
Proceedings of the International Conference on Communication and Computer Networks
Marina del Rey, California, pp. 202-207, October 2005.

Efficient Client-Transparent Fault Tolerance for Video Conferencing

Navid Aghdaie and Yuval Tamir
Concurrent Systems Laboratory

UCLA Computer Science Department
Los Angeles, California 90095

{navid,tamir}@cs.ucla.edu

ABSTRACT

As video conferencing plays an increasingly critical
role in many business environments, there is a need to
ensure highly reliable operation of the conferencing
infrastructure. We present a scheme for adding fault
tolerance to an existing video conferencing server. The
scheme is client-transparent so that it can be used by the
installed base of clients. While the scheme is based on
replication, the associated overhead is negligible since the
backup does not process the media streams. Most
previous work on fault-tolerant network services focused
on transaction-oriented services. Video conferencing is
an interesting test-case for applying fault tolerance for
other types of services since it combines critical
conference state that must be protected with media
streams where limited data losses are acceptable. Our
implementation combines kernel modules with small
changes to the server application to efficiently preserve
both the reliable connections used for control messages
and unreliable connections used for media transfer.

KEY WORDS
video conferencing, reliable network services, replication

1. Introduction
High reliability and availability are key requirements

for critical network services such as online banking. Less
critical network services, such as instant messaging and
video conferencing, are increasingly being relied on by
consumers who expect trouble-free operation. Delivery
of high availability and reliability for a variety of network
services will thus translate directly into increased
customer satisfaction and profits. One of the main causes
of service disruptions is server faults. Hence, fault
tolerance techniques that allow providers to deliver
continuous uninterrupted service despite server faults will
become increasingly important.

For many services (web service, video conferencing)
there is a large installed base of clients and it is not
practical to require all of those to be modified. Hence the
fault tolerance scheme used should be client-transparent,
i.e., operate without requiring any special action by the
client. Most of the existing work on client-transparent
fault-tolerant network services has focused on web
service [1, 3, 8, 10, 13], dealing with TCP connections,
HTTP transactions, and web servers. This paper
demonstrates how the methodology and mechanisms
developed in the context of web service can be adapted to
a very different type of service — video conferencing.

MCU

Client
Client

Client

Figure 1: Video Conferencing with a Multi-
Conferencing Unit (MCU). An MCU fault causes the
conference to fail.

Off-the-shelf video conferencing schemes consist of
multiple clients and a Multi-Conferencing Unit (MCU)
that is the conference central server (Figure 1). The MCU
executes the conferencing application and maintains the
state of the conference. Clients connect to the MCU to
join a conference. The main function of the MCU is to
route the multimedia stream (i.e. video) from each client
to others. The MCU application may also provide
additional functionality such as the mixing of multiple
media streams, echo cancellation, content-adaptation to
support different types of clients, and conference
management such as maintaining multiple virtual rooms.

Since conference state is kept only at the MCU, an
MCU failure results in the failure of all active
conferences handled by that MCU. The goal of our work
is to ensure the survival of the MCU service despite the
failure of an MCU process or host. The MCU state
changes during the conference as new clients join, some
clients depart, etc. These changes must be reliably
preserved across faults. Fortunately, most of the MCU
processing requirement is due to the processing of the
media streams, where absolute reliability is not required
to maintain the conferencing service. Our approach to
adding fault tolerance to the MCU judiciously combines
fully replicated operation for maintaining critical
conference state with a very low overhead failover
mechanism for handling the media streams themselves.

The key contribution of this paper is the presentation
and evaluation of an efficient fault tolerance scheme for
video conferencing. This scheme is an adaptation of the
fault tolerance methodology that we developed previously
for web service [1, 2] and serves as a demonstration that
the methodology can be extended to other network
services. To our knowledge, this paper would be the first
publication of a practical client-transparent fault tolerance
scheme for video conferencing. Section 2 discusses the
details specific to the design and implementation of our



fault-tolerant video conferencing scheme using
OpenMCU [11], an open source H.323 [7] conferencing
server developed on top of the OpenH323 library [11].
Section 3 presents the performance evaluation results.
Related work is discussed in Section 4.

