sT]
• Ut : the payout received when stopping at time t after observing
s0:t

CP3106: Research Project 13



Cont’d

Specifically, At := {hold,buy} for t < T, and AT := {buy}. The
stopping time with policy π is defined as:

τπ = min{t ∈ [0, . . . , T] s.t. π(st) = stop}

An optimal policy π∗ should be able to do the following decisions:

π∗ (st) =
{

buy if E [Ut | s0:t] ≥ E
[
Uτ t+1π

| s0:t
]

hold otherwise

, where τ tπ = min{t′ ∈ [t, . . . , T, s.t, π(st′) = buy}.

In a word, if the payoff of stopping at current time is greater than the
maximum payoff after current day, π∗ (st) = buy, otherwise
π∗ (st) = hold.

CP3106: Research Project 14



Optimal Stopping: A RL Perspective

The sequential decision making problem can be seen as an analogy
of a standard reinforcement learning notation:

Q(s,a) =
{

r(s, buy ), if a = buy
r(s, hold ) + γE [max (Q (s′, buy ) ,Q (s′, hold ))] , otherwise

In this notation, Q(s,a) refers to the Quality of action a under state s,
r(s,a) refers to the reward by taking action a under state s, s′ is the
next state, and γ is the discounted factor.

A policy for such an optimal stopping problem is to choose the
action depending on which action has a higher Q-value.

CP3106: Research Project 15



Reinforcement Learning: Basic Idea

Reinforcement Learning is a branch of machine learning.

The basic idea of reinforcement learning is an agent learning to take
action in the environment to maximize a reward signal by the
feedback from the environment.

At each discrete time step t, the agent observe the state st provided
by the environment, and do the action at based on its strategy, and
then the environment provides the reward rt for this action and next
state st+1.

CP3106: Research Project 16



Reinforcement Learning: Deep Q-Learning

Deep Q-learning uses a neural network to approximate the action
values for a given state s, i.e, Q(st,a) = NN(st; θ).

ϵ-greedily: At each step, the agent choose a random action with
probability ϵ; otherwise select at = argmaxa Q (st,a; θ)

Replay Buffer: after an action, adds a transition (st,at, rt, st+1,donet)
to a replay buffer, where donet indicates whether current episode
ends.

TD (temporal difference) loss: δt(θ) =
[
(yt − Q (st,at; θ))2

]
, where

yj =
{

rt if donet
rt + γmaxa′ Q̄

(
st+1,a′; θ̄

)
otherwise.

At each step, we sample a mini-batches uniformly from the replay
buffer. The parameters θ of the neural network are optimized by
using gradient descent to minimize the loss.

CP3106: Research Project 17



Workflow of the Basic DQN

…

…

.

1.034 =

.

2.103 ( , , , )

…

.

4.230 =

= =

, , , , ;

=

………

Note: The rewards from the episode can be summed up to get a
score of this episode, which can be used as an important indicator of
the agent’s training process.

CP3106: Research Project 18



Extensions to DQN:

However, there are some problems with the basic DQN algorithm,
including overestimation, long training time and so on.

Actually, many researchers have proposed a lot of improvements to
the DQN algorithm:

• Double Q-learning
• Prioritized replay
• Dueling networks
• Multi-step learning
• Distributional RL
• Noisy Nets
• …

CP3106: Research Project 19



Extensions to DQN: Double DQN

Problem with the original DQN: Overestimation.

In the basic DQN, we do the action selection and evaluation basically
with the same network!

Example: consider a single state s where the true Q value for all
actions equal 0, but the estimated Q values are distributed some
above and below zero. Taking the maximum of these estimates
(which is obviously bigger than zero) to update the Q function leads
to the overestimation of Q values.

CP3106: Research Project 20



Extensions to DQN: Double DQN

Problem with the original DQN: Overestimation.

In the basic DQN, we do the action selection and evaluation basically
with the same network!

Double DQN [8] uses the second set of weights θ′ to fairly evaluate
the value of the action selected with the network of weights θ.

