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Abstract

With existing virtualized systems, hypervisaildres lead to
overall system failure and the loss of all thenw in progress of
virtual machines (VMs) running on the systeMe introduce
ReHype, a mechanism for ra@oy from hypervisor failures by

1. Introduction

System virtualization[19] enables server consolidation by
allowing multiple virtual machines (VMs) to run on a single
physical host while providing workload isolation and xitde

resource managementhe hypervisor manages the access of the

booting a ne instance of the hypervisor while preserving the VMs to physical resources and is critical to the operation of the

state of running VMs. VMs are stalled during thgpérvisor
reboot and resume normakeeution once the me hypervisor

entire system.Failure of the hypervisor due to software bugs or
transient hardware faults generally results in the failuralahe

instance is running. Hypervisor failures can lead to arbitrary statesystems VMs. Receery from such adilure typically irvolves

corruption and inconsistencies throughout the syst&aHype
deals with the challenge of protecting the reced typervisor

rebooting the entire system, resulting in loss of the work in
progress in all the VMsThis problem can be mitigated through

instance from such corrupted state and resolving inconsistencieshe use of periodic checkpointing of all the VMs and restoration
between different parts ofypervisor state as well as between the of all the VMs to their last checkpoint upon rebobibwever, this

hypervisor and VMs and between theypbkrvisor and the
hardware. W haveimplemented ReHype for the Xeggervisor.
The implementation was done incrementallying results from

fault injection eperiments to identify the sources of dangerous
The implementation of

state corruption and inconsistencies.
ReHype iwvolved only 880 LOC added or modified in Xeithe
memory spacewerhead of ReHype is only 2.1MB for a pristine
copy of the hypervisor code and static data plus a small rederv
memory area. The fault injection campaigns used/duate the
effectiveness of ReHype wolved a system with multiple VMs
running /O and Wpercall-intensie benchmarks.  Our
experimental results sho that the ReHype prototype can
successfully rec@r from over 90% of detected ypervisor
failures.
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involves performanceverhead for checkpointing during normal
operation as well as loss upon reey of work done since the
last checkpoint.

This paper introduces andvaluates a mechanism for
recovery from hypervisor failures calleBeHype. To the best of
our knawledge, ReHype is the first mechanism that allows VMs to
survive hypervisor failure without anloss of work in progress
and without ap performance werhead during normal operation.
Upon hypervisor failure, ReHype boots awtgypervisor instance
while preserving the state of running VMs. VMs are stalled for a
short duration during the hypervisor reboot. After awne
hypervisor is booted, ReHype igimtes the preserved VM states
with the nev hypervisor to allev the VMs to continue normal
execution.

Hypervisor failure almost alays involves state corruption.
Corruptions can occur in the hypervisor state as well as in VM
state. Henceno reca@ery mechanism that relies on system state
at the time a failure is detected can be 100% guaranteed to restore
all system components to valid states. Furthermore, since
ReHype irolves reinitializing part of the hypervisor state while
preserving the rest of the state, the result ofuegamay include
inconsistencies in the hypervisor state, betwegpetvisor and
VM states, and between the hypervisor and hardware stabes.
example, lypervisor failure can occur in the middle of handling a
hypercall from a VM or before ackmbdedging an interrupt from a
device controller.

A key ontribution of our work is to identify the speicif
sources of state corruptions and inconsistencies, determine which
of those are most likely to prent successful resery, and devise
mechanisms tow@rcome these problemaNe haveimplemented
and tested ReHype with the Xen[3]gervisor and VMs running

not made or distributed for profit or commercial advantage and that copies| jnux. We we the results of fault injection to incrementally
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enhance[17] an initial basic version of ReHype.These
incremental steps impve the rate of successful raawy from an
initial 5.6% of detected faults tover 90% of detecteddults. Our
evduation of the ihal scheme points to ways in which the success
rate can be further impved.



ReHype builds upon the Otheovid [4] mechanism for resulting in the failure of those VMwaen if the rest of the system
microrebooting the Linux drnel while preserving process states is restored to correct operation. Based on the reliability goal
and the RootHammer [12] mechanism for rejuation of the Xen above, we cefine recoery from VMM failure to be successful if
hypervisor through a reboot while maintaining VM state without no more than one of thisting VMs running applicationsafls
the overhead of saving VM memory images to persistent storage. and the recoered VMM maintains its ability to host the other
Compared to Otherrld, the memory werhead for ReHype is existing VMs as well as create and hosivnéMs.
significantly lowver. Furthermore, while ReHype does notatve
ary changes to the VMs or the applications in the VMS, g, gilures and successfully raing from them, as difed
Othervorld requires modi€ations for system call retries and, in g0 To accomplish this goal, mechanisms must exist to:
mary cases, app_lication-\lel “c_rash proceduresthat are imoked (1) detect VMM failure, (2) repair VMM corruption, and
upon recwery. Finally, we design and edluate enhancements 10 (3) regole inconsistencies within the VMM, between the VMM
the basic reogery mechanism in the context of gpervisor, and VMs, and between the VMM and the haamtsv Detecting
while Otherworld is focused on microrebooting of an @#nkl. VMM failure boils down to being able to detect a VMM crash,
RootHammer does deal with the XegpRrvisor and prades hang, or silent data corruption, as described in Subsextion
proactve rejuvenation. Hevever, proactve rjuvenation is Subsection 2.2liscusses diérent approaches to repairing VMM
simpler since it does not address rexy from failure and thus corruption and the traddsf among them in terms of
_does _not _deal with possible arbitrary corruptions and implementation complexity and xpected success rates.
inconsistencies throughout the system. Inconsistencies among the states of different components

The folloving section discusses the requirements and following recavery may be resolved entirely in the VMM or may
approaches to reeer from a Hiled typervisor Section 3, require VM modifcations. Details of the sources of
describes the implementation of arsion of ReHype that inconsistencies and techniques for resolving inconsistencies are
provides basic transparent hypervisor negg but does not deal described in Subsection 2.3.
with mary problems caused by state corruptions and
inconsistencies. Incrementahprovements to ReHype, based on 2 1. Detection
fault injection results, are described in SeclonThedetails of
the experimental setup are presented in Se8tiorSectiorb
presents an analysis of the results for the final version of ReHype.
Related work is discussed in Section 7.

Successfully‘tolerating” V MM failure requires detection of

VMM failures can be manifested as VMM crashes, hangs, or
silent corruption (arbitrary incorrect actionsrashes can be
detected using existing VMM panic angception handlers.If

the VMM panics, then a crash has occurred. Detecting VMM
. . hangs requiresxérnal hardwre. Atypical hang detectpsuch

2. ToIeratlng VMM Failure as the one implemented in the Xen VMM, usesa&cidog timer
Hardware faults or software bugs in the virtual machine monitor that sends periodic interrupts to the VMM. The interrupt handler
(VMM T) can cause the corruption of VMM state or the state of checks whether the VMM has performed certain actions since the
VMs. Asa result, the VMM or individual VMs may crash, hang, last time the handler ag irvoked. If it has not, the handler

or perform erroneous actions. The safest way toveecthe signals a hang.

system is to reboot the VMM and also reboot each of the VMs.
However, this requires a lengghrecovery process and lves mechanisms wolve redundant (e.g., replicated) data structures
loss of the wrk in progress of applications running in the VMs. ;.4 redundant computations (e.g., performing sanity checks).

Periodic checkpointing of VMs can reduce the amount of 10St £y nately our fault injection results (Section 6) indicate that the
work upon recwoery but the work done since the last checkpoint is majority of VMM failures (80%) are manifested as crashes and

lost and there is performanceethead during normal operation  pangs “and are thus detectable using the simple mechanisms
for checkpointing. Alternative mechanisms wolve less oerhead discussed ale. More etensie fault injection campaigns in the
and lost work but may result in re@y of only parts of the | i, x kernel[7, 8]indicate that the fraction of VMMaflures

system or een a @mplete failure to rea®r a working system.  apifested as crashes or hangs is likely to be significantly higher.
This section discusses the basic design altessatifor

mechanisms that can re@n from VMM failure.