2. Fault Tolerance for a Conferencing Server
Our video conferencing implementation is based on

OpenMCU [11], an open source H.323 [7] conferencing
server developed on top of the OpenH323 library [11].
The OpenMCU application maintains virtual conference
rooms, receives and mixes media from the clients in a
conference, and periodically transmits the mixed media to
each client. TCP connections are used as the reliable
channel for transmission of control messages. The media
is transferred on top of unreliable channels using the UDP
protocol.

The methodology for adding fault tolerance to the
video conferencing service is based on our scheme on
fault-tolerant web service [1, 2], called CoRAL. To
achieve client-transparent fault tolerance the service
identity, communication connection state, and relevant
application state must be preserved across faults [2]. We
preserve the required state on a replica on the same LAN
subnet. During fault-free (duplex) operation, the MCU
connection state is actively replicated and the application
state is synchronized as necessary in order to handle non-
deterministic behavior. If one of the replicas fails, the
surviving MCU takes over and operates in simplex mode.

Our implementation requires changes to the MCU at
OS and application levels. A kernel module (roughly
5000 lines of code) on each replica facilitates the
functionality necessary for replicating the connection
state. The kernel-level code is application independent.
The TCP portion is exactly the code that was used for
CoRAL [1, 2], and the UDP code developed for this work
can be used with other services that use UDP connections.
Modifications to the MCU application code (5000 lines)
implement application level synchronization and fault
detection. Some (1000 lines) of our user-level code,
whose main functionality is the synchronization of
application-level state, is application specific and was
written specifically for the OpenMCU application. The
rest of the code, which mainly deals with fault-detection
and failover, is mostly application independent and
similar to CoRAL. The implementation details are
presented in the rest of this section.

2.1. Identity Preservation

In duplex operation, one of the MCU hosts is
configured with the service identity, i.e., the advertised IP
address. If this host fails the surviving host must take
over the advertised IP address in order to achieve client
transparency. When a fault is detected, the surviving
MCU establishes an additional IP address alias (the
advertised address) using a Linux ioctl call and uses
gratuitous ARP to inform LAN’s router of this takeover.
As a result, any client packets sent to the advertised
service address are routed to the surviving MCU [2].

PrimaryBackup
MCU

Client

MCU

Adv. IP

Figure 2: TCP connection replication. Incoming TCP
packets arrive at the backup and are forwarded to the
primary. Only the primary sends outgoing
acknowledgment in fault-free operation. Hence, client
will not receive an acknowledgment unless both
replicas have received a copy its packet.

2.2. Reliable Communication

The MCU control channels require reliable
communication and thus operate on top of TCP. We used
part of CoRAL [1, 2] to actively replicate the state of TCP
connections to the MCU. CoRAL transparently
multicasts client TCP packets to two replicas and ensures
that the TCP stack state and acknowledged client packets
can be recovered if one of the replicas fails. In fault-free
operation, the advertised address for the conference is
mapped to the backup MCU. Hence, incoming client
packets arrive at the backup first. Upon the arrival of an
incoming client TCP packet at the backup, a copy of the
packet is forwarded to the primary MCU (Figure 2).
Only the generated acknowledgment by the primary is
sent to the client. The acknowledgment generated by the
backup’s TCP stack is discarded. As a result, the client
will not receive an acknowledgment unless both the
primary and backup have received a copy of the client
packet. Hence, if a fault occurs, the backup can
seamlessly take over the handling of active TCP
connections. Further details of TCP connection failover
are described in CoRAL papers [1, 2].

2.3. Unreliable Communication

The MCU media channel is built on top of UDP. In
order to preserve the media channel across faults,
identical UDP socket structures must be created on both
MCU replicas. In addition, client UDP packets sent to the
faulty MCU must be transparently routed to the surviving
replica after a fault. H.323 services typically create the
media stream after receiving a client request on the
control channel. With OpenMCU, UDP sockets are
created in response to client requests received on the TCP
connection. Our scheme multicasts requests on TCP
connections to both replicas. Hence, if identical
applications are executed on both replicas and the
application behavior is deterministic, or non-determinism
is handled as shown later in this section, then identical
UDP socket structures are created on both replicas.

