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LECTURE

3

Matrix Rank in Communication Complexity

This lecture focuses on proving communication lower bounds using matrix rank. Similar to
fooling sets and rectangle size bounds, the matrix rank technique also gives a lower bound
on the number of monochromatic rectangles in any partition of X × Y but it does so in
an algebraic way[1]. This makes algebraic tools available for proving communication lower
bounds. We begin by solving the problem about matrix rank from last lecture. We then
present the rank technique and reprove tight lower bounds on the communication com-
plexity of equality, greater-than, disjointness, and inner product. Finally, we look into the
comparative strength of fooling sets, rectangle size bounds, and matrix rank as techniques
for proving communication lower bounds.

3.1 Rank of Boolean Matrix over Different Fields

Claim 3.1. Given fields K ⊃ F and a matrix M ∈ Fm×n, one has rank F(M) = rank K(M).

Proof. Since rows linearly dependent over F remain linearly dependent over K, we have
rankK(M) ≤ rankF(M). For the other direction, consider the matrix M ′ (shown in Fig-
ure 3.1) in row echelon form obtained by performing elementary row and column operations
over F on M.
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Figure 3.1: The matrix M ′.

It is clear that rankK(M ′) = rankK(M), and rankF(M ′) = rankF(M). But rankF(M ′) =
rankK(M ′) = k, so rankF(M) = rankK(M).



We can now show that the rank of a Boolean matrix over the reals is at least as large as
its rank of any other field.

Lemma 3.2. Given a matrix M ∈ {0, 1}m×n, rank R(M) ≥ rank F(M) for any field F.

In Remark 3.8 below, we will see a Boolean matrix with an exponential gap between its
rank over the reals and over F =GF(2).

Proof of the lemma. By Claim 3.1, rankQ(M) = rankR(M). It remains to show that if rows
v1, · · · , vk are linearly dependent over Q, they are also linearly dependent over F.

Let
∑k

i=1 λivi = 0 be a linear dependence, where λ1, · · · , λk ∈ Q are not all zero. W.l.o.g,

λ1, · · · , λk ∈ Z and gcd(λ1, · · · , λk) = 1. Then
∑k

i=1 λivi = 0 also holds over F, where we
identify λi ∈ Z with the field element 1 + 1 + · · · + 1 ∈ F (λi times). It remains to show
that λ1, . . . , λk are not all zero as elements of F. If F has characteristic of 0, then this is
immediate. For fields of nonzero characteristic, λ1 = · · · = λk = 0 means that λ1, · · · , λk are
all integer multiples of ch F , which contradicts the assumption that gcd(λ1, · · · , λk) = 1.

3.2 Rank Lower Bound

Theorem 3.3 (Mehlhorn and Schmidt [2]). For any function f : X×Y → {0, 1}, D(f) ≥
log2(2rank F(Mf )− 1) over any field F.

Proof. Fix a partition X × Y =
⋃2c

i=1Ri, where c = D(f). Let R0 and R1 be the sets
of all 0-monochromatic rectangles and 1-monochromatic rectangles, respectively, among
R1, R2, . . . , R2c . For a rectangle R, define

MR(x, y) =

{
1 if (x, y) ∈ R;
0 otherwise.

Then,

Mf =
∑

R∈R1

MR, Mnot(f) =
∑

R∈R0

MR. (3.1)

By the properties of the rank, we have

rankF(Mf ) ≤
∑

R∈R1

rankF(MR), rankF(Mnot(f)) ≤
∑

R∈R0

rankF(MR). (3.2)

The rank of each MR is at most 1 over F, so rankF(Mf ) ≤ |R1| and rankF(Mnot(f)) ≤ |R0|.
Adding the two inequalities, we have

rankF(Mf ) + rankF(Mnot(f)) ≤ |R1|+ |R0| = 2c. (3.3)

Observe that the ranks of Mf and Mnot(f) differ by at most 1, since Mnot(f) = J−Mf where
J is the all-ones matrix (whose rank is 1 over F). Therefore, we have 2c ≥ 2rankF(Mf )− 1,
or equivalently D(f) ≥ log2(2rankF(Mf )− 1) for any field F.

In previous lectures, we proved (using fooling sets and rectangle size bounds) that the
deterministic communication complexity of each of the functions EQn, GTn, DISJn, and
IPn is n+ 1. We now reprove these facts using the rank technique.
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Example 3.4. The communication complexity of the equality function EQn : {0, 1}n ×
{0, 1}n → {0, 1} is n + 1. Indeed, MEQn

= I2n , the identity matrix of order 2n, and thus

rank(MEQn
) = 2n and D(EQn) ≥ dlog2(2 · 2n − 1)e = n+ 1.

Example 3.5. The communication complexity of the greater-than function GTn : {0, 1}n×
{0, 1}n → {0, 1} is n+1. To see this, note that the characteristic matrix MGTn

is a 2n×2n

lower-triangular matrix, thus rank(MGTn
) = 2n, and D(GTn) ≥ dlog2(2 · 2n − 1)e = n+ 1.

Example 3.6. We now show that the communication complexity of the disjointness function
DISJn : {0, 1}n × {0, 1}n → {0, 1} is n+ 1. It can be proved by induction that

MDISJ1
=

(
1 1
1 0

)
, MDISJn

=

(
1 1
1 0

)⊗n
where ⊗ is the tensor product defined as

A⊗B =

 A11B · · · A1nB
...

. . .
...

An1B · · · AnnB


where n is the order of A. By the property of the tensor product, we have rank(A ⊗ B) =
rank(A) · rank(B) and thus rank(MDISJn

) = (rank(MDISJ1
))n = 2n. As a result,

D(DISJn) ≥ dlog2(2 · 2n − 1)e = n+ 1.

