
7th ACM International Conference on Virtual Execution Environments
Newpor t Beach, Califor nia, pp. 63-74, March 2011.

ReHype: Enabling VM Survival Across Hypervisor Failures
Michael Le Yuval Tamir
Concurrent Systems Laboratory

UCLA Computer Science Department
{mvle,tamir}@cs.ucla.edu

Abstract
With existing virtualized systems, hypervisor failures lead to
overall system failure and the loss of all the work in progress of
virtual machines (VMs) running on the system.We introduce
ReHype, a mechanism for recovery from hypervisor failures by
booting a new instance of the hypervisor while preserving the
state of running VMs. VMs are stalled during the hypervisor
reboot and resume normal execution once the new hypervisor
instance is running. Hypervisor failures can lead to arbitrary state
corruption and inconsistencies throughout the system.ReHype
deals with the challenge of protecting the recovered hypervisor
instance from such corrupted state and resolving inconsistencies
between different parts of hypervisor state as well as between the
hypervisor and VMs and between the hypervisor and the
hardware. We hav eimplemented ReHype for the Xen hypervisor.
The implementation was done incrementally, using results from
fault injection experiments to identify the sources of dangerous
state corruption and inconsistencies. The implementation of
ReHype involved only 880 LOC added or modified in Xen.The
memory space overhead of ReHype is only 2.1MB for a pristine
copy of the hypervisor code and static data plus a small reserved
memory area. The fault injection campaigns used to evaluate the
effectiveness of ReHype involved a system with multiple VMs
running I/O and hypercall-intensive benchmarks. Our
experimental results show that the ReHype prototype can
successfully recover from over 90% of detected hypervisor
failures.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
VEE’11, March 9-11,2011, Newport Beach, California, USA.
Copyright © 2011 ACM 978-1-4503-0501-3/11/03...$10.00.

Categories and Subject Descriptions
D.4.5 [Operating Systems]: Reliability - Fault-tolerance

General Terms
Reliability, Experimentation, Performance

Keywords
Virtualization, Reliability, Recovery, VMM, Microreboot, Xen

1. Introduction
System virtualization [19] enables server consolidation by
allowing multiple virtual machines (VMs) to run on a single
physical host while providing workload isolation and flexible
resource management.The hypervisor manages the access of the
VMs to physical resources and is critical to the operation of the
entire system.Failure of the hypervisor due to software bugs or
transient hardware faults generally results in the failure ofall the
system’s VMs. Recovery from such a failure typically involves
rebooting the entire system, resulting in loss of the work in
progress in all the VMs.This problem can be mitigated through
the use of periodic checkpointing of all the VMs and restoration
of all the VMs to their last checkpoint upon reboot.However, this
involves performance overhead for checkpointing during normal
operation as well as loss upon recovery of work done since the
last checkpoint.

This paper introduces and evaluates a mechanism for
recovery from hypervisor failures calledReHype. To the best of
our knowledge, ReHype is the first mechanism that allows VMs to
survive hypervisor failure without any loss of work in progress
and without any performance overhead during normal operation.
Upon hypervisor failure, ReHype boots a new hypervisor instance
while preserving the state of running VMs. VMs are stalled for a
short duration during the hypervisor reboot. After a new
hypervisor is booted, ReHype integrates the preserved VM states
with the new hypervisor to allow the VMs to continue normal
execution.

Hypervisor failure almost always involves state corruption.
Corruptions can occur in the hypervisor state as well as in VM
state. Hence,no recovery mechanism that relies on system state
at the time a failure is detected can be 100% guaranteed to restore
all system components to valid states. Furthermore, since
ReHype involves reinitializing part of the hypervisor state while
preserving the rest of the state, the result of recovery may include
inconsistencies in the hypervisor state, between hypervisor and
VM states, and between the hypervisor and hardware states.For
example, hypervisor failure can occur in the middle of handling a
hypercall from a VM or before acknowledging an interrupt from a
device controller.

A key contribution of our work is to identify the specific
sources of state corruptions and inconsistencies, determine which
of those are most likely to prevent successful recovery, and devise
mechanisms to overcome these problems.We hav eimplemented
and tested ReHype with the Xen [2] hypervisor and VMs running
Linux. We use the results of fault injection to incrementally
enhance [17] an initial basic version of ReHype.These
incremental steps improve the rate of successful recovery from an
initial 5.6% of detected faults to over 90% of detected faults. Our
evaluation of the final scheme points to ways in which the success
rate can be further improved.

- 2 -

ReHype builds upon the Otherworld [4] mechanism for
microrebooting the Linux kernel while preserving process states
and the RootHammer [12] mechanism for rejuvenation of the Xen
hypervisor through a reboot while maintaining VM state without
the overhead of saving VM memory images to persistent storage.
Compared to Otherworld, the memory overhead for ReHype is
significantly lower. Furthermore, while ReHype does not involve
any changes to the VMs or the applications in the VMs,
Otherworld requires modifications for system call retries and, in
many cases, application-level ‘ ‘crash procedures’’ that are invoked
upon recovery. Finally, we design and evaluate enhancements to
the basic recovery mechanism in the context of a hypervisor,
while Otherworld is focused on microrebooting of an OS kernel.
RootHammer does deal with the Xen hypervisor and provides
proactive rejuvenation. However, proactive rejuvenation is
simpler since it does not address recovery from failure and thus
does not deal with possible arbitrary corruptions and
inconsistencies throughout the system.

The following section discusses the requirements and
approaches to recover from a failed hypervisor. Section 3,
describes the implementation of a version of ReHype that
provides basic transparent hypervisor recovery but does not deal
with many problems caused by state corruptions and
inconsistencies. Incrementalimprovements to ReHype, based on
fault injection results, are described in Section4. Thedetails of
the experimental setup are presented in Section5. Section6
presents an analysis of the results for the final version of ReHype.
Related work is discussed in Section 7.