The key to the low overhead of our scheme is that the
UDP packets (the media streams) are not really processed
by the backup. The handling of UDP packets by replicas
can be implemented using several configurations. We
considered and implemented three different approaches.
One approach is the use of forwarding similar to our TCP



replication (Figure 2). In fault-free operation, the service
IP address for the media stream is mapped to the backup.
As a result, client packets arrive at the backup first. Upon
the receipt of client UDP packets, the backup forwards a
copy to the primary by changing the destination IP
address in the packet. Outgoing packets are transmitted
only by the primary, with the source IP address always
being set to the advertised address to maintain
transparency. Faults may occur on either primary or
backup replicas. If the primary MCU fails, the backup no
longer forwards packets to the primary, and it starts
processing incoming UDP packets and transmitting
outgoing packets to clients. If the backup MCU fails, the
primary takes over the identity of backup server and
client packets arrive directly at the primary.

PrimaryBackup
MCU

Client

MCU
PrimaryBackup

MCU

Client

MCU

Fault-Free Faulty Primary

Adv. IPAdv. IP

Figure 3: Direct UDP communication between client
and primary. Advertised IP address is mapped to the
primary in fault-free operation. If primary MCU fails,
the backup takes over the advertised address and
continues operation in simplex mode.

Another approach is direct UDP communication
between clients and the primary (Figure 3). During
fault-free operation, the service IP address for the media
stream is mapped to the primary and UDP packets are
exchanged directly between the client and primary MCU.
If the primary MCU fails, the backup takes over the
service IP address, receives incoming client packets, and
transmits outgoing packets to clients. If the backup MCU
fails, the communication between the clients and primary
can continue normally, albeit now without fault-tolerance
features. The direct client to primary communication
eliminates the forwarding overhead that is incurred with
the forwarding approach. However, since our TCP
replication implementation maps the service address to
the backup in fault-free operation, this approach requires
the decoupling of reliable and unreliable connections at
the application protocol level. The H.323 protocol
includes this features. The advertised address of the
unreliable channel is given to the client by the server over
the control channel. Hence, the service IP address for the
control and media channels need not be the same.
However, this feature is not commonly used. In fact the
openh323 library implementation assumes that the two
addresses will always be identical. We made a small
modification to the library, allowing the use of different
IP addresses for the TCP and UDP connections.

A third approach is to use IP multicast. An IP multicast
address is used as the advertised address of the media
stream. Hence, the network multicasts the client UDP
packets to both replicas (Figure 4). In fault-free
operation, only the primary transmits outgoing packets to

network / multicast node

PrimaryBackup
MCU

Client

MCU

Adv. IP

Figure 4: UDP communication using IP multicast or
multicast node. Client UDP packets are multicast to
both replicas by either the network (IP multicast) or a
multicast node. The advertised address is an IP
multicast address or address of multicast node,
respectively. In fault-free operation only the primary
replica sends outgoing packets to the client.

the client. If the primary fails, the backup takes over. If
the backup fails, no changes take place at the primary.
The use of global IP multicast addresses for such small
scale multicast may not be practical. As an alternative, a
server-side node or router can be used to multicast client
UDP packets and achieve the same effect. The advertised
IP address for the media is mapped to the multicast node.
The multicast node simply sends a copy of each client
packet that it receives to both replicas. A drawback of
such a local multicast node is that it becomes a new single
point of failure. However, in practice, since the multicast
node is stateless and performs a very simple operation, it
is likely to be highly reliable and, if necessary, it would
be relatively simple to make this multicast function fault-
tolerant. All that is required is a backup that detects faults
and simply takes over the IP address and continues the
processing of packets in the same manner. The
performance comparison of the three approaches is
presented in Section 3.

