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LECTURE

5

Nondeterminism

In this lecture, we introduce nondeterministic communication complexity. This model is
analogous to nondeterministic computational complexity and can similarly be defined in
terms of a proof system. We explore the relative power of nondeterminism and deter-
ministic communication. We analyze the nondeterministic complexity of several common
functions, including equality, greater-than, disjointness, and k-disjointness. We also obtain
tight lower bounds on nondeterministic and deterministic communication complexity of ran-
dom functions. We conclude by introducing the log-rank conjecture and presenting some
known results in that direction.

5.1 Nondeterminism as a proof system

The nondeterministic communication complexity of a function f : X × Y → {0, 1} can be
defined in terms of the minimum cost of a proof system for f. Consider inputs x and y such
that f(x, y) = 1. In a proof system (Figure 5.1), an all-powerful prover knows both inputs
and sends to Alice and Bob a certificate that f(x, y) = 1, which they must verify. We define
the cost of a proof system Cpf = C1 + C2, where C1 is the size (in bits) of the certificate,
and C2 is the maximum cost of a verification protocol used by Alice and Bob upon receipt
of the certificate. A proof system must satisfy the following two criteria (satisfying either
criterion without the other is trivial):

Completeness: If f(x, y) = 1, then there exists a certificate that the prover can send that
forces Alice and Bob to declare that f(x, y) = 1.

Soundness: If f(x, y) = 0, then Alice and Bob will declare that f(x, y) = 0 for every
certificate.

Example 5.1. Consider the disjointness function, DISJn : {0, 1}n × {0, 1}n → {0, 1}. The
negation of this function, ¬DISJn, has a highly efficient proof system. A certificate that the
input sets x and y are not disjoint is an index i such that xi = yi = 1. On receipt of an
index i, Alice sends Bob xi, and Bob sends Alice yi. They output xi ∧ yi. Note that the
described proof system is both sound and complete.



Figure 5.1: A proof system.

5.2 Nondeterminism as a cover

Here we explore the relationship between a function’s cover size and its nondeterministic
communication complexity. Specifically, we show that an efficient proof system gives rise to
a small cover of f−1(1) and vice versa.

Lemma 5.2. Every f : X × Y → {0, 1} has a valid proof system with cost log2 |C1(f)|+ 2.

Proof. Let Z be a cover for f−1(1) by f -monochromatic rectangles. Then the following is a
valid proof system:

1. The prover sends the index of a rectangle R ∈ Z. (log2 |Z| bits)

2. Alice verifies x ∈ R, sends the result to Bob. (1 bit)

3. Bob verifies y ∈ R, sends the result to Alice. (1 bit)

As we will now show, this lemma has an essentially exact converse.

Lemma 5.3. Any proof system for a function f : X × Y → {0, 1} must cost ≥ log2 |C1(f)|
bits.

Proof. A proof systems gives an alternate representation of the function f, as shown in
Figure 5.2. The proof system is composed of 2C1 deterministic verification protocols,
each of which has maximum deterministic communication complexity C2. The certifi-
cate serves as the index of the verification protocol Alice and Bob will use. Therefore,
the total cost of the proof system is C1 + C2. In other words, the proof system covers
f−1(1) with 2C1+C2 f -monochromatic rectangles. By definition, the minimum number of
f -monochromatic rectangles needed to cover f−1(1) is C1(f). Therefore, the cost of the
proof system C1 + C2 ≥ log2 C

1(f).
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Figure 5.2: Verification protocols arising from a proof system.

This equivalence between proof systems and covers motivates the following alternate
definition of nondeterministic communication complexity.

Definition 5.4. For a function f : X × Y → {0, 1}, the nondeterministic communication
complexity of f is defined as N(f) = log2 C

1(f). The co-nondeterministic communication
complexity of f is defined as N(¬f) = log2 C

0(f).

Note that while D(f) is always an integer, N(f) and N(¬f) can be fractional numbers.

5.3 Nondeterminism vs. deterministic communication

We now prove some relationships between deterministic and nondeterministic communica-
tion complexity.

Theorem 5.5. For all f : X × Y → {0, 1},

N(f) ≤ D(f) ≤ 2N(f) + 1.

Proof. Recall from last lecture that D(f) ≥ log2 C(f). Therefore,

N(f) = log2 C
1(f) ≤ log2 C(f) ≤ D(f),

proving the first inequality in the theorem. The second inequality follows from the fact that
D(f) ≤ C1(f) + 1, proved during last lecture (Proposition 4.9).