2. Tolerating VMM Failure
Hardware faults or software bugs in the virtual machine monitor
(VMM †) can cause the corruption of VMM state or the state of
VMs. As a result, the VMM or individual VMs may crash, hang,
or perform erroneous actions. The safest way to recover the
system is to reboot the VMM and also reboot each of the VMs.
However, this requires a lengthy recovery process and involves
loss of the work in progress of applications running in the VMs.
Periodic checkpointing of VMs can reduce the amount of lost
work upon recovery but the work done since the last checkpoint is
lost and there is performance overhead during normal operation
for checkpointing.Alternative mechanisms involve less overhead
and lost work but may result in recovery of only parts of the
system or even a complete failure to recover a working system.
This section discusses the basic design alternatives for
mechanisms that can recover from VMM failure.

Vi rtualization is often used to consolidate the workloads of
multiple physical servers on a single physical host.With multiple
physical servers, a single software or transient hardware fault may
cause the failure of one of the servers. Anaggressive reliability
goal for a virtualized system is to do no worse than a cluster of
physical servers. Hence,if a transient hardware fault or a
software fault in any component (including the VMM) affects
only one VM running applications, the goal is met.Recovery
from VMM failure that avoids losing work in progress in the VMs
necessarily relies on utilizing the VM states at the time of failure
detection. Oneor more of those VM states may be corrupted,

† The termshypervisor andVMM are used interchangeably.

resulting in the failure of those VMs even if the rest of the system
is restored to correct operation. Based on the reliability goal
above, we define recovery from VMM failure to be successful if
no more than one of the existing VMs running applications fails
and the recovered VMM maintains its ability to host the other
existing VMs as well as create and host new VMs.

Successfully ‘‘tolerating’’ V MM failure requires detection of
such failures and successfully recovering from them, as defined
above. To accomplish this goal, mechanisms must exist to:
(1) detect VMM failure, (2) repair VMM corruption, and
(3) resolve inconsistencies within the VMM, between the VMM
and VMs, and between the VMM and the hardware. Detecting
VMM failure boils down to being able to detect a VMM crash,
hang, or silent data corruption, as described in Subsection2.1.
Subsection 2.2discusses different approaches to repairing VMM
corruption and the tradeoffs among them in terms of
implementation complexity and expected success rates.
Inconsistencies among the states of different components
following recovery may be resolved entirely in the VMM or may
require VM modifications. Details of the sources of
inconsistencies and techniques for resolving inconsistencies are
described in Subsection 2.3.

2.1. Detection
VMM failures can be manifested as VMM crashes, hangs, or
silent corruption (arbitrary incorrect actions).Crashes can be
detected using existing VMM panic and exception handlers.If
the VMM panics, then a crash has occurred. Detecting VMM
hangs requires external hardware. A typical hang detector, such
as the one implemented in the Xen VMM, uses a watchdog timer
that sends periodic interrupts to the VMM. The interrupt handler
checks whether the VMM has performed certain actions since the
last time the handler was invoked. If it has not, the handler
signals a hang.

Silent VMM corruption is more difficult to detect.Detection
mechanisms involve redundant (e.g., replicated) data structures
and redundant computations (e.g., performing sanity checks).
Fortunately, our fault injection results (Section 6) indicate that the
majority of VMM failures (80%) are manifested as crashes and
hangs and are thus detectable using the simple mechanisms
discussed above. More extensive fault injection campaigns in the
Linux kernel [7, 8] indicate that the fraction of VMM failures
manifested as crashes or hangs is likely to be significantly higher.

2.2. Repairing VMM Corruption
Repair is initiated when the detection mechanism invokes a failure
handler. Corrupted VMM state can then be repaired by either
identifying and fixing the specific parts of the VMM state that are
corrupted or simply booting a new VMM instance. A major
difficulty with the first alternative is the requirement to identify
which parts of the state are erroneous. This is likely to require
significant overhead for maintaining redundant data structures.
Furthermore, complex repair operations performed in the context
of a failed VMM can increase the chance of failed recoveries [20].
Hence, we focus on the latter alternative.

Normally, a system reboot would cause the loss of all VM
states. Thesimplest approach to preserve all VM states across a

- 3 -

reboot is to checkpoint the VMs to stable storage in the failure
handler. Once a fresh system boots up, the VMs can be restored.
However, checkpointing VM state in the context of a failed VMM
can increase the chance of failed recoveries since the VMM must
perform I/O and access possibly corrupted structures that hold
VM state. In addition, the space and time overhead of
checkpointing can be large as the state of all VMs must be copied
to stable storage.

An alternative approach to a system-wide reboot, is to
microreboot [3] the VMM. In this approach, VM states are
preserved in memory across the reboot.This avoids the space and
time overhead of checkpointing VM states to stable storage.Once
the new VMM has been booted, it must be re-integrated with the
preserved VMs. This re-integration can be done by either
recreating the VMM structures used to manage the VMs or
reusing VMM structures preserved from the old VMM. Either
way, some amount of VMM data needs to be preserved across a
VMM reboot for the re-integration process.

Variations of the microreboot approach can be categorized
based on whether the new VMM is rebooted in place or in a
reserved memory area, and, regarding VMM structures for
managing VMs, whether to reuse these structures from the old
VMM instance or create new instances of these structures.The
following paragraphs discuss these variations, their effect on the
ability to successfully recover a VMM, and the implementation
complexity involved.

The choices of whether to reboot the VMM in place or in a
reserved memory area affects the operations that must be done in
the failure handler. This, in turn, can affect the chances of a
successful recovery. When the new VMM is booted in place, the
failure handler must perform two operations: 1)preserve VMM
state (data structures) needed for re-integration by copying it to a
reserved memory location, and 2)overwrite the existing VMM
image in memory with a new image. Thesetwo operations do not
have to be performed if the new VMM is booted into a reserved
memory area.There is no VMM state to copy since the new
VMM is confined to the reserved memory area on boot so no old
VMM memory state is lost. In addition, the new VMM image can
be preloaded into the reserved memory area without affecting the
operation of the current VMM.Performing fewer operations in
the failure handler, as is the case when rebooting into a reserved
area, can increase the chance of a successful recovery. Howev er,
as discussed below, the choice of booting the new VMM instance
in a reserved memory area requires complex operations for the re-
integration of the new VMM instance with the preserved VMs.