2.4. Application State and Non-determinism

The MCU application can be actively replicated, with
identical copies available and running on both replicas.
Since the application input, i.e., TCP and UDP
connections, are replicated, the application state will also
be identical if the processing is deterministic. However,
the OpenMCU application is not deterministic. Hence,
the applications on the primary and backup must be
synchronized whenever there is a non-deterministic state
change. We found only a few such events: the selection
of initial sequence number and SyncSourceOut variable
used by the RTP (media) connection, and creation of the
UDP port used for media transfer. Fortunately, these
events all occur at the creation and initialization of each
RTP session and therefore can be synchronized together.
We synchronize the replicas by exchanging messages.
The primary sends the non-deterministic state changes to
the backup. The backup makes state changes according
to the primary’s message — it sets initial values for
variables and creates UDP ports. The primary continues
after receiving an acknowledgement from the backup.
Hence, the application states will be identical before the
RTP session is used. If the primary fails during the
synchronization procedure before the synchronization



message reaches the backup, the primary state changes
are never visible to the clients and the backup can safely
make its own non-deterministic state changes.

If external processes are allowed to use resources on
the replica hosts, synchronization of non-deterministic
state changes as described above may not be possible.
For example, the backup may not be able to create a UDP
socket with the same port number as the primary because
another process is using it. To get around such resource
conflicts, we added the possibility of a negative
acknowledgment response to the synchronization
messages. If the backup cannot make the required state
changes, it sends a NACK message back to the primary,
informing it to undo its state changes and try a different
path. In the UDP example, the primary deallocates the
socket structure, creates a new socket bound to a different
port number, and retries synchronization with the backup.

Active replication of MCU application inherently
incurs a large performance overhead. The backup
application performs every operation performed by the
primary. Some application operations may not affect the
application state and are not required to be performed by
a replica if the only goal is to preserve the application
state. Specifically, there is no critical state at the MCU
associated with media processing. During fault-free
operation, it is not necessary for the backup MCU to
process or generate media. Only the control stream which
affects the application state must be processed. Hence, as
an optimization, we modified OpenMCU and disabled all
operations related to the media stream in backup mode
while keeping the control operations intact. Our
evaluation results in section 3 show that we successfully
eliminated almost all the processing on the backup.

2.5. Fault Detection and Fail-Stop Assumption

We assume that only a single MCU host at a time may
fail. We further assume that server processes are fail-
stop [12]. Hence, faults are detected using heartbeats and
timeouts. A heartbeat generator and a heartbeat monitor
process were added to the OpenMCU application. Each
generator periodically transmits a sequenced UDP packet
to the other MCU. The monitor receives these packets,
and determines that a fault has occurred when there are
consecutive missed heartbeats.

In practice, faults are not always fail-stop. Faults may
be Byzantine, resulting in arbitrary behavior, such as
transmission of unwanted messages from faulty nodes.
Unfortunately, Byzantine faults cannot be handled
transparently for TCP connections. A faulty node (e.g.,
MCU) may send TCP reset or FIN packets for the
connection, causing the remote end (e.g., client) to
abandon or close the connection. Once the client-side
connection state is lost, the TCP connection cannot be
transparently restored. Hence, client-aware solutions are
required in order to handle Byzantine faults.

Although we cannot handle Byzantine faults, we can
handle both host and process fail-stop faults. A key
problem is that when a user process crashes while the host
kernel is still running, reset or FIN TCP packets may be
sent to the client, causing the TCP connection to be

terminated. To handle this problem, our kernel module
discards reset or FIN TCP packets when a process
crashes. Specifically, when a process crashes, the kernel
implicitly calls exit and closes all associated sockets. Our
kernel module detects any implicit exit calls for MCU
processes and discards any TCP FIN or reset packets
generated due to the implicit exit close calls. This ensures
that the client connection is not destroyed and a seamless
failover to the backup can occur. Our experiments show
that MCU application processing is mostly (94 percent) at
user-level. Fault injection experiments on other systems
have shown that if almost all the time is spent in
application user mode, most of the faults either have no
effect or cause the process to crash [9]. Hence, the ability
to maintain connections and correctly failover when a
process crashes but the host continues to run, is critical to
the reliability of our scheme.