Silent VMM corruption is more difcult to detect.Detection

2.2. Repairing VMM Corruption

Virtualization is often used to consolidate the workloads of . . L .
Repair is initiated when the detection mechanisrokies a filure

multiple physical servers on a single physical ha¥ith multiple handler Co d VMM hen b ired by eith
physical servers, a single software or transient hardware fault may:. andier rrupt_e_ stat_e_ can then be repaired by either
cause thedilure of one of the seevs. Anaggressie reliability identifying and _flxmg the s_pecmc parts of t_he VMM state that are
goal for a virtualized system is to do no worse than a cluster Ofcgr_rupted or smpl_y booting a “,"'eVM'V' |n_stance. A major
physical serers. Hence,if a transient hardware fault or a difficulty with the first alternatie is the requirement to identify
software ult in ary com’ponent (including the VMM) &cts which parts of the state are erroneous. This is likely to require
only one VM running applications, the goal is m&ecovery significant overhead for maintaining redundant data structures.
from VMM failure that aoids losing \}mrk in progress in the VMs Furthe_rmore, compie_repair operations performed in t_he codte
necessarily relies on utilizing the VM states at the timeaibdire of a falled VMM can increase the chanceaifetd receeries [20].

detection. Oneor more of those VM states may be corrupted, Hence, we focus on the latter alternati

' _ Normally, a g/stem reboot would cause the loss of all VM
T The termshypervisor andVMM are used interchangeably. states. Thesimplest approach to preserdl VM states across a



reboot is to checkpoint the VMs to stable storage in #ileré

This can be done by either directly reusing the preseMMM

handler Once a fresh system boots up, the VMs can be restored.structures from the old VMM instance or creatingvriastances

However, checkpointing VM state in the context of a failed VMM
can increase the chance of failed rexi@s since the VMM must

of the structures and populating them with values from the old
VMM instance. The first alternate is smpler to implement as

perform /O and access possibly corrupted structures that holdonly pointers to the presexe structures need to be restored in the
VM state. In addition, the space and timeerbead of nev VMM instance. Implementation of the second altexmsais
checkpointing can be large as the state of all VMs must be copiednore complex, as it requires deep gopf all the required

to stable storage. structures from the old VMM and updating all pointers within
those structures.With either of these alternaés there is a
possibility of ending up with corrupted values in the'nEMM'’s
data structuresHowever, if the preserved structures are reused,
there is a greater risk of also introducing into thev N&MM
instance corrupted pointers, which may lead to further corruption.

An alternatve gproach to a system-wide reboot, is to
microreboot [3] the VMM. In this approach, VM states are
presered in memory across the rebodthis avoids the space and
time overhead of checkpointing VM states to stable storagece
the nev VMM has been booted, it must be re-gried with the
presered VMs. This re-intgration can be done by either There is no perfect solution to the problem of ending up with
recreating the VMM structures used to manage the VMs or corrupted values in the weVMM'’s data structures. As discussed
reusing VMM structures presarst from the old VMM. Either above, some structures can be initialized with static ‘safe”
way, some amount of VMM data needs to be presdracross a  values. Inother cases, data structures may be populated based on
VMM reboot for the re-integration process. other data structures from the failed VMM instance, at least
ensuring consistegyc(see Sectio2.3). Ingeneral, the rec@ry
based on whether the meVMM is rebooted in place or in a  Process needs to ensure that a!l values that will be used by the new
resered memory area, and, gading VMM structures for VMM msta_nce are safe — will _not_lead _to subsequent \_/MM
managing VMs, whether to reuse these structures from the oldf@ilure. Thismay involve performing integrity checks, possibly
VMM instance or create meinstances of these structureEhe requiring maln_talnlng redundant information, such as logs, during
following paragraphs discuss these variations, théécebn the normal operation.
ability to successfully reaer a VMM, and the implementation
complexity irvolved.

Variations of the microreboot approach can be gmieed

Given the tradedb presented in this subsection, ReHype
uses the microreboot approach and opts for a simple
implementation that does not require major modtfons to the
nWMM. Hence, ReHype preserves and reuses almost all of the
VMM’ s dynamic memory but updates anf&ey data structures
with “safe” values, as described in sections 3 and He bendf
of reusing most of the VMM’ data structures is that it alled
aReHype to be easily integrated into a VMM (Xen in our case)
with minor (880 LOC added/modified) moitiations. Despit¢he
reuse of old VMM data in ReHypeadlt injection results shoa
high rate of successful regmies (Section 6).

The choices of whether to reboot the VMM in place or in a
resened memory area affects the operations that must be done i
the failure handler This, in turn, can &ct the chances of a
successful rea@ry. When the n& VMM is booted in place, the
failure handler must perform twoperations: 1presere VMM
state (data structures) needed for re-integration by copying it to
resened memory location, and Byewrite the existing VMM
image in memory with a meimage. Thesevo operations do not
have © be performed if the n& VMM is booted into a reseed
memory area.There is no VMM state to cgpsince the ne
VMM is confined to the reserved memory area on boot so no old 2.3. Resolving Inconsistencies
VMM memory state is lost. In addition, thewm& MM image can By design, the VMM is assumed to be reliable by the VMs and
be preloaded into the reserved memory area without affecting thenargvare.  pically, the VMM itself is, for the most part,
operation of the current VMM Performing fewer operations in
the failure handleras is he case when rebooting into a reserv
area, can increase the chance of a successfulergcdHoweve,
as discussed beip the choice of booting the weVMM instance
in a reserved memory area requires compfeerations for the re-
integration of the ne VMM instance with the preserved VMs.

implemented with the assumption that there are no teedw
faults and no software faults in the VMM codeThese
assumptions are violated when the VMMil$. Thus, after
recovery from a failed VMM, een if none of the states of the
system components are corrupted, these states may be
inconsistent, preventing the system from operating correctly.

Since the state of the old VMM instance may be corrupted, The VMM executes some operations in critical sections to
the ability to successfully reeer is drectly related to the amount  op5yre atomicitye.g. update a VM grant tabledtomicity can be
of data reused from the old VMM instance. In some cases, dataigated when a VMM failure occurs in the middle of such critical
structures in the me VMM instance can be re-initialized to static  ggctions. Insuch cases, some data structures may be partially
values (e.g., clearing all locks) or reconstructed from sources thatupdated, leading to inconsistencies within the VMM
are unlikely to be corrupted (e.g., obtaining the CPUID of a core (VMMN/MM). The VMs expect the VMM to provide a

from the hardare). Hovever, some data structures are  monotonically increasing system time, handigércalls, and
dynamically updated based on the activity of the system andgejier interrupts. The hardware expects the VMM to

cannot be re-initialized with static osafe’ values. Br example, acknavledge all interrupts it recess. Whena VMM failure

a corrupted VM page table can allea VM access to the VMM or - qccyrs, the assumption of a reliable VMM is violated and this can

another VMs memory space. lead to inconsistencies between the VMM and VMs (VMM/VM)
Re-intgrating the n& VMM state with preserved VM states and between the VMM and hardware (VMM/haete). The

involves creating VMM structures that can manage the VMs. recosery process must resavihese inconsistencies so that the



virtualized system can continue to operate correctihe

that, at least for the hypercalls that wekereised by our tayet

following paragraphs discuss in more detail these inconsistenciesystem, simply retrying hypercalls does work most of the time and

and the techniques for resolving them.