Example 5.6 (Equality). As we proved earlier, D(EQn) = n + 1. By the fooling set
argument, we have C1(EQn) ≥ 2n. Therefore, N(EQn) ≥ n. This shows that the gap
between N(EQn) and D(EQn) is very near the minimum, as established by Theorem 5.5.
On the other hand, the gap between N(¬EQn) and D(¬EQn) = D(EQn) is very near
the maximum possible. To see why, consider a proof system for ¬EQn. The prover need
only identify a single index i ∈ {1, 2, 3, . . . , n} such that xi 6= yi. Alice and Bob need only
exchange the values of xi and yi to verify. Therefore, N(¬EQn) ≤ log2(n) + 2.
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Example 5.7 (Greater-than). Recall that D(GTn) = n + 1. By the fooling set argument,
we have N(GTn) ≥ n and likewise N(¬GTn) ≥ n − 1. For this function, the deterministic,
nondeterministic, and co-nondeterministic communication complexities essentially coincide.

While the gap between the deterministic and nondeterministic communication complex-
ities can be exponential, we have the following important theorem:

Theorem 5.8. For every function f : X × Y → {0, 1},

D(f) = O(N(f)N(¬f)).

Proof. Recall from last lecture that D(f) ≤ O((log2 C
0(f))(log2 C

1(f))). The theorem now
follows from the definitions of nondeterministic and co-nondeterministic communication
complexity.

5.4 Complexity of random functions

In this section, we prove that a random communication problem has high communication
complexity in the deterministic and nondeterministic models. We give two different proofs
of this result, the first of which implicitly uses the rectangle size bound and the second uses
basic counting.

Theorem 5.9. Let f : {0, 1}n × {0, 1}n → {0, 1} be a uniformly random communication
problem. Then w.v.h.p.,

C(f) > 2n−2,

D(f) ≥ n− 1.

Proof. Since D(f) ≥ dlog2 C(f)e, it suffices to prove the lower bound on C(f). Let α ∈ [0, 1]
be a parameter to be fixed later, and let R be a rectangle with size |R| ≥ α4n. We first
establish the probability such a rectangle is f -monochromatic:

P[R is f -monochromatic] = P[R is 0-monochromatic for f ] + P[R is 1-monochromatic for f ]

= 2

(
1

2

)|R|
≤ 1

2α4n−1
.

Since the total number of rectangles, regardless of size, is |P({0, 1}n)×P({0, 1}n)| = 22·2n

,
the union bound implies that

Pf [∃R s.t. |R| ≥ α4n, R is f -monochromatic ] ≤ 22·2n−α4n+1. (5.1)

At the same time, every f has an f -monochromatic rectangle of size 4n/C(f), so that

Pf [∃R s.t. |R| ≥ α4n, R is f -monochromatic ] ≥ Pf
[
C(f) ≤ 1

α

]
. (5.2)

Comparing (5.1) and (5.2), we see that

Pf
[
C(f) ≤ 1

α

]
≤ 22·2n−α4n+1.

Letting α = 1/2n−2, we conclude that C(f) > 2n−2 w.v.h.p.
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Using a different argument, based on elementary counting, we can prove the following
stronger result.

Theorem 5.10. Let f : {0, 1}n × {0, 1}n → {0, 1} be a uniformly random communication
problem. Then w.v.h.p.,

C1(f) ≥ 2n−1 + 1,

N(f) > n− 1,

D(f) ≥ n.

Proof. Again, it suffices to prove the lower bound on C1(f). Let N be a parameter to be
fixed later. By definition, a cover is a family of rectangles. Since there are 22·2n

distinct

rectangles on {0, 1}n×{0, 1}n, the total number of covers with N rectangles is
(

22·2n

N

)
. Since

the total number of distinct functions f : {0, 1}n×{0, 1}n → {0, 1} is 24n

, we conclude that

Pf [C1(f) ≤ N ] ≤ 2−4n

(
22·2n

N

)
≤ 22·2n·N−4n

N !
.

Letting N = 2n−1 shows that C1(f) > 2n−1 w.v.h.p.

5.5 The log-rank conjecture

In lecture 3, we proved the rank lower bound on the deterministic communication complexity,
due to Mehlhorn and Schmidt [3]:

D(f) ≥ log2(rkRMf ).