3. Performance Evaluation
Evaluation experiments were performed on 2.6 GHz

Intel Pentium IV Xeon PC’s interconnected by a
gigabit/second switched network. The MCU nodes were
running our modified OpenMCU application on top of the
Linux 2.4.20 kernel with our kernel module installed. We
used three client nodes, each running the ohphone [11]
application with a Logitech Quickcam Pro 3000 webcam.
The webcams were pointed towards monitors where the
screen refresh (i.e., flicker) created a constantly changing
image. Finally, the three clients joined a conference
hosted on the MCU.

We emulated faults by physically disconnecting an
MCU from the network (host crash), killing the MCU
application processes with the kill command (process
crash), and by randomly flipping bits in the processor’s
registers using a kernel-based fault injector. Our
implementation successfully recovered from all types of
crash faults. 25.4 percent of fault injector injections
caused a crash (which were recovered), with the rest not
having a noticeable effect on normal operation.

5 10 15 20 25 30

0

200

400

600

M Cycles
per second

Throughput (frames/second)

Primary

Backup (approx 2-6 M cycles)

Standard

Figure 5: CPU cycles (million per second) used by a
standard off-the-shelf MCU and the primary and
backup MCU’s in our scheme. System throughput was
varied configuring clients and MCU to use video with
different number of frames per second.

Qualitatively, faults cause a brief interruption of
moving video at each client, with the duration of the
interruption being on the order of the heartbeat period
(sub second). If the video is static and not moving, there
is a noticeable (few seconds) impact on the image sent to
the clients. The reason is that the replica taking over (i.e.



25 50 100 200 500

0

0.2

0.4

0.6

0.8
PRIMARY FAILURE

Interruption
(seconds)

Heartbeat Period (msec)

a
a

a

a

aforwarding
direct
multicast-nodea

25 50 100 200 500

0

0.2

0.4

0.6

0.8
BACKUP FAILURE

Interruption
(seconds)

Heartbeat Period (msec)

a a a a a

forwarding

direct, multicast-node (0)

Figure 6: Interruption time due to failover for different UDP schemes. Primary (left) and Backup (right) MCU faults are shown.

backup) starts with a blank image. The video image is
partitioned into multiple chunks and the client codec
transmits the static parts of the video image less
frequently. Hence, a few seconds are required for the
backup to receive the entire image. Fortunately, this has
essentially no impact on the ability to continue the
conference since audio does not suffer from this problem.
Specifically, the audio codec does not rely on history.
Hence, the audio interruption duration is always on the
order of the heartbeat frequency, and is barely noticeable
with typical (<100msec) heartbeat settings.

3.1. Processing Overhead

We measured the processing cycles used by the MCU
using the CPU’s performance monitoring registers. We
measured global_power_events [6] which accumulates the
time during which the processor is not stopped. CPU
cycles used by a bare system were deducted to derive the
actual cycles used by the MCU. The heartbeat period was
set to 100 milliseconds. The system throughput was
varied by configuring the clients and MCU to transmit
video at different number of frames per second.

Figure 5 show the CPU cycles used by our primary and
backup MCU and a standard MCU without fault-
tolerance features. The backup MCU is mostly idle. It
uses two to six million cycles per second depending on
the UDP connection handling (discussed below). The
primary consumes slightly more cycles than a standard
server mainly due to bookkeeping operations in the kernel
module and heartbeat generation and monitoring. The
overall processing overhead is the difference between the
primary and standard cycles plus the cycles used by the
backup. This overhead is small — roughly 3 percent for
the direct UDP scheme at 30 frames per second.