Sources of VMM/VMM inconsistencies include partially
updated structures, unreleased locks, and memory |eBks.
options for resolving these inconsistencies are, essentadiyial

allows VMs to continue to operate. In general, hypercalls that are
not idempotent mayafl on a retry in which case the VM
executing the hypercall may also fail.

Hypercall retry can be implemented by modifying the VM to

cases of the options for dealing with state corruption, discussed inadd a ‘wrapper’ around hypercall imokation that will re-ivoke

the previous subsectionResolving inconsistencies caused by

the hypercall if a retryalue is returned by the VMM. The VMM

partially updated structures requires either reconstructing the datamust also be modified to return a retglue indicating a partially

structures using information from theiled VMM or using
redundant information logged prior to failure to fix thewne
VMM’ s date. Aschedules un queue is anxample of a data
structure for which the former technique can be used.
Inconsisteng can occur if a VCPU becomes runnable but the
VMM fails before inserting it into the run queue. Resolving this
inconsisteng requires re-initializing the run queue to empty upon

executed lypercall. Thisapproach allows the VMs more control
over which hypercalls to retry and alle the VMs to gracefully
fail if a hypercall retry is unsuccessful.

Hypercall retry can be implemented without modifying the
VMs. To force re-gecution of a hypercall after recery, the
VMM adjusts the VMS instruction pointer to point back to the
hypercall instruction (usually a trapping instruction). When the

bootup and re-inserting all runnable VCPUs (obtained from the \;\1 is scheduled to run, the very next instructionxiécaites will

failed VMM) into the run queueFor other data structures, such
as the ones that track memory page usage
reconstruction is more di€ult so the latter technique may be
preferable. Br instance, an inconsistgncan occur if a dilure

happens right when a page use counter has been upddted b

before that page has been added to a page tRasolving this
inconsisteng by traversing all page table entries to count the
actual mappings to that page can be dariéscomple and slav.
Instead, the entire mapping operation can be made atomic witl
respect to failure usingwrite-ahead logging, invdving a small
overhead during normal operation and simple, fast correction o
ary inconsistencies upon remy.

Locks and semaphores that are acquired prior to VMM

information

be the gpercall. Thismechanism is already used in the X&n

'VMM to allow the preemption of long runningypercalls

transparently to the VMs.

The VMM is responsible for dedéring interrupts from
hardware and eent signals from other VMs as virtual interrupts to
the destination VM.These virtual interrupts may be lost if the
VMM fails. Someinconsistencies of this type can be resdlv

pwithout ary modifications to the system by relying omisting

timeout mechanisms that are implemented in teendds and

fdevice drivers of the VMs. A timeout handler can resend

commands to a de&e or resignal another VM if anxpected
interrupt does not amé within a specified period of timeWe
have veified that timeout mechanisms exist for the Linux SCSI

failure must be released (re-initialized to a static value) Upon pyqck driver (used for SAA disks) and the Intel E1000 NIC

recovery to allov the system to reacquire them when needed.

driver, representing the most important vies for serers

order to do so, all locks and semaphores must be tracked and "&storage and network controllers)Obviously such timeout

initialized in data structures that are reused or copied from the

failed VMM.

A memory leak can occur if a failure happens between
allocation and freeing of a memorygren in the VMM. Such a
memory leak is benign if the leadt region is small. After VMM

recovery, the system can be scheduled to be rebooted to reclaim

leaked memory Alternatively, leveaging work by Kurai and
Chiba[13], after reoeery, the virtualized system can be quickly
rejuvenated to get rid of gMmemory leaks.

Sources of VMM/VM inconsisteryc include non-
monotonically increasing system time, partiallyxeeuted
hypercalls, and undekred virtual interrupts. The correct
operation of may VMs depends on a monotonically increasing
system time.In a virtualized system, the VMs’ source of time is
the VMM. When a VMM is rebooted, its timex&ping structures

mechanisms do not deal with lost interrupts from unsolicited
sources, such as packet reception from a ortwdevice.
However, a least for network devices, the problem is ultimately
resolved by existing higherye end-to-end protocols (e.g., TCP).

A source of VMM/hardware inconsistenc is
unacknaevledged interrupts. Interrupt controllers will block an
interrupt source until the previous interrupt from that source has
been acknowledged by the process8mnce VMM failure can
occur at ap time, pending interrupts may wve get
acknavledged, thus blocking the interrupt source indedly. If
VMM recovery is done without performing a hardware reset, a
mechanism is needed to either reset the 1/O controller or to
acknavledge all pending interrupts during reegy. In the case
of acknavledging pending interrupts, the interrupt source must be
blocked at the interrupt controller before the interrupt is

are reset, potentially resulting in a time source for VMs that is not acknavledged to preent another interrupt from slipping by
monotonically increasing. In addition, such a reset can result in before the VMM is ready to handle the interrupt.

timer events set using time relag o the VMM’s g/stem time
prior to receery to be delayed. One technique for resolving this
inconsisteng is to dmply save the VMM time structures upon

3. Transparent VMM Microreboot

failure and restore those structures after the VMM reboot and We haveimplemented a ReHype prototype for version 3.3.0 of the

before the VMs are scheduled to rufhis allows time to
continue moving forward with no interruption visible by the VMs.

When the VMM recuwers from a &ilure, partially &ecuted
hypercalls must be rexecuted. Ourexperimental results sho

Xen[2] VMM. This section describes the implementation of a
version of ReHype that provides the basic capability to
microreboot the VMM while preserving the running VMs and
allowing them to resume normalxeeution following the



microreboot. Impreements to the basic scheme that enhance
recovery success rates are discussed in SedtioSofar, ReHype

has beenwaluated and validated only with paravirtualized VMs.
However, based on preliminary experimentation, we expect the
current ReHype implementation, withwfer no nodifications, to
operate successfully with fully-virtualized VMs.

To microreboot the VMM, ReHype uses the existing Xen
port of the Kdump[6] tool.Kdump is a kernel debugging tool
that provides facilities to allw a aashed system to load a pristine
kernel image, in this case the VMM image, on top of tkisting
image and directly transfer control to iThe Kdump tool by
itself, havever, does not provide anfacilities to presem parts of
memory such as those holding VM states. The burden of
memory preservation is on the kernel or VMM being booted.

A VMM microreboot is diferentiated from a normal VMM
boot by the wlue of a global flag added to the initialized data
segment of Xen. The flag is clear in the original VMM image on
disk but is set after loading the r@en/ image to memory using
the Kdump tool upon initial system booAll the modifications to

Pristine VMM Image
(code + init. data)
~1MB

u

VM 1...N memory
Figure 1: Layout of system memory for ReHype.
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changing the linér script used for creation of the Xen image.
Since the area reserved is in the bggremnt, no extra disk space
is taken up for the meVMM image. The bss segment only ésk

up space when it is loaded into memolypon failure detection,
before initiating a VMM microreboot, the failure handler copies
the initialized data and (unextended) bss segments to this ne
reserved memory.

As discussed albe, for each VM, the state that must be
presered includes both the VId’'memory image and parts of the
VMM state used to manage the VMBince this information is
maintained on the VMM heap, the VMMS$ heap must be

the bootup process described henceforth refer to actionspresered. Preservinghe VMM'’s heap requires modifications of

performed when the flag is set (the microreboot path).

On boot, the stock Xen VMM initializes the entire system
memory and allocates memory for its own use. The rwadibns
for ReHype must ensure that, upon nrexy, the nev VMM

the VMM’s hootup code. During VMM initialization, before the
heap is created, the old heap (from the previous VMM instance) is
walked to identify all the free pagesiVhen the ne& heap is
created and populated with free pages, only pages that are free in

instance preserves the memory used by VMs and memory thathe old heap are added to thevrfeeap. Thisensures that the ne

was wsed by the prgous VMM instance to hold state needed for
managing the VMs.Hence, as described in Subsection 3.1, the
ReHype ‘ersion of the Xen VMM allocates'afound’ the
presered memory regions during a VMM microrebodtvhen
the nev VMM instance is booted and initialized, it does not
contain information about the running VMs, and thus has ayp w
to run and manage thenSubsection 3.8escribes he the VMM

and VM states presesd during VMM receery are re-intgrated
with the nev VMM instance.

