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Abstract—Most of the techniques used for increasing the
availability of web services do not provide fault tolerance for
requests being processed at the time of server failure. Other
schemes require deterministic servers or changes to the web
client. These limitations are unacceptable for many current and
future applications of the Web. We have developed an efficient
implementation of a client-transparent mechanism for providing
fault-tolerant web service that does not have the limitations
mentioned above. The scheme is based on a hot standby backup
server that maintains logs of requests and replies. The
implementation includes modificationsto the Linux kernel and to
the Apache web server, using their respective module
mechanisms. We describe the implementation and present an
evaluation of the impact of the backup scheme in terms of
throughput, latency, and CPU processing cycles over head.

|I. INTRODUCTION

Web servers are increasingly used for critical applications
where outages or erroneous operation are unacceptable. In
most cases critical services are provided using a three tier
architecture, consisting of: client web browsers, one or more
replicated front-end servers (e.g. Apache), and one or more
back-end servers (e.g. a database). HTTP over TCP/IP is the
predominant protocol used for communication between clients
and the web server. The front-end web server is the mediator
between the clients and the back-end server.

Fault tolerance techniques are often used to increase the
reliability and availability of Internet services. Web servers
are often stateless — they do not maintain state information
from one client request to the next. Hence, most existing web
server fault tolerance schemes simply detect failures and route
future requests to backup servers. Examples of such fault
tolerance techniques include the use of specialized routers and
load balancers[4,5, 12, 14] and data replication[6, 28]. These
methods are unable to recover in-progress requests since,
while the web server is stateless between transactions, it does
maintain important state from the arrival of the first packet of
a request to the transmission of the last packet of the reply.
With the schemes mentioned above, the client never receives
complete replies to the in-progress reguests and has no way to
determine whether or not a requested operation has been
performed[1, 15, 16] (see Figure 1).

Some recent work does address the need for handling in-
progress transactions.  Client-aware  solutions  such
as[16, 23, 26] require modifications to the clients to achieve
their goals. Since many versions of the client software, the
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Figure 1: If the web server fails before sending the client reply (step
4), the client can not determine whether the failure was before or
after the web server communication with the back-end (steps 2,3)

web browser, are widely distributed and they are typicaly
developed independently of the web service, it is critical that
any fault tolerance scheme used be transparent to the client.
Schemes for transparent server replication[3,7,18, 25]
sometimes require deterministic servers for reply generation
or do not recover requests whose processing was in progress
at the time of failure. We discuss some of these solutions in
more detail in Sections |1 and V.

We have previously developed a scheme for client-
transparent fault-tolerant web service that overcomes the
disadvantages of existing schemes[1]. The scheme is based
on logging of HTTP requests and replies to a hot standby
backup server. Our origina implementation was based on
user-level proxies, required non-standard features of the
Solaris raw socket interface, and was never intergrated with a
real web server. That implementation did not require any
kernel modifications but incurred high processing overhead.
The contribution of this paper is a more efficient
implementation of the scheme on Linux based on kernel
modifications and its integration with the Apache web server
using Apache’'s module mechanism. The small modifications
to the kernel are used to provide client-transparent multicast of
reguests to a primary server and a backup server as well as the
ability to continue transmission of areply to the client despite
server failure. Our implementation is based on off-the-shelf
hardware (PC, router), and software (Linux, Apache). We
rely on the standard reliability features of TCP and do not
make any changes to the protocol or itsimplementation.

In Section |1 we present the architecture of our scheme and
key design choices. Section Il discusses our implementation
based on kernel and web server modules. A detailed analysis
of the performance results including throughput, latency, and
consumed processing cycles is presented in Section|V.
Related work is discussed in Section V.



Il. TRANSPARENT FAULT-TOLERANT WEB SERVICE

In order to provide client-transparent fault-tolerant web
service, a fault-free client must receive avalid reply for every
request that is viewed by the client as having been delivered.
Both the request and the reply may consist of multiple TCP
packets. Once a request TCP packet has been acknowledged
to the client, it must not be lost. All reply TCP packets sent to
the client must form consistent, correct replies to prior
requests.

We assume that only a single server host at atime may fail.
We further assume that hosts are fail-stop[24]. Hence, host
failure is detected using standard techniques, such as periodic
heartbeats. Techniques for dealing with failure modes other
than fail-stop are important but are beyond the scope of this
paper. We also assume that the local area network connecting
the two servers as well as the Internet connection between the
client and the server LAN will not suffer any permanent
faults. The primary and backup hosts are connected on the
same IP subnet. In practice, the reliability of the network
connection to that subnet can be enhanced using multiple
routers running protocols such as the Virtual Router
Redundancy Protocol [19]. This can prevent the local LAN
router from being a critical single point of failure.