Since the state of the old VMM instance may be corrupted,
the ability to successfully recover is directly related to the amount
of data reused from the old VMM instance. In some cases, data
structures in the new VMM instance can be re-initialized to static
values (e.g., clearing all locks) or reconstructed from sources that
are unlikely to be corrupted (e.g., obtaining the CPUID of a core
from the hardware). However, some data structures are
dynamically updated based on the activity of the system and
cannot be re-initialized with static or ‘‘safe’’ values. For example,
a corrupted VM page table can allow a VM access to the VMM or
another VM’s memory space.

Re-integrating the new VMM state with preserved VM states
involves creating VMM structures that can manage the VMs.

This can be done by either directly reusing the preserved VMM
structures from the old VMM instance or creating new instances
of the structures and populating them with values from the old
VMM instance. The first alternative is simpler to implement as
only pointers to the preserved structures need to be restored in the
new VMM instance. Implementation of the second alternative is
more complex, as it requires deep copy of all the required
structures from the old VMM and updating all pointers within
those structures.With either of these alternatives there is a
possibility of ending up with corrupted values in the new VMM’s
data structures.However, if the preserved structures are reused,
there is a greater risk of also introducing into the new VMM
instance corrupted pointers, which may lead to further corruption.

There is no perfect solution to the problem of ending up with
corrupted values in the new VMM’ s data structures. As discussed
above, some structures can be initialized with static or ‘‘safe’’
values. Inother cases, data structures may be populated based on
other data structures from the failed VMM instance, at least
ensuring consistency (see Section2.3). In general, the recovery
process needs to ensure that all values that will be used by the new
VMM instance are safe — will not lead to subsequent VMM
failure. This may involve performing integrity checks, possibly
requiring maintaining redundant information, such as logs, during
normal operation.

Given the tradeoffs presented in this subsection, ReHype
uses the microreboot approach and opts for a simple
implementation that does not require major modifications to the
VMM. Hence, ReHype preserves and reuses almost all of the
VMM’ s dynamic memory but updates a few key data structures
with ‘‘safe’’ values, as described in sections 3 and 4.The benefit
of reusing most of the VMM’s data structures is that it allowed
ReHype to be easily integrated into a VMM (Xen in our case)
with minor (880 LOC added/modified) modifications. Despitethe
reuse of old VMM data in ReHype, fault injection results show a
high rate of successful recoveries (Section 6).

2.3. Resolving Inconsistencies
By design, the VMM is assumed to be reliable by the VMs and
hardware. Typically, the VMM itself is, for the most part,
implemented with the assumption that there are no hardware
faults and no software faults in the VMM code.These
assumptions are violated when the VMM fails. Thus, after
recovery from a failed VMM, even if none of the states of the
system components are corrupted, these states may be
inconsistent, preventing the system from operating correctly.

The VMM executes some operations in critical sections to
ensure atomicity, e.g. update a VM grant table.Atomicity can be
violated when a VMM failure occurs in the middle of such critical
sections. Insuch cases, some data structures may be partially
updated, leading to inconsistencies within the VMM
(VMM/VMM). The VMs expect the VMM to provide a
monotonically increasing system time, handle hypercalls, and
deliver interrupts. The hardware expects the VMM to
acknowledge all interrupts it receives. When a VMM failure
occurs, the assumption of a reliable VMM is violated and this can
lead to inconsistencies between the VMM and VMs (VMM/VM)
and between the VMM and hardware (VMM/hardware). The
recovery process must resolve these inconsistencies so that the

- 4 -

virtualized system can continue to operate correctly. The
following paragraphs discuss in more detail these inconsistencies
and the techniques for resolving them.

Sources of VMM/VMM inconsistencies include partially
updated structures, unreleased locks, and memory leaks.The
options for resolving these inconsistencies are, essentially, special
cases of the options for dealing with state corruption, discussed in
the previous subsection.Resolving inconsistencies caused by
partially updated structures requires either reconstructing the data
structures using information from the failed VMM or using
redundant information logged prior to failure to fix the new
VMM’ s state. A scheduler’s run queue is an example of a data
structure for which the former technique can be used.
Inconsistency can occur if a VCPU becomes runnable but the
VMM f ails before inserting it into the run queue. Resolving this
inconsistency requires re-initializing the run queue to empty upon
bootup and re-inserting all runnable VCPUs (obtained from the
failed VMM) into the run queue.For other data structures, such
as the ones that track memory page usage information,
reconstruction is more difficult so the latter technique may be
preferable. For instance, an inconsistency can occur if a failure
happens right when a page use counter has been updated but
before that page has been added to a page table.Resolving this
inconsistency by traversing all page table entries to count the
actual mappings to that page can be done but is complex and slow.
Instead, the entire mapping operation can be made atomic with
respect to failure usingwrite-ahead logging, inv olving a small
overhead during normal operation and simple, fast correction of
any inconsistencies upon recovery.

Locks and semaphores that are acquired prior to VMM
failure must be released (re-initialized to a static value) upon
recovery to allow the system to reacquire them when needed.In
order to do so, all locks and semaphores must be tracked and re-
initialized in data structures that are reused or copied from the
failed VMM.

A memory leak can occur if a failure happens between
allocation and freeing of a memory region in the VMM. Such a
memory leak is benign if the leaked region is small. After VMM
recovery, the system can be scheduled to be rebooted to reclaim
leaked memory. Alternatively, lev eraging work by Kourai and
Chiba[13], after recovery, the virtualized system can be quickly
rejuvenated to get rid of any memory leaks.

Sources of VMM/VM inconsistency include non-
monotonically increasing system time, partially executed
hypercalls, and undelivered virtual interrupts. The correct
operation of many VMs depends on a monotonically increasing
system time.In a virtualized system, the VMs’ source of time is
the VMM. When a VMM is rebooted, its time keeping structures
are reset, potentially resulting in a time source for VMs that is not
monotonically increasing. In addition, such a reset can result in
timer events set using time relative to the VMM’s system time
prior to recovery to be delayed. One technique for resolving this
inconsistency is to simply save the VMM time structures upon
failure and restore those structures after the VMM reboot and
before the VMs are scheduled to run.This allows time to
continue moving forward with no interruption visible by the VMs.