3.1. PreservingVMM and VM States

The state that must be preserved across a VMM microreboot

includes information in the VMM datic data segments, the
VMM’ s heap, the structure in the VMM that holds information

VMM will not allocate (averwrite) ary pages that are still in use.
To access the old heap, the page table from the old VMM must be
restored. Thigequires copying the old page directory from the
old bss segment, preserved as discussedeabm the nev bss
segment.

The Xen VMM maintains a structure (page_info) that holds
information about each machine page, such as the pagaship
and use countFor al the pages that are preserved across a VMM
microreboot, the information in this structure must be preserv
This structure is allocated in a special memory area, between the
bss segment and the heap. The VMM bootup caae modifed
to avoid initializing the page_info entries for pages that are not
free.

The stock Xen VMM image includes owgatic sgments

about each machine page, and special segments that are normalfjnit.text and init.data) that are normally used during bootup and

used only during VMM bootup.

VMM microreboot ivolves waerwriting the existing VMM
image (code, initialized data, and bss) with a pristine imdge.

VMM'’s datic data segments (initialized data and bss) contain

critical information needed for the operation of the system
following bootup of the ne VMM instance. For example, this

includes interrupt descriptors and pointers to structures on the Xen

heap, such as DomainsO¥M structure and the list of domains.
Hence, some of the information in the old static dagmsmats
must be preseed. Whileit is only necessary to presera sibset
of the static data segments, sinceytlage relatvely small, we
reduce the implementation complexity by preserving tigensats
in their entirety.

Figure 1 shars the memory layout for Xen, as modified for
ReHype. In particular the bss sgment is extended by
approximately 1MB — sfifcient space to hold complete copies
of the original bss and initialized dategegents. Thids done by

then freed to the heap so thatytlean be used for other purposes.
Hence, with stock Xen, a microreboot wouldewrite these
segments, potentially corrupting data in pages that had been
reallocated. @ prevent this problem, the bootup code (normal
and microreboot) has been modified toid freeing these pages.
This results is an extra 100KB memomediead.

Preserving the heap and static data segments afled f
VMM is unsafe — it can result in reeery failure if those
presered values are corrupted by the failed VMM. Section 4 will
discuss mechanisms that dramatically inwprahe chances of
successful rea@ries despite re-using the pressivheap and
static data segments.

3.2. Re-integrating VMM and VM States

Folowing a VMM microreboot, the VMM does not V& the
information required to resumeeeution and manage the VMs
that were running at the time dilure. Themissing system state



includes the list of VMs it was managing, the system time that _
was provided to the VMSs, information for interrupt routing (to Table 1. Improvements @er the basic ReHype recery.
processors) and forwarding (to VMs), and timeengs that were

scheduled by the VMs.To dlow the virtualized system to Mechanism Description

continue running, these components of the system state must be NMI IPI Use NMI IPIs in failure handlerAvoid
restored. Agliscussed in the previous subsection, all the required IPI blocking by failed VMM.

state is preserved across a VMM microrebddence, all that is Acknowledge Acknowledges all pending interrupts in
needed is to re-integrate the preserved information with the ne | interrupts all processors tovaid blocked

VMM instance. This re-integration is accomplished by copying a interrupts after recary.

few key values from the oId_stat.|c datagseents to the e static Hypercall retry All partially &ecuted hypercalls are
data sgments. Therestorano_n is done before the VMs can be retried transparently to the VMs.
scheduled to run. The following structures must be restored: FixSP Stack pointer set to “safe‘alue in

« Pointer to xmalloc free list: pwent memory leaks. tailure handler

» Pointers to the domain list and hash table:val}en to access i i

the state of the running VMs. NMI “ack” Execute iret to “ack” NMI when hang

+ Pointer to the Domain 0 descriptor: since Domain 0 is not detected on non-CPUO.

rebooted as part of reeary, the pointer to it must be restored to | Reinitialize locks | Dynamically allocated spin locks ang
allow Xen access to the Domain 0 structure. non-spin locks are unlocked.

« Pointers to timer eent objects: restore pending timereats on Reset page counter Reset page use counter based on page
the old timer heap to the wdimer heap. validation bit.

< Pointer to the machine-to-physical (m2p) mapping table:emak
awailable mapping of machine frame numbers tgspdal frame
numbers.

evduate the dectiveness of different rea@ry mechanismsTwo
system setups were used: 1AppVM and 3AppVMe 1AppVM

« System time variables: maintain monotonically increasing time. Seth was comprised .Of WMS: Domain 0, thePr_lwleged_ M
The time-stamp counter (TSC) must not be reset. (PrivVM), and an Appll_catlon VM (AppVM) running a d'§k I/O_
* IRQ descriptor table and IO-APIC entries, including correct (block) benchmark. This setup was used to quickly identify major

IRQ routing afinity and mask: ally VMs to continue to recee short comings with the reeery mechanisms. The more conmple
interrupts from their devices 3AppVM system setup, shown in Figure 2, was used to further

- Structures for tracking the mappings of pages shared betweenStreSS the virtualized system, once the majority of sources of

. i : : failed recweries had beenifed. In this setup, AppVM2 is
VMs and the VMM: preents overwriting mappings that are still i .
in use P g PPINg designed to boot after VMM reeery. This is a check of whether

. ) the recoered virtualized system maintains the ability to create
There are tw additional differences between the VMM  auy vMs.

microreboot path and a normal VMM boot: Doma@iris ot

created and VMs are re-associated with the schedTiter bootup Table 2. Injection outcomes.

code has been modified to skip Dom@iareation and to restore

the Domair0’s dobal pointer so that the weXen can access Outcome Description

Domain 05 date. VMs are re-associated with the VMM’ Detected Crash: VMM panics due to unre@able

scheduler by woking the scheduling initialization routines for | \/\mm failure exceptions

each VM and inserting runnable VCPUs into thes nen queue. Hang: VMM no longer makes observable
Some of the structures needed by the VMM are re-created progress

during a microreboot.These include the idle domain as well as | Sijlent Undetected failure: No VMM crash/hang

structures holding hardware information such as the model and fajlure detected but applications in one or more

type of the CPU and the amount of memomgilable. For VMs fail to complete successfully

structures that are re-created on the heap, ReHypengsea Non-manifested| No errors observed

memory leak by first freeing the old structures.

Table 2 summarizes the possible outcomes from an injected
4, Improving Recovery fault (injection experiment). Onlydetected VMM #ilures lead to

The scheme presented in the previous section provides basié/MM recoveries. With the 1AppVM setup, a revery is

capabilities for VMM microrebootHowever, as explained bela, considered successful if the benchmark in the AppvVM co_mpl_etes
) . - . . correctly With the 3AppVM setup, following the explanation in
with this basic mechanism the probability of successfulveago i . . P
. - . . Section 2,a recovery is considered successful if either AppVMO
is very lav. The section starts with the basic scheme and . .
. . L or AppVM1 completes its benchmark correctly and AppVM2 is
incrementally imprees on hat scheme to achie higher receery ; . .
. . able to boot and run its benchmark to completion without errors.
success ratesTable 1 shavs the mechanisms used to imyedhe Silent failures. discussed in Sectién do not trigger VMM
basic recaery scheme. As in [17], the choice of impements is recover alrJ1d a;re thlzjs excluded frorr’:1 further disggssion in this
guided by results from fault injection experiments. very . . S
section. Detailsof the experimental setup,adlt injection

We wsed software-implementecuit injection to introduce  campaign, and failure detection mechanisms are in Section 5.
errors into CPU mgisters when the VMM isxecuting. Thegoal

of the injection was to cause arbitragildires in the VMM and In the rest of this section, eactersion of the reasery



Table 3. Fault injection results for 1AppVM system
setup. Percentag®f successful rea@ries out of
detected VMM failures (VMM crash/hang).