Example 3.7. We now prove that the communication complexity of the inner product
function IPn : {0, 1}n × {0, 1}n → {0, 1} is n + 1. Define ĨPn(x, y) = (−1)〈x,y〉. Then we
have

M
ĨP1

=

(
1 1
1 −1

)
, M

ĨPn

=

(
1 1
1 −1

)⊗n
by induction. In particular, M

ĨPn

has full rank. Since M
ĨPn

= 2MIPn
− J , where J is

the all-ones matrix, we have rank(MIPn
) ≥ rank(M

ĨPn

) − 1 = 2n − 1. Thus D(IPn) ≥
dlog2(2 · (2n − 1)− 1)e = n+ 1.

Remark 3.8. Although MIPn
has almost full rank over R, its rank is at most n over GF(2).

Inded, letting 〈x, y〉 denote the inner product over GF(2),

MIPn
= [〈x, y〉]x,y∈{0,1}n =

[
n∑

i=1

xiyi

]
=

n∑
i=1

[xiyi], (3.4)

so that MIPn
is the sum of n matrices of rank 1 over GF(2). Hence, rankGF(2)(MIPn

) ≤ n.

3.3 Other Uses of Matrix Rank

Proposition 3.9. Let f : X × Y → {0, 1} be a Boolean function. If all the rows of Mf are
distinct, then D(f) ≥ log log |X|.
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Proof. Let r = rankGF(2)(Mf ). Pick r rows v1, · · · , vr that span the row space of Mf . As
all the rows of Mf are distinct, we have

|X| ≤ 2r = 2rankGF(2)(Mf ). (3.5)

Thus,

D(f) ≥ log2 rankGF(2)(Mf ) ≥ log2 log2 |X|. (3.6)

Proposition 3.10. For any f : X × Y → {0, 1}, one has D(f) ≤ rank(Mf ) + 1.

Proof. Let r = rankGF(2)(Mf ). Pick r rows v1, · · · , vr that span the row space of Mf .
Consider the following communication protocol:

1) Alice writes her row as a linear combination of the rows, and sends these r bits to
Bob;

2) Bob responses with 1 bit.

The above protocol requires (r + 1) bits in total. Thus,

D(f) ≤ rankGF(2)(Mf ) + 1 ≤ rank(Mf ) + 1, (3.7)

where we used Lemma 3.2 in the last inequality.

3.4 Comparison with Fooling Sets and the Rectangle
Size Bound

The scopes of applicability of these lower bound techniques are shown in Figure 3.2. That
fooling sets are a special case of rectangle size bounds was shown in previous lectures.
Proposition 3.11 shows the inclusion relation between the rank technique and the fooling
sets technique.

Proposition 3.11. Let f : X × Y → {0, 1} be a Boolean function. If f has a fooling set S,
then rank F(Mf ) ≥

√
|S| over any field F. In particular, if the fooling set technique gives a

lower bound of b bits for D(f), then the rank technique will give a lower bound of at least
b/2 bits for D(f).

Proof. It follows from the definition of a fooling set that if (x, y), (x′, y′) ∈ S, then x′ 6= x
and y′ 6= y. W.l.o.g, assume f(S) = 1. Let S = {(x1, y1), · · · , (xn, yn)} be the elements of
the fooling set. Consider the submatrix of Mf that corresponds to the rows x1, . . . , xn and
columns y1, . . . , yn:

A =

y1 · · · yn
x1

...
xn

 1
. . .

1

 .
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Figure 3.2: Scope of applicability of the three lower bound methods.

From the definition of fooling set, we have A � AT = I where � is the entrywise product,
defined as

B � C =

 B11C11 · · · B1nC1n

...
. . .

...
Bn1Cn1 · · · BnnCnn

 .

As B � C is a submatrix of B ⊗ C, we have rank(B � C) ≤ rank(B ⊗ C). Thus,

|S| = rankF(I) = rankF(A�AT ) ≤ rankF(A⊗AT ) = (rankF(A))2 ≤ (rankF(Mf ))2. (3.8)

Example 3.12. For function IPn : {0, 1}n × {0, 1}n → {0, 1}, Remark 3.8 shows that
rankGF(2)(MIPn

) ≤ n. Thus, the size of any fooling set for IPn is at most n2, yielding a
communication complexity lower bound of only Ω(log n). However, as we have seen, the
rank technique and rectangle size technique both give a lower bound of Ω(n). So IPn lies in
the shaded area of Figure 3.2.

The other three functions, EQn, GTn and DISJn, are all in the area covered by the
“Fooling Sets” technique. We will prove that most matrices lie in the shaded area of Fig-
ure 3.2.

Theorem 3.13. Let M ∈ {0, 1}2n×2n

be a random matrix, then w.v.h.p, M has no fooling
sets of size 10n.

Proof. Let r = 10n. For an ordered collection of columns S = (s1, s2, . . . , sr) and an ordered
collection of rows T = (t1, t2, . . . , tr), let XS,T ∈ {0, 1} be defined by

XS,T =

{
1 if {(s1, t1), . . . , (sr, tr)} is a fooling set;
0 otherwise.
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Then, for |S| = |T | = r and a random choice of M,

Pr[XS,T = 1] = 2−r
(

3

4

)(r
2)
· 2. (3.9)

Thus,

Pr[∃ a fooling set of size r] ≤
(

2n

r

)(
2n

r

)
· Pr[XS,T = 1]

≤ 22nr−r+1−log2( 4
3 )(r

2). (3.10)

For r = 10n, this probability is extremely small: Pr[∃ a fooling set of size 10n] ≤ 2−Ω(n2).

In preparation for next lecture, think about the following problem.

Problem 3.14. Prove that the rank technique and rectangle size technique work well for
random matrices.
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