• This second set of weights can be updated symmetrically by
switching the roles of θ and θ′

• It is like 2 function approximators aggregating on each other’s
choice of best action

CP3106: Research Project 21



Extensions to DQN: Prioritized Replay

Basic DQN samples mini-batch uniformly from the replay buffer, but
some experiences are more important

Prioritized Replay [6] gives more priority to important experiences
based on TD error |δi|, so that the algorithm can sample more
frequently those transitions that are much to learn

To be more specific:

• the priority of transition i: pi = |δi|+ ϵ

• the probability of sampling transition i as:

P(i) =
pαi∑
k pαk

,

• importance-sampling (IS) weights:

wi =
( 1
N · 1

P(i)
)β

CP3106: Research Project 22



Extensions to DQN: Dueling networks

Dueling networks [9] explicitly separates the representation of state
values and action advantages

We want to know that is the high Q value due to this action itself, or
is it because any action in this state has a high Q value

CP3106: Research Project 23



Extensions to DQN: Multi-step Learning

Multi-step learning [7] proposed to use n-step return rather than
using 1-step return to calculate Q values

so that the target value does not rely on just the current reward and
can be more accurate.

Define the truncated n-step return from a given state st as

r(n)t ≡
n−1∑
k=0

γ
(k)
t rt+k+1.

A multi-step variant of DQN is then defined by minimizing the
alternative loss:(

r(n)t + γ
(n)
t max

a′
Q
(
st+n,a′; θ̄

)
− Q (st,at; θ)

)2

CP3106: Research Project 24



Extensions to DQN: Distributional RL

Distributional RL [2] introduced to learn to approximate the
distribution of returns instead of the expected return.

Given policy π, the return is a random variable Z. We can model the
value distribution using a set of atoms:

{zi = VMIN + i△z : 0 ≤ i < N},△z := VMAX−VMIN
N−1

CP3106: Research Project 25



Extensions to DQN: Distributional RL

A softmax is applied independently for each action dimension of the
output so that the output pi is the probability of zi.

To estimate Q-values, we can use inner product of each action’s
softmax distribution and the set of atoms {zi}:

Q(st,at) =
∑
i

zipi(st,at),

CP3106: Research Project 26



Extensions to DQN: Noisy Net

Noisy Nets [4] were introduced to add noise to the network
parameters so that it explores more.

A normal linear layer of a neural network is represented by
y = wx+ b, where x ∈ Rp is the layer input, w ∈ Rq×p, and b ∈ R the
bias. Then the corresponding noisy linear layer is defined as:

y = (µw + σw ⊙ ϵw)x+ µb + σb ⊙ ϵb,

where µw + σw ⊙ ϵw and µb + σb ⊙ ϵb replace w and b

The parameters µw, µb, σw and σb are learnable, whereas ϵw and ϵb

are noise random variables.

Over time, the network learns to ignore the noisy stream at different
rates in different parts of the state space, allowing state-conditional
exploration

CP3106: Research Project 27



Combination of the extensions: Rainbow DQN

The Rainbow DQN [5] makes a combination of the aforementioned
extensions and provides very good performance in many missions.

In our project, we add all of these
extensions to the basic DQN:
• Network Structure: Dueling +
Distributional + Noisy layer

• Training: Double DQN
• Use Prioritized replay buffer
• Use multi-step learning

CP3106: Research Project 28



Environment for Reinforcement
Learning



State

We adopt a price-based state with the form of:

st = [remaining time, relative price,window prices]

On day t, we obtain the state st as follows:

1. remaining time: (T− t)/T, where T is the investment cycle and t
indicates which day are we in this cycle.

2. relative value: we first select the price on the day before the
start of the current investment cycle as reference price pr, and
then obtain today’s price pt. The relative value:

relative price = sigmoid(pt − pr)

3. window price: window price is a list of price data for the
previous twindow days from today. And a Max-Min normalization is
applied so that the price data should range from 0 to 1.

CP3106: Research Project 29



Reward

We want to reward our agent if it can get a low price to invest or hold
our money when faced with high price, and punish the agent if it do
the opposite

Our reward scheme is based on the logit function f(x) = ln x
1−x , which

is actually the inverse of sigmoid function.

CP3106: Research Project 30



Reward

In our scenario, the reward scheme is as follows:

1. Get the prices of the current investment cycle, and normalize
the prices to 0 to 1. Let pi be the normalized price of i− th day.

