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Deterministic Communication

This lecture is a short and general introduction to communication complexity theory. It
focuses on basic terms and definitions to be used and built upon throughout the course.
We start with several examples of two-party communication protocols to illustrate the
problems to be solved in this course and communication theory in general. Protocols are
then defined in two ways: first formally, and then in a way meant to clarify the concept
pictorially. Finally, the rectangle property is defined and illustrated through a proof.

1.1 Protocol Examples

In the two-party setting of deterministic communication [1], information from two parts in
the system is necessary to complete the computation of a function f: X xY — Z. We refer
to the two parties as Alice and Bob (see Figure 1.1). Alice and Bob each have a portion of
the input: Alice has z € X, and Bob has y € Y. Alice has no knowledge of y, and Bob has
no knowledge of x. When determining the cost of computing f in this model, we ignore the
computational costs incurred by Alice and Bob individually; we only care about the total
number of bits exchanged between them.
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FIGURE 1.1: The two-party model of deterministic communication. Alice (labeled “A” in
the figure) has part X of the input needed to compute f, and Bob (labeled “B”) has part Y
of the input.

ExaMPLE 1.1. Determining the equality of two parties’ strings.

EQ, : {0,1}" x {0,1}" — {0, 1}



|1 ifrx=y
EQn(,y) = { 0 otherwise

Solution: Alice sends z to Bob.
Cost: n+ 1 bits where the n is Alice’s string of n bits, and “+1” is Bob’s response.

ExaMPLE 1.2. Determining the parity of two parties’ strings.

n

PARITY (z,y) = P (@ & ;)

i=1

1 YT (zi+y) =1 (mod 2)
1 0 otherwise

Possible Solution: Alice sends = to Bob. This is expensive!

Solution: Alice sends @), z;

Cost: 2 bits

Why is this correct? Because @, (z; ® vi) = (D, z:) DD}, vi)-

EXAMPLE 1.3. Determining the average of two parties’ sets.
AVG,(S,T) where S,T C {1,2,3,...,n}

Solution: Alice sends ) s a,|S|, Bob responds with ), ... b, |[T'.
Cost: O(logn).

EXAMPLE 1.4. Determining the median of two parties’ sets.
MED,(S,T) where S,T C {1,2,3,...,n} are multisets

This example will illustrate interaction, which plays a crucial role in communication

theory.
Cost: O(log®n).
Idea: Use binary search to determine the median.

1. Start with a set {1, 2, ..., n}
2. Pick a midpoint, 5

3. Alice and Bob tell each other how many numbers in their collections are larger and
smaller than the selected midpoint

4. Recursion on appropriate half or range

1.2 Defining Protocols
DEFINITION 1.5. A communication protocol is formally defined by three functions:
1. NEXT : {0,1}* — {A,B, L}

e The NEXT function makes it clear which party has the next turn

e The NEXT function does not depend on Alice’s input or Bob’s input, just the
transmission history
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2. ALICE : {0,1}* x X — {0,1}

e By X, we mean Alice’s part in the function f: X x Y — {0,1}

3. BOB:{0,1}* xY — {0,1}

e By Y, we mean Bob’s part in the function f: X x Y — {0,1}

This formal definition of protocols is very abstract. An easier definition to work with uses

trees:

DEFINITION 1.6. A protocol P over domain X X Y with range Z is a binary tree where
each internal node v is labeled either by a function a, : X — {0,1} or by a function
by, : Y — {0,1}, and each leaf is labeled with an element z € Z.

The value of the protocol P on input (x,y) is the label of the leaf reached by starting from
the root, and walking on the tree. At each internal node v labeled by a, walking left if
ay(x) = 0 and right if a,(x) = 1, and at each internal node labeled by b, walking left if
by(y) = 0 and right if b,(y) = 1. The cost of the protocol P on input (xz,y) is the length of

the path taken on input (x,y). The cost of the

protocol P is the height of the tree. [1]

See Figures 1.2 and 1.3 for two example protocol trees.

FIGURE 1.2: An example of a tree represen-
tation of a communication protocol. The su-
perscripts of the X and Y arrow labels refer
to the selection made at the node from which
the arrow originates. The subscripts refer to
a distinct numbering of the nodes. The exam-
ple NEXT function {0, 1, 1, ...} is marked
in red.
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FIGURE 1.3: Another example of a tree repre-
sentation of a communication protocol. In this
version, the subscript of the X and Y arrow
labels refers to the path taken so far, defined
by the choices made at each node.
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FIGURE 1.4: Rectangle property illustrated. (a) If the set contains (z,y) and (2/,y’), the
set must contain (2',y) and (z,y’). (b) A set with gaps may have the rectangle property.

1.3 Rectangles

According to [1], “The success in proving good lower bounds on the communication com-
plexity of various functions comes from the combinatorial view we take on protocols.” This
view of protocols allows us to partition the space of possible input pairs X x Y into sets
such that the same communication is sent for all pairs in the same set during the execution
of a given protocol. The parts into which the input space is split are called rectangles.

DEFINITION 1.7. Let f: X xY — {0, 1} be the given communication problem. A rectangle
(a.k.a. a combinatorial rectangle) is a set S C X X Y of the form S = A x B, A C X,
BCY.

The following rectangle property is crucial in the study of communication.

THEOREM 1.8. A set S C X XY 1is a rectangle if and only if S has the following property
(called the rectangle property ):

(z,y) €8, (a",y) € S = (z,¢) € S, (2, y) € S.

That is, if two points (x,y) and (z',y") are in S, then (z,y') and (z',y) are also in S. See
Figure 1.4.

Proof. The forward implication is trivial: a rectangle has the rectangle property by defini-
tion. We now consider the reverse implication; see Figure 1.5. Define the projection of S
onto X by

A ={a € X : such that (a,b) € S for some b€ Y}

and the projection of S onto Y by
B ={beY : such that (a,b) € S for some a € X}

We will show S = A x B. Indeed, take any a € A and b € B. Then by definition, (a,b’) € S
for some b’ € Y and (a’,b) € S for some o’ € X. By the rectangle property of S, we have
(a,b) € S and (a/,b') € S. In summary, (a,b) € S whenever ¢ € A and b € B. Thus,
S D A x B. Since S C A x B for trivial reasons, we have S = A x B as claimed. I
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FIGURE 1.5: Rectangle property proof. The bold lines represent A (the projection of S
onto X) and B (the projection of S onto Y'). The irregular shape is S C A x B that has
the rectangle property.
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