When the VMM recovers from a failure, partially executed
hypercalls must be re-executed. Ourexperimental results show

that, at least for the hypercalls that were exercised by our target
system, simply retrying hypercalls does work most of the time and
allows VMs to continue to operate. In general, hypercalls that are
not idempotent may fail on a retry, in which case the VM
executing the hypercall may also fail.

Hypercall retry can be implemented by modifying the VM to
add a ‘‘wrapper’’ around hypercall invokation that will re-invoke
the hypercall if a retry value is returned by the VMM. The VMM
must also be modified to return a retry value indicating a partially
executed hypercall. Thisapproach allows the VMs more control
over which hypercalls to retry and allows the VMs to gracefully
fail if a hypercall retry is unsuccessful.

Hypercall retry can be implemented without modifying the
VMs. To force re-execution of a hypercall after recovery, the
VMM adjusts the VM’s instruction pointer to point back to the
hypercall instruction (usually a trapping instruction). When the
VM is scheduled to run, the very next instruction it executes will
be the hypercall. Thismechanism is already used in the Xen[2]
VMM to allow the preemption of long running hypercalls
transparently to the VMs.

The VMM is responsible for delivering interrupts from
hardware and event signals from other VMs as virtual interrupts to
the destination VM.These virtual interrupts may be lost if the
VMM f ails. Someinconsistencies of this type can be resolved
without any modifications to the system by relying on existing
timeout mechanisms that are implemented in the kernels and
device drivers of the VMs. A timeout handler can resend
commands to a device or resignal another VM if an expected
interrupt does not arrive within a specified period of time.We
have verif ied that timeout mechanisms exist for the Linux SCSI
block driver (used for SATA disks) and the Intel E1000 NIC
driver, representing the most important devices for servers
(storage and network controllers).Obviously, such timeout
mechanisms do not deal with lost interrupts from unsolicited
sources, such as packet reception from a network device.
However, at least for network devices, the problem is ultimately
resolved by existing higher-level end-to-end protocols (e.g., TCP).

A source of VMM/hardware inconsistency is
unacknowledged interrupts. Interrupt controllers will block an
interrupt source until the previous interrupt from that source has
been acknowledged by the processor. Since VMM failure can
occur at any time, pending interrupts may never get
acknowledged, thus blocking the interrupt source indefinitely. If
VMM recovery is done without performing a hardware reset, a
mechanism is needed to either reset the I/O controller or to
acknowledge all pending interrupts during recovery. In the case
of acknowledging pending interrupts, the interrupt source must be
blocked at the interrupt controller before the interrupt is
acknowledged to prevent another interrupt from slipping by
before the VMM is ready to handle the interrupt.

3. Transparent VMM Microreboot
We hav eimplemented a ReHype prototype for version 3.3.0 of the
Xen [2] VMM. This section describes the implementation of a
version of ReHype that provides the basic capability to
microreboot the VMM while preserving the running VMs and
allowing them to resume normal execution following the

- 5 -

microreboot. Improvements to the basic scheme that enhance
recovery success rates are discussed in Section4. Sofar, ReHype
has been evaluated and validated only with paravirtualized VMs.
However, based on preliminary experimentation, we expect the
current ReHype implementation, with few or no modifications, to
operate successfully with fully-virtualized VMs.

To microreboot the VMM, ReHype uses the existing Xen
port of the Kdump [6] tool.Kdump is a kernel debugging tool
that provides facilities to allow a crashed system to load a pristine
kernel image, in this case the VMM image, on top of the existing
image and directly transfer control to it.The Kdump tool by
itself, however, does not provide any facilities to preserve parts of
memory, such as those holding VM states. The burden of
memory preservation is on the kernel or VMM being booted.

A VMM microreboot is differentiated from a normal VMM
boot by the value of a global flag added to the initialized data
segment of Xen. The flag is clear in the original VMM image on
disk but is set after loading the recovery image to memory using
the Kdump tool upon initial system boot.All the modifications to
the bootup process described henceforth refer to actions
performed when the flag is set (the microreboot path).

On boot, the stock Xen VMM initializes the entire system
memory and allocates memory for its own use. The modifications
for ReHype must ensure that, upon recovery, the new VMM
instance preserves the memory used by VMs and memory that
was used by the previous VMM instance to hold state needed for
managing the VMs.Hence, as described in Subsection 3.1, the
ReHype version of the Xen VMM allocates ‘‘around’’ the
preserved memory regions during a VMM microreboot.When
the new VMM instance is booted and initialized, it does not
contain information about the running VMs, and thus has no way
to run and manage them.Subsection 3.2describes how the VMM
and VM states preserved during VMM recovery are re-integrated
with the new VMM instance.

3.1. Preserving VMM and VM States
The state that must be preserved across a VMM microreboot
includes information in the VMM’s static data segments, the
VMM’ s heap, the structure in the VMM that holds information
about each machine page, and special segments that are normally
used only during VMM bootup.

VMM microreboot involves overwriting the existing VMM
image (code, initialized data, and bss) with a pristine image.The
VMM’ s static data segments (initialized data and bss) contain
critical information needed for the operation of the system
following bootup of the new VMM instance. For example, this
includes interrupt descriptors and pointers to structures on the Xen
heap, such as Domain 0’s VM structure and the list of domains.
Hence, some of the information in the old static data segments
must be preserved. Whileit is only necessary to preserve a subset
of the static data segments, since they are relatively small, we
reduce the implementation complexity by preserving the segments
in their entirety.

Figure 1 shows the memory layout for Xen, as modified for
ReHype. In particular, the bss segment is extended by
approximately 1MB — sufficient space to hold complete copies
of the original bss and initialized data segments. Thisis done by

Figure 1: Layout of system memory for ReHype.

changing the linker script used for creation of the Xen image.
Since the area reserved is in the bss segment, no extra disk space
is taken up for the new VMM image. The bss segment only takes
up space when it is loaded into memory. Upon failure detection,
before initiating a VMM microreboot, the failure handler copies
the initialized data and (unextended) bss segments to this new
reserved memory.