2. If the agent decide to buy on the i− th day or i equals to
investment cycle T, we calculate the reward through:

ri = −f(pi)

3. If the agent decide to hold on the i− th day, we calculate the
reward through:

ri = 0.5f(pi)

, where 0.5 is to prevent dilution of the final reward

CP3106: Research Project 31



Reward

Hold: r = 0.5f(p)

Buy: r = −f(p)

CP3106: Research Project 32



Experiment Setup



Hyperparameters

Hyperparameters Value
Environment Parameters twindow 30

Tcycle 9
Basic Parameters learning rate 5× 10−4

memory size 10000
batch size 128

target update step U 100
discounted factor γ 0.95

Prioritized Experience Replay α 0.2
β 0.6
ϵ 1× 10−6

Distributional RL VMIN 0
VMAX 20

atom size 51
N-step Learning n step 3

CP3106: Research Project 33



Network Structure

The state input is a (1× twindows + 2), i.e, 1× 32 vector

The output of the value stream is a 1× 51 vector

The output of the advantage stream is a 1× 102 vector

CP3106: Research Project 34



Data Splitting

Cryptocurrencies have a short history of being widely traded, so that
there is a limitation to our data!

we traced back 3472 days of Bitcoin’s price from 2013.05.06 to
2022.11.07 and 2649 days of Ethereum’s price from 2015.08.07 to
2022.11.07.

However, early price changes are too old to be a good reference and
even might harm the training if involved

so those early price data are discarded. The rest of the data is split
into training and test data at a ratio of 0.85 to 0.15

CP3106: Research Project 35



Data Splitting for BTC

We split the price data of Bitcoin as follows:

1. Training: from 2020.05.09 to 2022.06.23, 775 days
2. Testing: from 2022.06.24 to 2022.11.07, 136 days

CP3106: Research Project 36



Data Splitting for ETH

Similarly, we split the price data of Ethereum as follows:

1. Training: from 2020.07.11 to 2022.07.02, 721 days
2. Testing: from 2022.07.03 to 2022.11.07, 127 days

CP3106: Research Project 37



Empirical Results



Training Results

We train our Rainbow DQN agent for 100,000 steps. Curves are
smoothed with a moving average over 10 points

The volatility of score in BTC is larger than that in ETH environment,
which could be due to the greater range of price fluctuations in BTC.

CP3106: Research Project 38



Testing Results: on BTC

Assume starting to invest on the first day of the test period.

Among 15 investments during the test period, there are 12 times we
buy with a price lower than the average price.

CP3106: Research Project 39



Testing Results: on BTC

Starting on the first day and following our trained agent, the amount
we end up earning after 15 cycles of investment, compared to always
investing on the first or last day or investing at the average price
(hypothetically):

Compared with Improvement

Buy on first day 2.29%
Buy on last day 2.92%

Buy on random day 2.64%
Buy on average price 1.65%

CP3106: Research Project 40



Testing Results: on BTC

We then generate all the possible episodes in test period, i.e, all 9
consecutive days in the test period.

For each episode, we compute the improvement of our agent
compared with buying on first day, last day, random day, and buy
with average price. The average of the improvements over all the
episodes:

Compared with Improvement

Buy on first day 2.30%
Buy on last day 2.25%

Buy on random day 1.92%
Buy on average price 2.25%

CP3106: Research Project 41



Testing Results: on ETH

On the test data of ETH, among 14 investments, there are 10 times we
buy with a price lower than the average price.

CP3106: Research Project 42



Testing Results: on ETH

Starting on the first day
and following our trained
agent, the amount we end
up earning after 14 cycles
of investment, compared
with:

The average of the
improvements over all the
possible episodes in test
period:

Compared with Improvement

Buy on first day 1.16%
Buy on last day 6.47%

Buy on random day 2.98%
Buy on average price 2.83%

Compared with Improvement

Buy on first day 1.22%
Buy on last day 6.71%

Buy on random day 3.89%
Buy on average price 4.71%

CP3106: Research Project 43



Testing with Different Investment Cycles

Recall: The remaining time is normalized, so it should be possible to
conduct some experiments to test our trained agent’s performance
with different investment cycles.