In order achieve the fault tolerance goals, active replication
of the servers may be used, where every client request is
processed by both servers. While this approach will have the
best fail-over time, it suffers from several drawbacks. First,
this approach has a high cost in terms of processing power, as
every client request is effectively processed twice. A second
drawback is that this approach only works for deterministic
servers. If the servers generate replies non-deterministically,
the backup may not have an identical copy of areply and thus
it can not always continue the transmission of a reply should
the primary fail in the midst of sending areply.

An dternative approach is based on logging. Specifically,
request packets are acknowledged only after they are stored
redundantly (logged) so that they can be obtained even after a
failure of a server host[1,3]. Since the server may be non-
deterministic, none of the packets of a reply can be sent to the
client unless the entire reply is safely stored (logged) so that
its transmission can proceed despite a failure of a server
host[1]. The logging of requests can be done at the level of
TCP packets[3] or at the level of HTTP requests[1]. If
request logging is done at the level of HTTP reguests, the
reguests can be matched with logged replies so that a request
will never be reprocessed following failure if the reply has
already been logged[1]. Thisiscritical in order to ensure that
for each request only one reply will reach the client. If
request logging is done strictly at the level of TCP packets[3],
it is possible for a request to be replayed to a spare server
following failure despite the fact that a reply has aready been
sent to the client. Since the spare server may generate a
different reply, two different replies for the same request may
reach the client, clearly violating the requirement for
transparent fault tolerance.

We have previously proposed[1] implementing transparent
fault-tolerant web service using a hot standby backup server
that logs HTTP requests and replies but does not actualy
process requests unless the primary server fails. The error
control mechanisms of TCP are used to provide reliable
multicast of client requests to the primary and backup. All
client request packets are logged at the backup before arriving
at the primary and the primary reliably forwards a copy of the
reply to the backup before sending it to the client. Upon
failure of the primary, the backup seamlessly takes over
receiving partialy received requests and transmitting logged
replies. The backup processes logged requests for which no
reply has been logged and any new requests.

Since our scheme is client-transparent, clients communicate
with a single server address (the advertised address) and are
unaware of server replication[1]. The backup server receives
al the packets sent to the advertised address and forwards a
copy to the primary server. For client transparency, the source
addresses of all packets received by the client must be the
advertised address. Hence, when the primary sends packets to
the clients, it ‘*spoofs’’ the source address, using the service's
advertised address instead of it's own as the source address.
The primary logs replies by sending them to the backup over a
reliable (TCP) connection and waiting for an acknowledgment
before sending them to the client. This paper uses the same
basic scheme but the focus here is on the design and
evauation of a more efficient implementation based on kernel
modifications.

I1l. IMPLEMENTATION

There are many different ways to implement the scheme
described in Sectionll. As mentioned earlier, we have
previously done this based on user-level proxies, without any
kernel modifications[1]. A proxy-based implementation is
simpler and potentially more portable than an implementation
that requires kerne modification but it incurs higher
performance overhead (SectionIV). It is aso possible to
implement the scheme entirely in the kernel in order to
minimize the overhead [22]. However it is generally desirable
to minimize the complexity of the kernel [8,17]. Furthermore,
the more modular approach described in this paper makes it
easier to port the implementation to other kernels or other web
servers.

Our current implementation consists of a combination of
kernel modifications and modifications to the user-level web
server (Figure 2). TCP/IP packet operations are performed in
the kernel and the HTTP message operations are performed in
the web servers. We have not implemented the back-end
portion of the three-tier structure. This can be done as a
mirror image of the front-end communication[1].
Furthermore, since the transparency of the fault tolerance
scheme is not critical between the web server and back-end
servers, simpler and less costly schemes are possible for this
section. For example, the front-end servers may include a
transaction ID with each request to the back-end. If arequest
is retransmitted, it will include the transaction ID and the
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Figure 2: Implementation: replication using a combination of kernel
and web server modules. Message paths are shown.

back-end can use that to avoid performing the transaction
multiple times[20].

A. TheKernel Module

The kernel module implements the client-transparent
atomic multicast mechanism between the client and the
primary/backup server pair. In addition it facilitates the
transmission of outgoing messages from the server pair to the
client such that the backup can continue the transmission
seamlesdly if the primary fails.