As discussed above, for each VM, the state that must be
preserved includes both the VM’s memory image and parts of the
VMM state used to manage the VM.Since this information is
maintained on the VMM’s heap, the VMM’s heap must be
preserved. Preservingthe VMM’s heap requires modifications of
the VMM’s bootup code. During VMM initialization, before the
heap is created, the old heap (from the previous VMM instance) is
walked to identify all the free pages.When the new heap is
created and populated with free pages, only pages that are free in
the old heap are added to the new heap. Thisensures that the new
VMM will not allocate (overwrite) any pages that are still in use.
To access the old heap, the page table from the old VMM must be
restored. Thisrequires copying the old page directory from the
old bss segment, preserved as discussed above, to the new bss
segment.

The Xen VMM maintains a structure (page_info) that holds
information about each machine page, such as the page ownership
and use count.For all the pages that are preserved across a VMM
microreboot, the information in this structure must be preserved.
This structure is allocated in a special memory area, between the
bss segment and the heap. The VMM bootup code was modified
to avoid initializing the page_info entries for pages that are not
free.

The stock Xen VMM image includes two static segments
(init.text and init.data) that are normally used during bootup and
then freed to the heap so that they can be used for other purposes.
Hence, with stock Xen, a microreboot would overwrite these
segments, potentially corrupting data in pages that had been
reallocated. To prevent this problem, the bootup code (normal
and microreboot) has been modified to avoid freeing these pages.
This results is an extra 100KB memory overhead.

Preserving the heap and static data segments of a failed
VMM is unsafe — it can result in recovery failure if those
preserved values are corrupted by the failed VMM. Section 4 will
discuss mechanisms that dramatically improve the chances of
successful recoveries despite re-using the preserved heap and
static data segments.

3.2. Re-integrating VMM and VM States
Following a VMM microreboot, the VMM does not have the
information required to resume execution and manage the VMs
that were running at the time of failure. Themissing system state

- 6 -

includes the list of VMs it was managing, the system time that
was provided to the VMs, information for interrupt routing (to
processors) and forwarding (to VMs), and timer events that were
scheduled by the VMs.To allow the virtualized system to
continue running, these components of the system state must be
restored. Asdiscussed in the previous subsection, all the required
state is preserved across a VMM microreboot.Hence, all that is
needed is to re-integrate the preserved information with the new
VMM instance. This re-integration is accomplished by copying a
few key values from the old static data segments to the new static
data segments. Therestoration is done before the VMs can be
scheduled to run. The following structures must be restored:
• Pointer to xmalloc free list: prevent memory leaks.
• Pointers to the domain list and hash table: allow Xen to access
the state of the running VMs.
• Pointer to the Domain 0 descriptor: since Domain 0 is not
rebooted as part of recovery, the pointer to it must be restored to
allow Xen access to the Domain 0 structure.
• Pointers to timer event objects: restore pending timer events on
the old timer heap to the new timer heap.
• Pointer to the machine-to-physical (m2p) mapping table: make
available mapping of machine frame numbers to physical frame
numbers.
• System time variables: maintain monotonically increasing time.
The time-stamp counter (TSC) must not be reset.
• IRQ descriptor table and IO-APIC entries, including correct
IRQ routing affinity and mask: allow VMs to continue to receive
interrupts from their devices.
• Structures for tracking the mappings of pages shared between
VMs and the VMM: prevents overwriting mappings that are still
in use.

There are two additional differences between the VMM
microreboot path and a normal VMM boot: Domain0 is not
created and VMs are re-associated with the scheduler. The bootup
code has been modified to skip Domain0 creation and to restore
the Domain0’s global pointer so that the new Xen can access
Domain 0’s state. VMs are re-associated with the VMM’s
scheduler by invoking the scheduling initialization routines for
each VM and inserting runnable VCPUs into the new run queue.

Some of the structures needed by the VMM are re-created
during a microreboot.These include the idle domain as well as
structures holding hardware information such as the model and
type of the CPU and the amount of memory available. For
structures that are re-created on the heap, ReHype prevents a
memory leak by first freeing the old structures.

4. Improving Recovery
The scheme presented in the previous section provides basic
capabilities for VMM microreboot.However, as explained below,
with this basic mechanism the probability of successful recovery
is very low. The section starts with the basic scheme and
incrementally improves on that scheme to achieve higher recovery
success rates.Table 1 shows the mechanisms used to improve the
basic recovery scheme. As in [17], the choice of improvements is
guided by results from fault injection experiments.

We used software-implemented fault injection to introduce
errors into CPU registers when the VMM is executing. Thegoal
of the injection was to cause arbitrary failures in the VMM and

Table 1. Improvements over the basic ReHype recovery.

Mechanism Description

NMI IPI Use NMI IPIs in failure handler. Avoid
IPI blocking by failed VMM.

Acknowledge
interrupts

Acknowledges all pending interrupts in
all processors to avoid blocked
interrupts after recovery.

Hypercall retry All partially executed hypercalls are
retried transparently to the VMs.

FixSP Stack pointer set to ‘‘safe’’ value in
failure handler.

NMI ‘‘ack’’ Execute iret to ‘‘ack’’ NMI when hang
detected on non-CPU0.

Reinitialize locks Dynamically allocated spin locks and
non-spin locks are unlocked.

Reset page counter Reset page use counter based on page
validation bit.

evaluate the effectiveness of different recovery mechanisms.Tw o
system setups were used: 1AppVM and 3AppVM.The 1AppVM
setup was comprised of two VMs: Domain 0, thePrivileged VM
(PrivVM), and an Application VM (AppVM) running a disk I/O
(block) benchmark. This setup was used to quickly identify major
short comings with the recovery mechanisms. The more complex
3AppVM system setup, shown in Figure 2, was used to further
stress the virtualized system, once the majority of sources of
failed recoveries had been fixed. In this setup, AppVM2 is
designed to boot after VMM recovery. This is a check of whether
the recovered virtualized system maintains the ability to create
new VMs.