Test set Compared with T = 9 T = 5 T = 6 T = 7 T = 8
BTC Test Buying on first day 2.29% 1.09% 0.66% 1.46% 1.03%

Buying on last day 2.92% 0.77% 0.77% 0.74% 1.85%
Buying on random day 2.64% 0.95% 0.76% 0.74% 1.87%
Buying on average price 1.65% 1.10% 1.26% 0.90% 1.05%

ETH Test Buying on first day 1.16% -0.55% -1.08% -0.48% -1.06%
Buying on last day 6.47% 1.72% 2.38% 1.76% 2.28%

Buying on random day 2.98% 0.62% -1.71% -0.70% 0.70%
Buying on average price 2.83% 0.90% 0.43% 0.41% 1.04%

CP3106: Research Project 44



Cont’d

Test set Compared with T = 10 T = 11 T = 12 T = 13 T = 14
BTC Test Buying on first day 1.77% 0.42% 0.60% 4.47% 1.90%

Buying on last day 1.45% 0.18% 0.64% 2.47% 1.37%
Buying on random day 4.84% 2.50% -0.97% 1.18% 0.20%
Buying on average price 2.42% 2.10% 1.06% 2.40% 0.38%

ETH Test Buying on first day -2.33% -0.49% -0.34% -2.36% -0.58%
Buying on last day 2.47% 3.56% 4.94% 1.36% 3.68%

Buying on random day 2.00% 5.00% 4.13% 3.00% 3.36%
Buying on average price 1.62% 3.67% 3.85% 0.19% 1.35%

Although the performance is not as good as the performance when
T = 9, our agents still earn more profits compared with investing at
the average price of each cycle on average.

CP3106: Research Project 45



Summary of the Testing Results

• We have shown the effectiveness of reinforcement learning
methods for solving optimal stopping problems

• We demonstrate that our method is able to help investors to
find a lower price to invest during each investment cycle when
they are following the dollar cost averaging strategy, and thus
help them to grab more profits

• Combined with our RL method, DCA can be a strategy that can
not only eliminate the timing risk but also has a higher
probability of earning profits

CP3106: Research Project 46



Conclusion



Summary

1. In this project, we have done back-testing experiments of
cryptocurrency investment with the dollar cost averaging
method, demonstrating that this method has the ability to
mitigate timing risk in cryptocurrency markets

2. We formalized the problem of finding a day with a lower price to
invest as an optimal stopping problem and implemented a
Rainbow DQN agent to solve this problem and conduct
experiments based on Bitcoin and Ethereum price data

3. We trained and tested the agent on the historical price data, and
tested the performance of our trained agents under different
investment cycles, each of which shows a decent performance

4. This work will be implemented into Kreek, a startup by our
research group

CP3106: Research Project 47



Thank You for Listening!
Any Questions?

CP3106: Research Project 48



Bitw | bitwise 10 crypto index fund.

M. G. Bellemare, W. Dabney, and R. Munos.
A distributional perspective on reinforcement learning.
In International Conference on Machine Learning, pages 449–458.
PMLR, 2017.
Coinmarketcap.
Cryptocurrency market capitalizations | coinmarketcap, 2022.
M. Fortunato, M. G. Azar, B. Piot, J. Menick, I. Osband, A. Graves,
V. Mnih, R. Munos, D. Hassabis, O. Pietquin, et al.
Noisy networks for exploration.
arXiv preprint arXiv:1706.10295, 2017.

M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski,
W. Dabney, D. Horgan, B. Piot, M. Azar, and D. Silver.
Rainbow: Combining improvements in deep reinforcement
learning.
In Thirty-second AAAI conference on artificial intelligence, 2018.

CP3106: Research Project 48



T. Schaul, J. Quan, I. Antonoglou, and D. Silver.
Prioritized experience replay.
arXiv preprint arXiv:1511.05952, 2015.

R. S. Sutton and A. G. Barto.
Reinforcement learning: An introduction.
MIT press, 2018.

H. Van Hasselt, A. Guez, and D. Silver.
Deep reinforcement learning with double q-learning.
In Proceedings of the AAAI conference on artificial intelligence,
volume 30, 2016.
Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and
N. Freitas.
Dueling network architectures for deep reinforcement learning.
In International conference on machine learning, pages
1995–2003. PMLR, 2016.

CP3106: Research Project 48


	Introduction
	Back-testing for Dollar Cost Averaging
	Optimal Stopping Problem and Reinforcement Learning Methods
	Environment for Reinforcement Learning
	Experiment Setup
	Empirical Results
	Conclusion