3.2. Failover Latency

When a MCU fails, the system is briefly unavailable
while a failover takes place. The failover time includes
the time to detect a fault (i.e., consecutive missed
heartbeats) and the time for the reconfiguration of system
from duplex to simplex mode. During failover, client
packets sent to the MCU may be lost, potentially resulting
in a noticeable interruption to the clients. We quantified
the interruption duration by using tcpdump to monitor
packets to the clients and recording the ‘‘gap’’ in packet
flow. In this experiment faults were injected into the
system by disconnecting one of the MCU replicas from

the network.

Figure 6 shows the interruption time due to failover
caused by primary or backup MCU faults. The heartbeat
rate has a major effect on the length of interruption,
showing that failover time is dominated by the fault
detection time. Primary faults cause an interruption in all
schemes. The forwarding and multicast-node schemes’
failover times are virtually identical. The direct scheme
has a slightly higher failover time because the backup
must takeover the primary’s IP address which is used as
the identity of the UDP connection. The other two
schemes do not require an address takeover if the primary
fails.

Backup faults cause an interruption only with the
forwarding scheme. If the backup fails with the
forwarding scheme, client UDP packets will not reach the
primary until the fault is detected and a failover occurs.
Backup faults in the direct and multicast-node schemes do
not cause an interruption because client UDP packets are
not lost. The primary MCU detects the fault and
configures itself for simplex operation without
interrupting the media stream. The reconfiguration from
primary to simplex is necessary only for TCP connection
failover and fault detection processes.

3.3. Impact of Heartbeats and UDP Configuration

Figure 7 shows the percentage of available processing
cycles used by the backup MCU with a constant system
throughput of 30 frames per second and varying heartbeat
rates. Overall, the backup MCU is mostly idle —
utilization of less than 1%. The multicast-node scheme
has more processing overhead than the direct scheme
because the backup node receives, examines, and discards
a copy of every client UDP packet. The forwarding
scheme has the most overhead because every client
packet is copied, it’s header rewritten, and then forwarded
to the primary. The heartbeat rate affects the processing
overhead with all the schemes. Since the heartbeat rate
also effects the failover time, there is a tradeoff between
processing overhead and failover time.

3.4. TCP and Application Synchronization Overheads

Most of the MCU processing requirement is due to the
processing of the media stream. Hence, the evaluation
results above are focused on the media stream and UDP
connections. However, there is also overhead due to TCP
connection replication and application synchronization.



0 200 400 600 800 1000

0.1

0.2

0.3

CPU
Cycles

(percent)

Heartbeat Period (milliseconds)

forwarding

direct

multicast-node

Figure 7: Percent of available CPU cycles used by the
backup MCU in duplex mode for different UDP
configurations. Throughput was kept constant at 30
frames per second.

To join a conference, a client establishes a TCP
connection and sends a control message. With our
scheme, the TCP connection is replicated and relevant
application state is synchronized between the replicas at
join time. We measured the CPU cycles used for the
establishment of the control channel and the addition of a
client to a conference. Each replica consumes roughly
155 million CPU cycles for the connection establishment
and application synchronization. This initialization cost is
negligible compared to the millions of cycles used every
second for the media processing. Other control messages
(e.g., connection close, change in throughput) may also be
exchanged between the MCU and clients, but they are
typically infrequent.

4. Related Work
Much of the early work on fault-tolerant network

services was focused on increasing availability and did
not recover active connections at failure time [4]. Most
client-transparent fault tolerance schemes for network
services focus on the Web and the recovery of TCP
connections using either replication [1, 8, 10, 13] or
logging [3]. Multimedia service reliability research has
been mainly focused on broadcast applications based on
one way delivery of video from one server to multiple
clients. Zagorodnov et al [14] adapted FT-TCP [3] to
increase the reliability of Apple Darwin streaming server.
To handle application non-determinism, relevant system
calls were synchronized to ensure an identical server state
would be available despite a fault. End system
multicast [5] uses multicast at application level and
provides overlay spanning trees for data delivery.
Changes to clients or deployment of proxies at strategic
locations near the clients are required. Unlike these
solutions, our work is based on interactive
communication between multiple clients using a stateful
centralized MCU, and transparent recovery from faults
that may occur at the MCU.