Table 2. Injection outcomes.

Outcome Description

Detected
VMM failure

Crash: VMM panics due to unrecoverable
exceptions

Hang: VMM no longer makes observable
progress

Silent
failure

Undetected failure: No VMM crash/hang
detected but applications in one or more
VMs fail to complete successfully

No errors observedNon-manifested

Table 2 summarizes the possible outcomes from an injected
fault (injection experiment). Onlydetected VMM failures lead to
VMM recoveries. With the 1AppVM setup, a recovery is
considered successful if the benchmark in the AppVM completes
correctly. With the 3AppVM setup, following the explanation in
Section 2,a recovery is considered successful if either AppVM0
or AppVM1 completes its benchmark correctly and AppVM2 is
able to boot and run its benchmark to completion without errors.
Silent failures, discussed in Section6, do not trigger VMM
recovery and are thus excluded from further discussion in this
section. Details of the experimental setup, fault injection
campaign, and failure detection mechanisms are in Section 5.

In the rest of this section, each version of the recovery

- 7 -

Table 3. Fault injection results for 1AppVM system
setup. Percentageof successful recoveries out of
detected VMM failures (VMM crash/hang).

Mechanism SuccessfulRecovery Rate

5.6%Basic

17.6%+ NMI IPI

48.6%+ Ack interrupts

62.6%+ Hypercall retry

77.0%+ FixSP+NMI ‘‘ack’’

95.8%+ Reinitialize locks

scheme is described, and fault injection results are presented.
This is followed by an analysis of the main cause of failed
recoveries, motivating the next version of the recovery scheme.
At each step, only the problem that leads to the plurality of failed
recoveries is analyzed and fixed. Table 3summarizes the rate of
successful recoveries with the basic ReHype scheme and the
various incremental improvements that are made.

Basic: As shown in Table 3,with the Basic recovery scheme
(Section 3),the successful recovery rate is only 5.6%.A large
fraction of recovery failures (44%) occur because the failure
handler is unable to initiate the VMM microreboot.Normally, the
failure handler relies on interprocessor interrupts (IPIs) to force all
processors to save VM CPU state and halt execution before
microrebooting the VMM. Microrebooting the VMM cannot
proceed until all processors execute the IPI handler. Therefore,
the failure handler is stuck if a processor is unable to execute the
IPI handler due to a blocked IPI or memory corruption.

NMI IPI: To get around the above problem, NMI IPIs can be
used. Inaddition, a spin lock protecting a structure used to set up
an IPI function call must be busted to prevent the failure handler
from getting stuck.

Table 3 shows an increase in recovery success rate to 17.6%
when these fixes are used. Only 8.2% of the failures are now
caused by an inability to initiate the VMM microreboot.The
plurality of the remaining failures (45%) are due to interrupts
from the block device not getting delivered to the PrivVM. This
causes the block device driver in the PrivVM to time out, thus
leading to the failure of block requests from the AppVM.

The block device uses level-triggered interrupts.For such
interrupts, the I/O controller blocks further interrupts until an
acknowledgment from the processor arrives. If the VMM fails
before acknowledging pending interrupts, those level-triggered
interrupts remain blocked after recovery.

Acknowledge interrupts: To prevent level-triggered
interrupts from being blocked, the failure handler must
acknowledge all pending interrupts on all processors. This must
be done in the failure handler since information about pending
interrupts are cleared after a CPU reset during a VMM reboot.

Table 3 shows that when this mechanism is added, the
successful recovery rate jumps to 48.6%.Of the remaining
unsuccessful recoveries, 52.8% are caused by a crashed AppVM
or PrivVM after recovery. The crashes are caused by bad return
values from hypercalls. SinceVMM failures can occur in the
middle of a hypercall, it is necessary to be able to transparently
continue the hypercall after recovery. Without mechanisms to do

this, after recovery, the VM starts executing right after the
hypercall, using whatever is currently in the EAX register as the
return value.

Hypercall retry: The ability to restart a hypercall is already
provided in Xen. The mechanism involves changing the program
counter (PC) of the VCPU to the address of the instruction that
invokes the hypercall. For each VM, the VMM determines
whether a hypercall retry is needed after the VMM microreboot,
before loading the VM state.Specifically, for each VCPU, the
VMM checks if the VCPU’s PC is within the VM’s hypercall
page. Ifso, the VMM updates the VCPU’s PC. Arguments to the
hypercall are already preserved in the VM VCPU state.

Table 3 shows that, with hypercall retry, the successful
recovery rate is62.6%. Out of the remaining unsuccessful
recoveries, 41% are caused by the same symptom encountered
and partially solved with the Basic scheme — the inability of the
failure handler to initiate the VMM microreboot.With the
improved recovery rate, the causes of this symptom not previously
resolved are now responsible for the plurality of failed recoveries.

The experimental results show two causes for the symptom
above: 1) NMI IPIs sent to the wrong destination CPU due to
stack pointer corruption and 2) NMIs are blocked due to NMI-
based watchdog hang detection. Problem (1) occurs because a
corrupted stack pointer is used to obtain the CPUID of the
currently running processor. The obtained CPUID is incorrect
and is, in turn, used to create a CPU destination mask for the NMI
IPI. This mask can end up containing the sending processor as
one of the destination CPUs.The result of this is that an IPI is
incorrectly sent to the sending processor. This IPI is dropped and
the sender waits forever for the completion of the IPI handling.

Problem (2) is due to the fact that NMI delivery is blocked if
a CPU is in the middle of handling a previous NMI — an iret
instruction matching a previous NMI has not been executed [10].
The Xen hang detector is based on periodic NMIs from a
watchdog timer. If a hang is detected on a processor, that
processor immediately executes the panic handler and never
executes aniret instruction. Thisprevents the processor from
getting an NMI IPI from the boot processor to initiate recovery.