Mechanism SuccessfRecwery Rate
Basic 5.6%
+ NMI IPI 17.6%
+ Ack interrupts 48.6%
+ Hypercall retry 62.6%
+ FixSP+NMI “ack” 77.0%
+ Reinitialize locks 95.8%

scheme is described, anduft injection results are presented.
This is folloved by an analysis of the main cause aflefl
recoveries, motvating the next ersion of the reoery scheme.
At each step, only the problem that leads to the pluralitpitdd
recoveries is analyzed andxed. Table 3summarizes the rate of
successful rea@ries with the basic ReHype scheme and the
various incremental impre@ments that are made.

Basic: As shown in &ble 3,with the Basic recgery scheme
(Section 3),the successful regery rate is only 5.6%.A large
fraction of recoery failures (44%) occur because thaildre
handler is unable to initiate the VMM microrebodtormally, the

this, after receery, the VM starts eecuting right after the
hypercall, using whater is currently in the EAX register as the
return value.

Hypercall retry: The ability to restart a hypercall is already
provided in Xen. The mechanismvisives changing the program
counter (PC) of the VCPU to the address of the instruction that
invokes the fypercall. Fr each VM, the VMM determines
whether a hypercall retry is needed after the VMM microreboot,
before loading the VM stateSpecifically for each VCPU, the
VMM checks if the VCPWs PC is within the VM’s hypercall
page. Ifso, the VMM updates the VCP&JFC. Arguments to the
hypercall are already preserved in the VM VCPU state.

Table 3 shows that, with ypercall retry the successful
recovery rate is62.6%. Outof the remaining unsuccessful
recoveries, 41% are caused by the same symptom encountered
and partially soled with the Basic scheme — the inability of the
failure handler to initiate the VMM microrebootWith the
improved recovery rate, the causes of this symptom nowvjmesly
resolved are ne responsible for the plurality of failed raamies.

The experimental results shdwo causes for the symptom
above: 1) NMI IPIs sent to the wrong destination CPU due to
stack pointer corruption and 2) NMls are blocked due to NMI-
based watchdog hang detection. Problem (1) occurs because a

failure handler relies on interprocessor interrupts (IPIs) to force all corrupted stack pointer is used to obtain the CPUID of the

processors to sa VM CPU state and haltxecution before
microrebooting the VMM. Microrebooting the VMM cannot
proceed until all processorseeute the IPI handlerTherefore,
the failure handler is stuck if a processor is unablex¢éoute the
IPI handler due to a blocked IPI or memory corruption.

NMI IPI: To get around the alve poblem, NMI IPIs can be

used. Inaddition, a spin lock protecting a structure used to set up

an IPI function call must beulted to preent the failure handler
from getting stuck.

Table 3 shows an increase in rgeqy success rate to 17.6%
when theseifes are used. Only 8.2% of the failures arevno
caused by an inability to initiate the VMM microreboothe
plurality of the remaining failures (45%) are due to interrupts
from the block device not getting dedied to the P¥VM. This
causes the block diee driver in the PrivWM to time out, thus
leading to the failure of block requests from the AppVM.

The block device useswvd-triggered interrupts.For such
interrupts, the I/O controller blocks further interrupts until an
acknavledgment from the processor aes. If the VMM fails
before acknowledging pending interrupts, thoseeli&iggered
interrupts remain blocked after reeoy.

Acknowledge interrupts: To prevent level-triggered
interrupts from being blocked, theailure handler must

currently running processorThe obtained CPUID is incorrect
and is, in turn, used to create a CPU destination mask for the NMI
IPI. This mask can end up containing the sending processor as
one of the destination CPU&he result of this is that an IPI is
incorrectly sent to the sending processbhis IPI is dropped and

the sender waits fover for the completion of the IPI handling.

Problem (2) is due to thadt that NMI deliery is blocked if
a CPU is in the middle of handling a pieus NMI — aniret
instruction matching a previous NMI has not berecated [10].
The Xen hang detector is based on periodic NMIs from a
watchdog timer If a hang is detected on a processtrat
processor immediately xecutes the panic handler andvae
executes aniret instruction. Thisprevents the processor from
getting an NMI IP1 from the boot processor to initiate wecp

FixSP+NM1 “‘ack™: Problem (1) abee an be ixed by not
relying on the stack pointer to obtain the CPUID duriaiufe
handling. Insteathe CPUID can be obtained biyst reading the
APICID from the CPU and then cemting the APICID to
CPUID by using an existing APICID to CPUID mapping structure
stored in the static data segment of X&¥ith this technique, the
VMM has a chance to continue with the reey despite a
corrupted stack pointeHoweve, the corrupted stack pointer can
cause critical problems that are unrelated to the CPUID.
Specifically the handler imoked when VMM failure is detected

acknavledge all pending interrupts on all processors. This must must sse VCPU registers (located on the stack) into presbrv
be done in the failure handler since information about pending VMM state. A corrupted stack pointer leads to saving the

interrupts are cleared after a CPU reset during a VMM reboot.

contents of a random region in memory as theedsa/CPU

Table 3 shows that when this mechanism is added, the register \alues. Thiscan cause the VMM to crash after reey

successful reaery rate jumps to 48.6%.0f the remaining
unsuccessful reeeries, 52.8% are caused by a crashed AppVM
or PrivWM after recwery. The crashes are caused by bad return
values from lypercalls. SinceVMM failures can occur in the
middle of a lgpercall, it is necessary to be able to transparently
continue the hypercall after racmy. Without mechanisms to do

when trying to restore the corrupted (incorrect) values to VCPU
registers. Spedi€ally, when attempting to load theved VCPU
registers after reaery, the VMM may try to restore a corrupted
value as the VCPU code segmengister This may cause the
VMM to continue e&ecuting with VMM privilege using corrupted
(incorrect) register values.



ReHype implements a solution to Problem (1)vabdhat

avdds the detiengy described in the préous paragraph. Table 4. Fault injection results using 3AppVM system
Specifically the failure handlerinvoked upon VMM failure, sets setup. Percentag®f successful receries out of
the stack pointer to &afe” value. Thiscan be done based on the detected VMM failures (VMM crash/hang).

obsenation that the failure handler vee returns, and therefore,

the stack pointer can be reset toy amlid stack location.The Mechanisms Successfecovery Rate
address of the bottom of the stack is kept by Xen in a static data Reinitialize locks 90.2%
area. Thestack pointer is set to that value minudisignt space + Reset page counter 94.3%

for local variables used by the failure handler.