5. Conclusion
We have presented the design and implementation of a

client-transparent fault-tolerant video conferencing
service that can recover from host or process crashes at
the server site. We believe that this would be the first
publication of a practical client-transparent fault tolerance
scheme for video conferencing. Our implementation is

based on an existing conferencing server (MCU) and
required modification of a tiny fraction of the existing
code. Most of the user-level and kernel-level code in our
implementation is directly usable or easily adaptable for
other network services. This is verified by the fact that
the TCP components were minor adaptations of our
previous work on fault-tolerant web service. Our
measurements show that the processing overhead of our
scheme during fault-free operation is insignificant —
approximately 3% additional CPU cycles. Our
experiments demonstrated successful recovery from all
host crashes and process crashes, including process
crashes caused by random fault injection to CPU
registers. With a low-overhead configuration (heartbeat
period of 25ms-50ms), when a fault occurs, the
conference proceeds with no loss of audio (a barely
noticeable ‘‘blip’’) and a minor disruption of static video
images that clears up in a few seconds.

References

[1] N. Aghdaie and Y. Tamir, ‘‘Implementation and
Evaluation of Transparent Fault-Tolerant Web Service with
Kernel-Level Support,’’ Proceedings of the The 11th
International Conference on Computer Communications and
Networks, Miami, Florida, pp. 63-68 (October 2002).
[2] N. Aghdaie and Y. Tamir, ‘‘Fast Transparent Failover for
Reliable Web Service,’’ Proceedings of the 15th IASTED
International Conference on Parallel and Distributed
Computing and Systems, pp. 757-762 (November 2003).
[3] L. Alvisi et al., ‘‘Wrapping Server-Side TCP to Mask
Connection Failures,’’ Proceedings of IEEE INFOCOM,
Anchorage, Alaska, pp. 329-337 (April 2001).
[4] T. Brisco, ‘‘DNS Support for Load Balancing,’’ RFC
1794, IETF (April 1995).
[5] Y.-h. Chu et al., ‘‘Enabling Conferencing Applications on
the Internet using an Overlay Multicast Architecture,’’ ACM
SIGCOMM, San Diego, CA, pp. 55-67 (August 2001).
[6] Intel Inc, IA-32 Intel Architecture Software Developer’s
Manual - Volume 3: System Programming Guide, 2004.
[7] International Telecommunication Union, ‘‘Packet-based
multimedia communications systems,’’ ITU-T, Recommendation
H.323 V5, Geneva, Switzerland (May 2003).
[8] R. Koch et al., ‘‘Transparent TCP Connection Failover,’’
International Conference on Dependable Systems and Networks,
San Francisco, California, pp. 383-392 (June 2003).
[9] H. Madeira et al., ‘‘Experimental Evaluation of a COTS
System for Space Applications,’’ International Conference on
Dependable Systems and Networks (DSN’02), Washington,
D.C., pp. 325-330 (June 2002).
[10] M. Marwah et al., ‘‘TCP Server Fault Tolerance Using
Connection Migration to a Backup Server,’’ International
Conference on Dependable Systems and Networks, San
Francisco, California, pp. 373-382 (June 2003).
[11] Quicknet Technologies Inc, ‘‘OpenH323 Project,’’
http://www.openh323.org.
[12] F. B. Schneider, ‘‘Byzantine Generals in Action:
Implementing Fail-Stop Processors,’’ ACM Transactions on
Computer Systems 2(2), pp. 145-154 (May 1984).
[13] G. Shenoy et al., ‘‘HydraNet-FT: Network Support for
Dependable Services,’’ International Conference on Distributed
Computing Systems, Taipei, Taiwan, pp. 699-706 (April 2000).
[14] D. Zagorodnov et al., ‘‘Engineering Fault-Tolerant
TCP/IP Servers Using FT-TCP,’’ International Conference on
Dependable Systems and Networks, San Francisco, California,
pp. 393 - 402 (June 2003).