FixSP+NMI ‘‘ack’’: Problem (1) above can be fixed by not
relying on the stack pointer to obtain the CPUID during failure
handling. Insteadthe CPUID can be obtained by first reading the
APICID from the CPU and then converting the APICID to
CPUID by using an existing APICID to CPUID mapping structure
stored in the static data segment of Xen.With this technique, the
VMM has a chance to continue with the recovery despite a
corrupted stack pointer. Howev er, the corrupted stack pointer can
cause critical problems that are unrelated to the CPUID.
Specifically, the handler invoked when VMM failure is detected
must save VCPU registers (located on the stack) into preserved
VMM state. A corrupted stack pointer leads to saving the
contents of a random region in memory as the saved VCPU
register values. Thiscan cause the VMM to crash after recovery
when trying to restore the corrupted (incorrect) values to VCPU
registers. Specifically, when attempting to load the saved VCPU
registers after recovery, the VMM may try to restore a corrupted
value as the VCPU code segment register. This may cause the
VMM to continue executing with VMM privilege using corrupted
(incorrect) register values.

- 8 -

ReHype implements a solution to Problem (1) above that
avoids the deficiency described in the previous paragraph.
Specifically, the failure handler, inv oked upon VMM failure, sets
the stack pointer to a ‘‘safe’’ value. Thiscan be done based on the
observation that the failure handler never returns, and therefore,
the stack pointer can be reset to any valid stack location.The
address of the bottom of the stack is kept by Xen in a static data
area. Thestack pointer is set to that value minus sufficient space
for local variables used by the failure handler.

Problem (2) above is resolved by forcing the execution ofiret
in the failure handler. The stack is manipulated so that theiret
instruction returns directly to the failure handler code.

With the two improvements above, the rate of successful
recoveries is77.0%. Themajority of the increase is due to fixing
the stack pointer. Since hangs are responsible for only a small
fraction (7.1%) of detected VMM failures, the impact of fixing
problem (2) on the overall recovery success rate is small.
However, with this fix, there was successful recovery from all
hangs detected in this experiment.

Out of the remaining unsuccessful recoveries, 82.8% are due
to spin locks being held after recovery. Spin locks that are
statically allocated are re-initialized on boot but locks that are on
the heap are not. This causes the VMM to hang immediately after
recovery.

Reinitialize locks: Re-initializing dynamically-allocated
spin locks requires tracking the allocation and de-allocation of
these locks.All locks that are still allocated upon recovery are
initialized to unlocked state. This tracking of spin locks is the
only extra work that ReHype must perform during normal
operation. Theassociated performance overhead is negligible
since the allocation and de-allocation of spin locks is normally
done only as part of VM creation and destruction.Furthermore,
there are only about 20 spin locks that are tracked per VM.

Locking mechanisms that are not spin locks must also be re-
initialized to their free states.A key example of this are the page
lock bits used to protect access to bookkeeping information of
pages. With the previous version of the recovery scheme, not
initializing these bits resulted in 10% of unsuccessful recoveries.

As shown in Table 3, re-initializing locks increases
successful recovery rate to95.8%. For the remaining recovery
failures there is not one dominant cause.

While the 1AppVM system setup is useful for uncovering the
main problems with the Basic ReHype recovery, it is very simple,
thus potentially hiding important additional problems.To better
stress the virtualized system, the rest of the experiments in this
section use the 3AppVM setup.The results with this setup are
summarized in Table 4.

As shown in Table 4, with the 3AppVM setup, the reinitialize
locks mechanism results in a recovery success rate of90.2%.
Hence, there is a small decrease in the success rate compared to
the 1AppVM setup. Out of the remaining recovery failures, 25%
are due to the VMM hanging immediately after recovery. This
problem is caused by a data inconsistency resulting from a VMM
failure while in the middle of handling a page table update
hypercall. Thishypercall promotes an unused VM page frame
into a page table type by incrementing a page type use counter
and performing validity check on the page frame. After the

Table 4. Fault injection results using 3AppVM system
setup. Percentageof successful recoveries out of
detected VMM failures (VMM crash/hang).

Mechanisms SuccessfulRecovery Rate

90.2%Reinitialize locks

94.3%+ Reset page counter

validity check, a validity bit is set to indicate that the page can be
used as a page table for the VM.Inconsistency arises when a
VMM failure occurs before the validity check is completed but
after the page type use counter has been incremented. When the
hypercall is retried after recovery, since the page use counter is
not zero and the validity bit is not set, it assumes validation is in
progress and waits by spinning.Of course, there is no validation
taking place, and the CPU is declared hung by the hang detector.

Reset page counter: To fix the above problem, code is
added during VMM bootup to check the consistency between the
validity bit and page use counter. If the page use counter is non-
zero but the validity bit is not set, then the page use counter is set
to zero.

With the page counter fix employed, recovery success rate
improves to 94.3% The remaining causes of failed recoveries vary
widely and are discussed in more detail in Section 6.

5. Experimental Setup
This section presents the experimental setup used to evaluate the
ReHype prototype. It discusses details of the target virtualized
system, the benchmarks running in the Application VMs
(AppVMs), the VMM failure detection mechanisms (that trigger
recovery), and the fault injection campaign.

The evaluation of ReHype was done on a system comprising
of the Xen VMM, augmented with ReHype, hosting multiple
paravirtualized VMs. To simplify the setup for software-
implemented fault injection, the target system was run inside a
fully-virtualized (FV) VM[14]. This made it easy to restart the
target system and refresh its disk images after each injection run
to isolate the effects of faults injected in different runs.

As mentioned in Section4, two system configurations were
used: 1AppVM and 3AppVM.With the 1AppVM configuration,
the system hosts two VMs: a PrivVM (Domain 0) and a single
AppVM. The AppVM runs theblkbench benchmark, described
below, which continuously performs disk I/O (block) operations.
The PrivVM hosts the block backend for the AppVM. Each of
the VMs consists of one virtual CPU (VCPU) that is pinned to its
own physical CPU (PCPU).

The 3AppVM configuration is shown in Figure2. In this
configuration, the PrivVM’ s root filesystem is in memory and the
PrivVM does not access any devices. A separate Driver VM
(DVM)[15] has direct access to the network and SCSI controllers
and serves as the network backend for AppVM0 and block
backend for AppVM2. AppVM1 has direct access to the IDE
controller, and thus does not rely on the DVM for any device
access. EachVM consists of one VCPU which is pinned to its
own PCPU. To check whether the recovered system maintains its

- 9 -

Figure 2: System configuration for 3AppVM. AppVM2
created after recovery.

ability to create new VMs, AppVM2 is designed to boot up after a
possible VMM recovery and run theblkbench benchmark.