Problem (2) abee is resohed by forcing thexecution ofiret
in the failure handler The stack is manipulated so that tinet
instruction returns directly to the failure handler code.

validity check, a validity bit is set to indicate that the page can be
used as a page table for the VNhconsisteng arises when a
VMM failure occurs before the validity check is completed b
With the two improvements abwe, the rate of successful  after the page type use counter has been incremented. When the

recoveries is77.0%. Themajority of the increase is due taihg hypercall is retried after rewery, snce the page use counter is
the stack pointer Since hangs are responsible for only a small not zero and the validity bit is not set, it assumalidation is in
fraction (7.1%) of detected VMM failures, the impact ofirfg progress and waits by spinnin@f course, there is naalidation

problem (2) on the werall recoery success rate is small. taking place, and the CPU is declared hung by the hang detector.
However, with this fix, there was successful reeyy from all

Reset page counter: To fix the abe@e poblem, code is
hangs detected in this experiment. pag r

added during VMM bootup to check the consisjebetween the
Out of the remaining unsuccessful reetes, 82.8% are due  validity bit and page use countelf the page use counter is non-

to spin locks being held after rempy. Spin locks that are zero but the &lidity bit is not set, then the page use counter is set

statically allocated are re-initialized on boot but locks that are on to zero.

the heap are not. This causes the VMM to hang immediately after

With the page counter fix employed, re success rate
recovery. pag ploy e

improves to 94.3% The remaining causes of failed neztes \ary
Reinitialize locks: Re-initializing dynamically-allocated widely and are discussed in more detail in Section 6.

spin locks requires tracking the allocation and de-allocation of

these locks.All locks that are still allocated upon re®oy are 5. Experimental Setup

initialized to unlocled state. This tracking of spin locks is the

only extra vork that ReHype must perform during normal

operation. Theassociated performancevephead is ngligible

This section presents the experimental setup useddtisate the
ReHype prototype. It discusses details of thgeawirtualized

since the allocation and de-allocation of spin locks is normally SyStém, the benchmarks running in the Application VMs
done only as part of VM creation and destructiéurthermore,  (APPVMS), the VMM failure detection mechanisms (that trigger

there are only about 20 spin locks that are tracked per VM. recavery), and the fault injection campaign.

Locking mechanisms that are not spin locks must also be re- ~1he &aluation of ReHype was done on a system comprising
initialized to their free statesA key example of this are the page ©f the Xen VMM, augmented with ReHype, hosting multiple
lock bits used to protect access to bookkeeping information of Prirtualized VMs. To smplify the setup for softare-
pages. Wh the previous version of the remoy scheme, not implemented fault injection, the target system was run inside a

initializing these bits resulted in 10% of unsuccessfulvenes. fully-virtualized (FV) VM[14]. This made it easy to restart the
target system and refresh its disk images after each injection run

As shown in @&ble 3, re-initializing locks increases to isolate the effects of faults injected in different runs.

successful rea@ry rate t095.8%. Br the remaining recery ) i ) ) ]
failures there is not one dominant cause. As mentioned in Sectiof, two system configurations were

) . . used: 1AppVM and 3AppVM.With the 1AppVM confyuration,

_ While the 1AppVM system setup is useful for unering the the system hosts twVMs: a PrivwM (Domain 0) and a single
main problems with the Basic ReHype reay, it is very simple,  aApovM. The AppVM runs theblkbench benchmark, described
thus potentially hiding important additional problemio ketter below, which continuously performs disk I/0 (block) operations.
stress the virtualized system, the rest of tkgeements in this The PrivVM hosts the block baekd for the AppVM. Each of
section use the 3AppVM setufihe results with this setup are e s consists of one virtual CPU (VCPU) that is pinned to its
summarized in Table 4. own physical CPU (PCPU).

As shown_in able 4, Wi'Fh the 3AppVM setup, the reinitialize The 3AppVM configuration is shown in Figuge In this
locks mechanism results in a reey success rate &0.2%. configuration, the PWVM'’ s oot filesystem is in memory and the
Hence, there is a small decrease in the success rate compared (/M does not access prdevices. A separate Dvier VM
the 1AppVM setup. Out of _the remaining reewy failures, 25_% (DVM)[15] has direct access to the network and SCSI controllers
are due to the VMM hanging immediately after nesy. This and serves as the network backend for AppVMO and block
problem is caused by a data inconsisyersulting from a VMM baclend for AppVM2. AppVM1 has direct access to the IDE

failure while _in the middle of handling a page table update controller and thus does not rely on the DVM foryadevice
hypercall. Thishypercall promotes an unused VM page frame ;. coqq EaclM consists of one VCPU which is pinned to its

into a page table type by incrementing a page type use counteg,n pcpy. o check whether the revered system maintains its
and performing validity check on the page frame. After the
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Figure 2: System configuration for 3AppVM. AppVM2
created after recery.

ability to create n@ VMs, AppVM2 is designed to boot up after a
possible VMM recwery and run thélkbench benchmark.

Three application benchmarks are used in ogeements:
netbench, blkbench, and UnixBench. Netbench is a useilevel ping
program thatxercises the interface to the nemk. It consists of
two processes: one running inside an AppVM (téeeiving host),
and another running on a separate physical machinesgftbiang
host). Ewvery 1ms the sending host transmits a UDP etttk the
receving host, which, upon receiving this patktransmits UDP
paclet back to the sending hostUnsuccessful application
completion occurs when the packet reception rate osetiiéng
host drops belw a threshold (450 packets per second).

Blkbench stresses the interface to the block device (disk) by
creating directories and creating, removing, and copying 1MB
files. 10 ensure block actity, this benchmark pxents caching
of block and iesystem data inside the AppVM' CS.
Unsuccessful application completion occurs when the application
reports an error &iled system call) or the resulting disk image
when the benchmark completes differs from a reference image.

The third benchmarkUnixBench) is a subset of the set of
programs in UnixBencfi] with minor modifications to impne
logging and failure detectioriThe selected programs were chosen
for their abilities to stress the VMgIhandling of hypercalls such
as virtual memory management and process scheduling.
Unsuccessful application completion occurs when one or more
programs in UnixBench terminate prematurely due dded
system calls or the resulting program output differs from a
reference output.

As summarized in Table 2, the outcome of each injection run
is classified as: detected (VMM crash/hang), silent (undetected
failure), or non-manifested.A crash occurs when the VMM
panics due to unreverable exceptions. Hangare detected using
a watchdog mechanism uiit into Xen. Specifically Xen
maintains a watchdog counter that is supposed to be incremente
by a normal timer ent every 500ms. A watchdog NMI is
generated\ery 500ms of unhalted CPUycles. Ifthe watchdog

ReHype. Gign can reside in the VMM and inject nyagpes of
faults into the VMs and the VMM.Injection into VMs can be
done without ayp modifications to the VMs.With the ReHype
evduation setup, the entire g@t system is in an FV VM so the
injection does not require yrmodifications (intrusion) of the
tamget system. Single bit-flip faults were injected into thgigters

of the processors during theeeution of VMM code. While
these injected faults do not accurately represent all posaildts,f
they are a good choice since transient haadsvfaults in CPU
logic and memory are likely to be manifested as erronealuey
in registers. Furthermorethese faults can cause arbitrary
corruptions in the entire system. Hence, this limitediltf
injection satisfies the main goal of thgaation, which is to
“stress’ the recoery mechanisms in order to identify problem
areas. Therés a possibility that some problem areas remain and
will be uncorered only by a more comprehewsifault injection
campaign. Thisvill be investigated in future work.

A fault injection campaign consists of nyafault injection
runs. Asingle fult injection run that uses the 1AppVM system
configuration consists of first booting the VMM along with the
PrivwM and AppVM. The AppVM bgins running the blkbench
benchmark and a fault is injected into the VMM. The injection
campaign infrastructure allows the target systenfigent time
for the VMM to recwer and for the benchmark to completé.
the benchmark does not complete, a timeout mechanism identif
system &ilure. Atthe end of each run, fault injection logs and
benchmark output are retviesl and stored for analysis.

An injection run using the 3AppVM configuration is similar
to the 1AppVM configuration except that an injection is
performed only after the VMM, PrivwM, DVM, AppVMO, and
AppVM1 hare keen booted and the owAppVMs hae darted
running their respeste kenchmarks. 9sifter the tvo AppVMs
begin running their benchmarks, AppVM2 is booted to run its
own benchmark. Thénjection run ends when all three AppVMs
complete their benchmark runs or a timeout occurs.