It is an open problem whether the rank lower bound is reasonably tight. Specifically, Lovász
and Saks [2] proposed the following log-rank conjecture: for some absolute constant constant
c > 1 and all f,

D(f) ≤ (log2(rkRMf ))
c

+ c.

The status of this conjecture remains wide open. In this lecture, we present a construction of
f, due to Nisan and Wigderson [4], with a polynomial gap between D(f) and log2(rkRMf ).
In particular, we show that if the constant c exists, it obeys c > 1.58.

Theorem 5.11. There exists a function f : {0, 1}n × {0, 1}n → {0, 1} such that

D(f) = Ω(n),

log2(rkRMf ) ≤ O(n0.631...).

Proof. Let h : {0, 1}3 → {0, 1} be the Boolean function given by

h(a, b, c) = a+ b+ c− ab− bc− ac

=


0 if a+ b+ c = 0,

1 if a+ b+ c = 1,

1 if a+ b+ c = 2,

0 if a+ b+ c = 3.
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Figure 5.3: The function H, defined as k recursive applications of h.

Let H be a function on n = 3k bits, as shown in Figure 5.3. The following properties
are immediate by induction on k: H(z) = 0 when z = (0, . . . , 0), and H(z) = 1 for when
z1 + · · ·+ zn = 1.

Let f : {0, 1}n × {0, 1}n → {0, 1} be defined as:

f(x, y) = H(x1y1, x2y2, . . . , xnyn).

By the properties of H, we have that f(x, y) = 0 when x1y1 + · · ·+xnyn = 0, and f(x, y) = 1
when x1y1 + · · · + xnyn = 1. In lectures to come, we will see a proof, due to Razborov [5],
that any such function f has D(f) = Ω(n).

It remains to show that log2(rkRMf ) ≤ O(n0.631...). H is polynomial with A(k) mono-
mials, where A(k) is given by the recurrence

A(1) = 6,

A(k) ≤ 3A(k − 1) + 3A(k − 1)2, k = 2, 3, 4, . . . .

Thus A(k) ≤ 6A(k− 1)2, which by induction gives A(k) ≤ 62k−1. The characteristic matrix
Mf is the sum of rank-1 matrices corresponding to the monomials of H, so that

log2(rkRMf ) = O(2k) = O((3k)log3 2) = O(n0.631...).

5.6 Nondeterministic and co-nondeterministic
complexity of k-disjointness

For a set S and a natural number k, let
(
S
k

)
denote the family of all cardinality-k subsets of

S. The k-disjointness function DISJnk :
({1,...,n}

k

)
×
({1,...,n}

k

)
→ {0, 1} is given by

DISJnk (x, y) =

{
1, x ∩ y = ∅,
0, otherwise.
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In this section, we analyze the nondeterministic and co-nondeterministic communication
complexity of k-disjointness. In the next lecture, we will additionally determine the deter-
ministic communication complexity of this function and thereby show that the upper bound
in Theorem 5.8 is tight in general.

Theorem 5.12. The k-disjointness function DISJnk obeys

N(¬DISJnk ) ≤ O(log n),

N(DISJnk ) ≤ O(k + log log n).

Proof. The first upper bound is immediate; the proof system is described in Example 5.1.
It remains to show that C1(DISJnk ) ≤ 2Θ(k) log n. We do so using the probabilistic method.
For a subset S ⊆ {1, 2, . . . , n}, consider the following 1-monochromatic rectangle for DISJnk :

RS =
{
x ∈

({1,2,...,n}
k

)
: x ⊆ S

}
×
{
y ∈

({1,2,...,n}
k

)
: y ⊆ S

}
.

Let S ⊆ {1, 2, . . . , n} be a uniformly random set. Then for any (x, y) with DISJnk (x, y) = 1,

PS [(x, y) ∈ RS ] =
1

4k
.

Now let RS1
, . . . , RSN

be random rectangles. Then,

P
[
RS1

, . . . , RSN
fail to cover DISJnk

−1(1)
]

≤ |DISJnk
−1(1)| P [RS1

, . . . , RSN
do not cover ({1, . . . , k}, {k + 1, . . . , 2k})]

≤
(
nk
)2 (

1− 1

4k

)N
≤ n2k e−N/4

k

,

which is less than 1 whenever N > 4k lnn2k = 2Θ(k) log n. Thus, DISJnk
−1(1) has a cover of

the claimed size.
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