The public address of the service known to clients is
mapped to the backup server, so the backup will receive the
client packets. After an incoming packet goes through the
standard kernel operations such as checksum checking, and
just before the TCP state change operations are performed, the
backup’s kernel module forwards a copy of the packet to the
primary. The backup’s kernel then continues the standard
processing of the packet, as does the primary’s kernel with the
forwarded packet.

Outgoing packets to the client are sent by the primary.
Such packets must be presented to the client with the service
public address as the source address. Hence, the primary’s
kernel module changes the source address of outgoing packets
to the public address of the service. On the backup, the kernel
processes the outgoing packet and updates the kernel’s TCP
state, but the kernel module intercepts and drops the packet
when it reaches the device queue. TCP acknowledgments for
outgoing packets are, of course, incoming packets and they
are multicast to the primary and backup as above.

The key to our multicast implementation is that when the
primary receives a packet, it is assured that the backup has an
identical copy of the packet. The backup forwards a packet
only after the packet passes through the kernel code where a
packet may be dropped due to a detected error (eg.,
checksum) or heavy load. If aforwarded packet is lost while
enroute to the primary, the client does not receive an
acknowledgment and thus retransmits the packet. This is
because only the primary’s TCP acknowledgments reach the
client. TCP acknowledgments generated by the backup are
dropped by the backup’s kernel module.
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B. The Server Module

The server module is used to handle the parts of the scheme
that deal with messages at the HTTP level. The Apache
module acts as a handler [27] and generates the replies that are
sent to the clients. It is composed of worker, mux, and demux
processes.
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Figure 3: Server Structure: The mux/demux processes are used to
reliably transmit a copy of the replies to the backup before they are
sent to clients. The server module implements these processes and
the necessary changes to the standard worker processes.
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1) Worker Processes: A standard Apache web server
consists of several processes handling client requests. We
refer to these standard processes as worker processes. In
addition to the standard handling of requests, in our scheme
the worker processes also communicate with the mux/demux
processes described in the next subsection.

The primary worker processes receive the client request,
perform parsing and other standard operations, and then
generate the reply. Other than a few new bookkeeping
operations, these operations are exactly what is done in a
standard web server. After generating the reply, instead of
sending the reply directly to the client, the primary worker
processes pass the generated reply to the primary mux process
so that it can be sent to the backup. The primary worker
process then waits for an indication from the primary demux
process that an acknowledgment has been received from the
backup, signaling that it can now send the reply to the client.

The backup worker processes perform the standard
operations for receiving a request, but do not generate the
reply. Upon receiving a request and performing the standard
operations, the worker process just waits for a reply from the
backup demux process. Thisisthe reply that is produced by a
primary worker process for the same client request.

2) Mux/Demux Processes. The mux/demux processes
ensure that a copy of the reply generated by the primary is
sent to and received by the backup before the transmission of
the reply to the client starts. This alows for the backup to
seamlessly take over for the primary in the event of a failure,
even if the replies are generated non-deterministically. The
mux/demux processes communicate with each other over a
TCP connection, and use semaphores and shared memory to
communicate with worker processes on the same host (figure
3). A connection identifier (client’s IP address and TCP port
number) is sent along with the replies and acknowledgments
so that the demux process on the remote host can identify the
worker process with the matching request.



IV. PERFORMANCE EVALUATION

The evauation of the scheme was done on 350 MHz Intel
Pentium Il PC's interconnected by a 100Mb/sec switched
network based on a Cisco 6509 switch. The servers were
running our modified Linux 2.4.2 kernel and the Apache
1.3.23 web server with logging turned on and with our kernel
and server modules installed. We used custom clients similar
to those of the Wisconsin Proxy Benchmark[2] for our
measurements. The clients continuously generate one
outstanding HTTP request at a time with no think time. For
each experiment, the requests were for files of a specific size
as presented in our results. Internet traffic studies[13,10]
indicate that most web replies are less than 10-15 kbytes in
size. Measurement were conducted on at least three system
configurations. unreplicated, simplex, and duplex. The
“‘unreplicated’’ system is the standard system with no kernel
or web server modifications. The ‘‘simplex’’ system includes
the kernel and server modifications but there is only one
server, i.e., incoming packets are not realy multicast and
outgoing packets are not sent to a backup before transmission
to the client. The extra overhead of ‘‘simplex’’ relative to
“‘unreplicated’’ is due mainly to the packet header
manipulations and bookkeeping in the kernel module. The
“‘duplex’’ system isthe full implementation of the scheme.
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20
Reply Size (Kbytes)

30 40 50

Figure 4: Average latency (msec) observed by a client for different
reply sizes and system modes. The Reply Overhead line depicts the
latency caused by replication of the reply in duplex mode.