An injection is triggered after a random time period between
500ms to 6.5s after the AppVMs begin running their benchmarks.
To ensure that the injection occurs only when the VMM is
executing, a &ult is only injected after the designated time has
elapsed and 0 to 20,000 VMM instructions, chosen at random,
have been @ecuted. Theinjection is a single bit-flip into a
randomly selected bit of a randomly selectegister The taget
registers include general purpose registers, instruction and stack
pointer registers, and the system flaggister Each injection
selects randomly among the VCPUS of the target system.

9 Analysis

This section analyzes fault injection results for the firaibion of
ReHype, with all the recery improvements from Sectiod. We

NMI handler detects that the watchdog counter has not beendiscuss: I)the impact of the distribution of injections across

incremented for 2s, the system is declared hung.

A silent VMM failure occurs when no VMM hang or crash is
detected bt the applications (benchmarks) in one or more
AppVMs fail to complete successfully What constitutes
unsuccessful completion is application sgec#nd is discussed
abore. Non-manifested means that no errors are observed.

We wsed the UCLAGIgan fault injector[14, 9] to evaluate

CPUs, Il) the causes of AppVM failure in the successful VMM
recoveries that result in single AppVM failure, and 1l1) the causes
of VMM recovery failures and silent system failures.

It is expected thadilts in a CPU that rareliecutes VMM
code are less likely to lead to VMM failures thailfs in a CPU
that executes a lager fraction of VMM code. Due to ddrent
actiities on different VMSs, thex@cution time of VMM code is
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not evenly distributed across the CPUs hosting these VMs. the interrupt blocked at the 1/O controlleifo resohe this
However, for the fault injection results presented ap ihjections problem, there needs to be a way to clear pending interrupt states
were uniformly distributed across CPUs. Hence, it is critical to in the 1/0 controller without performing a full hardware reset.
evduate whether the results are qualitelyi different if the Based on code in the Linweknel and Xen, there is a way to do
distribution of fault injections is adjusted to match the fraction of this (simulating an interrupt ackwéedgment by setting the
time each CPU spendgeeuting VMM code. interrupt trigger mode to edge then back e However, this

has not wrked with our experimental setup, where the entire

of Xen execution time across CPUs when running the 3AppvM &€t system is running in an FV VMWe gan to further
setup. Asexplained in Sectiols, each VM is pinned to a CPU.  Investigate this approach in future work.

The results are as follows: 7.5%W®fM CPU, 11.7% DVM CPU, ReHype failed to reacar the VMM in only 5.7% of detected
5.1% AppVMO (NetBench) CPU, and 75.6% AppVM1 failures. Approximately50% of failed receeries are caused by
(UnixBench) CPU. The AppVM2 CPU is not included in the three problems: (1) failure of the PrivWM or DVM, peating

We wse the Xenoprof proér [16] to measure the disttition

profile because it is created after the injection. successful completion of applications in more than one AppVM,
(2) a triple fault exception generated during tikecation of the
Table 5. Fault injection results for the final version of failure handler triggering a hardware system reset, and (3) a
ReHype with injections distributed across CPUs  combination of problems causing the failure of both the
uniformly or weighted by VMM gecution time. unixbench and netbench to complete successfillhe folloving
Percentage of successful reedges are out of detected paragraphs discuss these three problems in more detail.

VMM failures. Percentagef silent filures are out of

. Falures of the PrivvM and DVM in problem (1) are due to
manifested faults.

kernel panics in the VMs caused by state corruption and error

Manifested return values fromypercalls. Problen(l) can be partly resadd
Distribution Detected Silent Silent b)_/ providing mechanisms to re@m a H_’IVVM or DVM f_rom
of Injections | Successful Single AppVM | System faJIures._ D/M recovery has been_ previously explored in non-
Across CPUs Fail Fail VMM f_allure contet [53 15, 11].A simple DVM recovery scheme
Recoery Rate | Falure alure would include destroying the failed DVM, booting anBVM in
Uniform 94.3% 6.0% 14.0% its place, and restoring device access to the AppVRisv"WM
Weighted 94.5% 6.6% 11.3% recovery can potentially be done in a similarayy Howeve,

unlike DVM recovery, recovering the PrivwM would require
Table 5 shavs the injection results using the uniform preserving configurations of running VMs to alidhe PrvVM

distribution across CPUs and when injection disttibn is the ability to continue managing the VMs after rnexy.

weighted VMM eecution time. The results are very similar A double fault exception is generated if a fault is triggered

This is due to a combination of twactors. Firstthe fraction of while trying to irvoke a1 exception handler A triple fault

injected &ults leading to detected VMM failures is approximately - gyxception is generated if adlt is triggered while trying to wwoke

the same across the four CPUs (24%-27%). Second, undefne double fault handlerProblem (2) abue prevents the filure
uniform distribution of injections, 5.7% of detected VMBllfires handler from completing because a triple fault exception is

result in unsuccessful reamies. Consideringnly injections into generated. Normallythis causes the hardware to perform a
AppVM1, the corresponding number is almost the same — 5.2%. system resetWith our setup, the VMM hosting our ¢@t system
Hence, with the weighted distribution of injections, most of the i, 3n FV VM performs an FV VM reset. This problem may be
injections are applied to a CPU whose behavior with respect t0.5,,5¢e( by corruption of VMM state whileeeuting the &ilure
injection closely matches the behavior of therall system under  papgler Corruptions can affect the interrupt descriptor table or

uniform distribution of injections.Since results from the tw the page directorywhich can lead to a triple faultxeeption.
injection distributions are very similahe rest of the analysis in  There is evidence that the frequgnaf this problem could be

this section is based on the uniform distribution results. reduced by simplifying theaflure handlerpossibly including the
As explained in Section 2, VMM reeery that leads to the elimination of output of debugging information.

failure of only a single AppVM is considered successful. Problem (3) is caused by owindependent problems that
However, it is dearly preferable for none of the AppVMs tilf prevented AppVMO (netbench) and AppVM1 (unixbench) from
In our experiments, a single AppVM fails to correctlyeeute its finishing their respeate gplications. Thdirst problem is caused
application in 32.6% of successful reenes. Thevast majority by the blocking of netark interrupts at the 1/O controller after
of such cases are due to thdre of netbench in AppVMOThe recovery, preventing the netbench from continuing correctiphis
failure of netbench is caused by blocked network interrupts at theis the same problem described abmith respect to successful
I/O controller after reoeery, preventing netbench from reagng recoveries resulting in one failed AppVM. The second problem is
additional packts from the sender hostUnfortunately the caused by a panic in AppVMikernel after receiving an error

acknowledge interrupts mechanism discussed in Section 4 cannot reqyrn value from a ypercall, preenting the unixbench from
be used to sobthis problem. To aknavledge an interrupt, the  completing correctly The error return value may be caused by

CPU must be currently servicing that interruiowever, a VMM inconsistencies within the VMM, and as discussed in
failure can occur after an I/O controller defis an interrupt to the  gypsection 2.3may require maintaining redundant information
CPU but before the CPU begins servicing the interrdpius, during normal operations to reselv Fixing either problem

upon recgery, the CPU cannot acknowledge the interruptyileg should impree oveall successful receries.
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The remaining recery failures are caused by various VMM  which the kernel in the PrivWwM or M crashed because of
corruptions and inconsistencieSome of the causes of these memory corruption or hypercalls returning errors. This caused
failures include: (1) corruption of VM’ VCPU registers causing more than one AppVM to fail completing its benchmark.
the nev VMM to crash after rea@ry when restoring the VCPU,  Mechanisms to reser the PrivVM and DVM should reduce this
(2) corruption of the timer heap which leads to a page fault in thetype silent system failures.

VMM when the old timer heap isalked to restore timervents,
and (3) page table corruption that causes the VIRIM to page 7. Related Work

fault early in the boot code. These problems require mechanismsM h " d rebooti b .
to check and ensure these data @&’ to use as discussed in ary researchers a [roposed rebooting subcomponents in

Subsection 2.2. Checks are needed to ensure that critical VCPUappIication softare systems, operating systems, and virtualized

register \alues are consistent, e.g. code segment contains thedYStems o increase system reliability and

correct prilege, pointers in the timer heap are valid, and page aﬂlabilit}&[iﬁl, 11, 15].thThesE works, hmevﬁrl, hz?)ve .not h
tables contain well formed entries before using or restoring them. addresse to presere the subcomponents while rebooting the

) i underlying systemThe two works that are most closely related to
VMM corruptions can lead to failures that are not detectable ReHype are RootHammer[13] and Otherld [4].

by simple crash and hang detectors. These silent failures can
manifest as dilures of one or more VMs and/or failure of the
VMM to host additional VMs. As discussed in Section 2, the
reliability goal of ReHype is met if no more than one AppVM
fails due to a fault and the VMM can still host existing VMs and
create n& VMs. Inthe case of a silent single AppVM failure, the
reliability goal is met.However, slent system failures, which are
silent VMM failures that result in more than one VMildire
and/or the dilure of the VMM to host additional VMs, reduce the
reliability of the virtualized system. Hence, the rest of this section
discusses the causes of these failures. RootHammer operates within a hegltland functioning
virtualized system.Hence, there is no concern for the safety of

all manifesteddilures. Havever, only 14% cause systenaifures the VMM due to cor_rupted_ VM S.t ates during VM re_—integration or
(Table 5). The remaining 6% cause a benchmark (netbench or_the need to resadvinconsistencies, such as acquired chks and
unixbench) in a single AppVM to complete incorrectlbhis can interrupted gpercalls. Onthe other hand, ReHype aims to

be caused by a failedypercall causing a VM kernel panic or a recoer a fai,|9d V'\r/:M t:at can be cort;upted anI;j mayvéa q
blocked interrupt. Roughly 60% of silent system failures are inconsistencies within the VMM state, between the VMM an

caused by a hardware system reset due to a tapleekception. VMs, and between the VMM and hardware.

RootHammer reduces the time to reboot (repate) a
virtualized system by rebooting the Xen VMM and Donfain
while preserving in memory the states of VMs and their
configurations. Duringrejuvenation, Domai® is properly shut
down and the VMs suspend themselves cleadgxec[18] is
used to quickly reboot the Xen VMM and Domain 0, similar to
ReHype. Aftera reboot, Domair® must re-instantiate and resume
all the VMs. This requires modifications to tools in Dom@ito
access VM configurations and state already resident in memory.

In our experiments, silent VMM failures are roughly 20% of

Unlike the triple fault exceptions discussed abdhat occurred Unlike RootHammer ReHype preserves Domah and

during the ®ecution of the failure handlgin these cases, there management structures for VMs across a VMallufe. As

are no clear indications whether the failure handrer executed. discussed in Subsection 2.2, this can be unsafe as states can
Simplifying the failure handlems dscribed abee, should allav become corrupted. However, preserving Domai® dlows

for a better understanding of this problem. recovery to occur without ayn modifications to the VMs as is

needed with RootHammein addition, without tying Domai®
recovery to the VMM receery, recovery lateny can be reduced

as VMs can continue to operate as soon as the VMM is booted
without having to also wait for Domathto boot. A possible
extension of ReHype is to folle the microreboot of the VMM
with a subsequent proaeti rjuvenation, scheduled at a

35% of silent systemaflures may be artifacts of thauit
injection setup. Specifically in 20% of failures the host VMM
crashes the FV VM running the ¢g&t system. This can happen if
the VMM attempts to accessvalid state in the FV VM while
performing some operations on its behdfr example, as part of
handling paging mode updates (writes to CR4 register) from an . . . . ; .
FV VM using hardware-assisted paging, the VMM may map in corvenient time, wol\{lng recovery of DomainO and re-creation
the page pointed to by the FV VMCRS3 raister If the mapping of the VM structures in the VMM.
fails (no valid page) due to a corrupted CR3, the VMM will crash Othervorld [4] allows a Linux kernel to be reeered from
the FV VM. With ReHype running directly on hardware, such a failures while preserving the state of the running processes.
scenario would likely result in a detected VMM failures, it KDump [6] is used to load and boot am&ernel. Thenew kernel
recoery to be attempted. 15% of silent system failures are boots within a reserved memory space. Hence, the memory
caused by communicationaifures (dropped wvent signals) contents of thediled system are presex. InReHype, the VMM
between the fault injection campaign on the host VMM and is booted with access to the entire system memory and does not
campaign coordination code in the target system. In these caseg)eed a large preserved memorygioa (64MB used in
the host campaign times out and records a target sysiemef Othervorld). With Othervorld, processes are restored by
when it fails to recee a sgnal from the taget system after an  recreating the process descriptors and copying the process
injection. Inan actual deployment of ReHype, the same fault may memory from the old memory gion. ReHypereuses the VM
not be manifested or may be manifested in dedint way, descriptors and does not need toycdipe VM memory Both
possibly allowing receery to be attempted. approaches require mechanisms to ensure the safety of the reused

The remaining 5% of silent system failures are cases in data (see Section 2.2).
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With Otherworld, restoration ofeknel components requires
traversing many complex data structures in a possibly corrupted
kernel. Thisincreases the chance of failed remtes. ReHype [4]
beneits from the simplicity of the state that the VMM keeps for
the VMs, enabling a simpler regwy process and increasing the
chance of a successful reegy. Specifically, the number of
components that must be restored in a VMM for each VM is
small, as discussed in Section 3.

(5]

Otherworld must individually restore kernel resources that
are used by the processes, such as afeexy $ignal handlers, and
shared memory IPCThe network stack and pipes cannot yet be
restored. Applicationthat use such kernel resources need ve ha
custom crash procedures to perform application dpaeitwery
tasks, such as re-opening seisk or restarting the application.
With ReHype, all the states of the applications are maintained
within the VM. Hence, application failure handlers oy ather
application modifications are not needed. VHildre handlers
could be useful for performing data igtgy checks in the VM
using VM-specific knwledge. Sincethere are fewer types of 9]
VMs than there are applications, if VM failure handlers are
needed, fewer lva © be witten.

(6]

(71

(8]

8. Conclusions and Future Work (ol
We have developed the ReHype mechanism that rexe from
hypervisor &ilure, using microreboot, while preserving the state
of running VMs. The basic version of ReHype reeced
successfully from only 5.6% of detected hypervisolufes. Vé
used &ult injection results to guide incremental impgments of
ReHype, leading to a success rate vir ®0%. Theincremental
improvements iwvolved a combination of mechanisms to repair [13]
VMM corruption and resok inconsistencies within the VMM,
between the VMM and VMs, and between the VMM and the
hardware. Ourresults indicate that almost half of the remaining (14]
failed recwveries (3% of detected failures) may be resolved by
performing PrivVM or DVM recwery, smplifying the failure
handler and clearing pending interrupts in the 1/O controller
14% of manifested faults lead to undetected VMM failures that
result in systemdilures. 60%of these failures are caused by a
single problem — triple fault exception leading to a system reset.

[11]

[12]

(18]

In future work, we will add PrivWM and DVM reogery to (16]

enhance werall system reliability We dso plan to eauate
ReHype on bare hardware to check whethgradrour results are
significantly slewed by our currenterimental setup, where the
tamget system is in an FV VMAdditional areas of interest are:
evduation and optimization of rewery lateny, preserving FV
VMs across a VMM microreboot, and additional stressing of [18]
ReHype using, for example, injected software errors.

[17]
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