A. Latency

Figure 4 shows the average latency on an unloaded server
and network from the transmission of arequest by the client to
the receipt of the corresponding reply by the client. There is
only a single client on the network and this client has a
maximum of one outstanding request. The results show that
the latency overhead relative to the unreplicated system
increases with increasing reply size. Thisis due to processing
of more reply packets. The difference between the ‘‘Reply
Overhead’’ line and the ‘‘Unreplicated’’ line is the time to
transmit the reply from the primary to the backup and receive
an acknowledgement at the primary. This time accounts for
most of the duplex overhead. Note that these measurements
exaggerate the relative overhead that would impact a red
system since: 1) the client is on the same local network as the
server, and 2) the requests are for (cached) static files. In
practice, taking into account server processing and Internet
communication delays, server response times of hundreds of
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milliseconds are common. The absolute overhead time
introduced by our scheme remains the same regardless of
server response times and therefore our implementation
overhead is only a small fraction of the overall response time
seen by clients.

B. Throughput

Figure 5 shows the peak throughput of a single pair of
server hosts for different reply sizes. The throughputs of
“‘unreplicated” and ‘*simplex’’ (in Mbytes/sec) increase until
the network becomes the bottleneck. However, the duplex
mode throughput peaks at less than half of that amount. This
is due to the fact that on the primary, the sending of the reply
to the backup by the server module and the sending of reply to
the clients (figure 2) occur over the same physical link.
Hence, the throughput to the clients is reduced by half in
duplex mode. To avoid this bottleneck, the transmission of
the replies from the primary to the backup can be performed
on a separate dedicated link. A high-speed Myrinet[9] LAN
was avalable to us and was used for this purpose in
measurements  denoted by  ‘‘duplex-mi’’. These
measurements show a significant throughput improvement
over the duplex results, as a throughput of about twice that of
duplex mode with a single network interface is achieved.

C. Processing Overhead

Table 1 shows the CPU cycles used by the servers to
receive one request and generate a reply. These
measurements were done using the processor’s performance
monitoring counters[21]. For each configuration the table
presents the kernel-level, user-level, and total cycles used.
The cpu% column shows the cpu utilization at peak
throughput, and indicates that the system becomes CPU bound
as the reply size decreases. This explains the throughput
results, where lower throughputs (in Mbytes/sec) were
reached with smaller replies.

Based on Table 1, the duplex server (primary and backup
combined) can require more than four times (for the 50KB
reply) as many cycles to handle a request compared with the
unreplicated server. However, as noted in the previous
subsection, these measurements are for replies generated by
reading cached static files. In practice, for likely applications
of this technology (dynamic content), replies are likely to be
smaller and require significantly more processing. Hence, the
actual relative processing overhead can be expected to be
much lower than the factor of 4 shown in the table.

D. Comparison with a User-Level Implementation

As mentioned earlier, our original implementation of this
fault tolerance scheme was based on user-level proxies,
without any kernel modifications[1]. Table 2 shows a
comparison of the processing overhead of the user-level proxy
approach with the implementation presented in this paper.
This comparison is not perfectly accurate. While both
schemes were implemented on the same hardware, the user-
level proxy approach runs under the Solaris operating system
and could not be easily ported to Linux due to a difference in
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Figure 5: System throughput (in requests and Mbytes per second) for different message sizes (kbytes) and system modes. Duplex-mi line denotes setting
with multiple network interfaces for each server - one interfaceis used only for reply replication.

TABLE 1: Breskdown of used CPU cycles (in thousands) - cpu% column indicates CPU utilization during peak throughput.

1kbyte reply 10kbyte reply 50kbyte reply
System Mode user | kernel | total | cpu% | user | kernel | total | cpu% | user | kernel | total | cpu%
Duplex (primary) 190 337 527 100 193 587 780 v 224 1548 1772 53
Duplex (backup) 147 330 477 91 158 615 773 76 185 1790 1958 58
Duplex-mi (primary) | 192 353 545 100 198 544 742 85 225 | 1283 | 1508 85
Duplex-mi (backup) | 147 355 502 93 152 545 697 80 169 | 1124 | 1293 72
Simplex 186 250 436 100 191 365 556 99 208 871 1079 70
Unreplicated 165 230 395 100 166 342 508 99 178 730 908 60

TABLE 2: User-level versus kernel support — CPU cycles (in
thousands) for processing areguest that generates a 1Kbyte reply.

Implementation Primary | Backup | Total
User-level Proxies 1860 1370 3230
Kernel/Server Modules 337 330 667

the semantics of raw sockets. In addition, the server programs
are different although they do similar processing. However,
the difference of amost a factor of 5 is clearly due mostly to
the difference in the implementation of the scheme, not to OS
differences. The large overhead of the proxy approach is
caused by the extraneous system calls and message copying
that are necessary for moving the messages between the two
levels of proxies and the server.

V. RELATED WORK

Early work in thisfield, such as Round Robin DNS[11] and
DNS aliasing methods, focused on detecting a fault and
routing future requests to available servers. Centralized
schemes, such as the Magic Router[4] and Cisco Local
Director [12], require request packets to travel through a
central router where they are routed to the desired server.
Typicaly the router detects server failures and does not route
packets to servers that have failed. The central router is a
single point of failure and a performance bottleneck since al
packets must travel through it. Distributed Packet
Rewriting [7] avoids having single entry point by allowing the
servers to send messages directly to clients and by
implementing some of the router logic in the servers so that
they can forward the requests to different servers. None of
these schemes support recovering requests that were being
processed when the failure occured, nor do they deal with
non-deterministic and non-idempotent regquests.

There are various server replication schemes that are not
client transparent. Most till do not provide recovery of
requests that were partialy processed. Frolund and
Guerraoui [16] do recover such requests. However, the client
must retransmit the request to multiple servers upon failure
detection and must be aware of the address of all instances of
replicated servers. A consensus agreement protocol is also
required for the implementation of their ‘‘write-once
registers’ which could be costly, although it allows recovery
from non fail-stop failures. Our kernel module can be seen as
an dternative implementation of the write-once registers
which aso provides client transparency. Zhao et a[29]
describe a CORBA-based infrastructure for replication in
three-tier systems which deal with the same issues, but again
is not client-transparent.

The work by Snoeren et al [26] is another example of a
solution that is not transparent to the client. A transport layer
protocol with connection migration capabilities, such as SCTP
or TCP with proposed extensions, is used along with a session
state synchronization mechanism between servers to achieve
connection-level  failover. The requirement to use a
specialized transport layer protocol at the client is obviously
not transparent to the client.

HydraNet-FT [25] uses a scheme that issimilar to ours. Itis
client-transparent and can recover partially processed
requests. The HydraNet-FT scheme was designed to deal with
server replicas that are geographically distributed. As aresult,
it must use specialized routers (‘‘redirectors'’) to get packets
to their destinations. These redirectors introduces a single
point of failure similar to the Magic Router scheme. Our
scheme is based on the ability to place all server replicas on
the same subnet[1]. As a result, we can use off-the-shelf



routers and multiple routers can be connected to the same
subnet and configured to work together to avoid a single point
of faillure. Since HydraNet-FT uses active replication, it can
only be used with deterministic servers while our standby
backup scheme does not have this limitation.

Alvisi et a implemented FT-TCP[3], a kernel level TCP
wrapper that transparently masks server failures from clients.
While this scheme and its implementation are similar to ours,
there are important differences. Instead of our hot standby
spare approach, a logger running on a separate processor is
used. If used for web service fault tolerance, FT-TCP requires
deterministic servers (see Section Il) and significantly longer
recovery times. In addition, they did not evaluate their
scheme in the context of web servers.

VI.

We have proposed a client-transparent fault tolerance
scheme for web services that correctly handles al client
requests in spite of a web server failure. Our scheme is
compatible with existing three-tier architectures and can work
with non-deterministic and non-idempotent servers. We have
implemented the scheme using a combination of Linux kernel
modifications and modification to the Apache web server. We
have shown that this implementation involves significantly
lower overhead than a dtrictly user-level proxy-based
implementation of the same scheme. Our evaluation of the
response time (latency) and processing overhead shows that
the scheme does introduce significant overhead compared to a
standard server with no fault tolerance features. However,
thisresult only holdsif generating the reply requires amost no
processing. In practice, for the target application of this
scheme, replies are often small and are dynamically generated
(requiring significant processing). For such workloads, our
results imply low relative overheads in terms of both latency
and processing cycles. We have also shown that in order to
achieve maximum throughput it is critical to have a dedicated
network connection between the primary and backup.

CONCLUSION
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