Three application benchmarks are used in our experiments:
netbench, blkbench, and UnixBench. Netbench is a user-level ping
program that exercises the interface to the network. It consists of
two processes: one running inside an AppVM (thereceiving host),
and another running on a separate physical machine (thesending
host). Every 1ms the sending host transmits a UDP packet to the
receiving host, which, upon receiving this packet, transmits UDP
packet back to the sending host.Unsuccessful application
completion occurs when the packet reception rate on thesending
host drops below a threshold (450 packets per second).

Blkbench stresses the interface to the block device (disk) by
creating directories and creating, removing, and copying 1MB
fi les. To ensure block activity, this benchmark prevents caching
of block and filesystem data inside the AppVM’s OS.
Unsuccessful application completion occurs when the application
reports an error (failed system call) or the resulting disk image
when the benchmark completes differs from a reference image.

The third benchmark (UnixBench) is a subset of the set of
programs in UnixBench[1] with minor modifications to improve
logging and failure detection.The selected programs were chosen
for their abilities to stress the VMM’s handling of hypercalls such
as virtual memory management and process scheduling.
Unsuccessful application completion occurs when one or more
programs in UnixBench terminate prematurely due to failed
system calls or the resulting program output differs from a
reference output.

As summarized in Table 2, the outcome of each injection run
is classified as: detected (VMM crash/hang), silent (undetected
failure), or non-manifested.A crash occurs when the VMM
panics due to unrecoverable exceptions. Hangsare detected using
a watchdog mechanism built into Xen. Specifically, Xen
maintains a watchdog counter that is supposed to be incremented
by a normal timer event every 500ms. A watchdog NMI is
generated every 500ms of unhalted CPU cycles. If the watchdog
NMI handler detects that the watchdog counter has not been
incremented for 2s, the system is declared hung.

A silent VMM failure occurs when no VMM hang or crash is
detected but the applications (benchmarks) in one or more
AppVMs fail to complete successfully. What constitutes
unsuccessful completion is application specific and is discussed
above. Non-manifested means that no errors are observed.

We used the UCLAGigan fault injector[14, 9] to evaluate

ReHype. Gigan can reside in the VMM and inject many types of
faults into the VMs and the VMM.Injection into VMs can be
done without any modifications to the VMs.With the ReHype
evaluation setup, the entire target system is in an FV VM so the
injection does not require any modifications (intrusion) of the
target system. Single bit-flip faults were injected into the registers
of the processors during the execution of VMM code. While
these injected faults do not accurately represent all possible faults,
they are a good choice since transient hardware faults in CPU
logic and memory are likely to be manifested as erroneous values
in registers. Furthermore,these faults can cause arbitrary
corruptions in the entire system. Hence, this limited fault
injection satisfies the main goal of the evaluation, which is to
‘‘ stress’’ the recovery mechanisms in order to identify problem
areas. Thereis a possibility that some problem areas remain and
will be uncovered only by a more comprehensive fault injection
campaign. Thiswill be investigated in future work.

A fault injection campaign consists of many fault injection
runs. Asingle fault injection run that uses the 1AppVM system
configuration consists of first booting the VMM along with the
PrivVM and AppVM. The AppVM begins running the blkbench
benchmark and a fault is injected into the VMM. The injection
campaign infrastructure allows the target system sufficient time
for the VMM to recover and for the benchmark to complete.If
the benchmark does not complete, a timeout mechanism identifies
system failure. At the end of each run, fault injection logs and
benchmark output are retrieved and stored for analysis.

An injection run using the 3AppVM configuration is similar
to the 1AppVM configuration except that an injection is
performed only after the VMM, PrivVM, DVM, AppVM0, and
AppVM1 have been booted and the two AppVMs have started
running their respective benchmarks. 9safter the two AppVMs
begin running their benchmarks, AppVM2 is booted to run its
own benchmark. Theinjection run ends when all three AppVMs
complete their benchmark runs or a timeout occurs.

An injection is triggered after a random time period between
500ms to 6.5s after the AppVMs begin running their benchmarks.
To ensure that the injection occurs only when the VMM is
executing, a fault is only injected after the designated time has
elapsed and 0 to 20,000 VMM instructions, chosen at random,
have been executed. Theinjection is a single bit-flip into a
randomly selected bit of a randomly selected register. The target
registers include general purpose registers, instruction and stack
pointer registers, and the system flags register. Each injection
selects randomly among the VCPUS of the target system.

6. Analysis
This section analyzes fault injection results for the final version of
ReHype, with all the recovery improvements from Section4. We
discuss: I) the impact of the distribution of injections across
CPUs, II) the causes of AppVM failure in the successful VMM
recoveries that result in single AppVM failure, and III) the causes
of VMM recovery failures and silent system failures.

It is expected that faults in a CPU that rarely executes VMM
code are less likely to lead to VMM failures than faults in a CPU
that executes a larger fraction of VMM code. Due to different
activities on different VMs, the execution time of VMM code is

- 10 -

not evenly distributed across the CPUs hosting these VMs.
However, for the fault injection results presented so far, injections
were uniformly distributed across CPUs. Hence, it is critical to
evaluate whether the results are qualitatively different if the
distribution of fault injections is adjusted to match the fraction of
time each CPU spends executing VMM code.

We use the Xenoprof profiler [16] to measure the distribution
of Xen execution time across CPUs when running the 3AppVM
setup. Asexplained in Section5, each VM is pinned to a CPU.
The results are as follows: 7.5% PrivVM CPU, 11.7% DVM CPU,
5.1% AppVM0 (NetBench) CPU, and 75.6% AppVM1
(UnixBench) CPU. The AppVM2 CPU is not included in the
profile because it is created after the injection.

Table 5. Fault injection results for the final version of
ReHype with injections distributed across CPUs
uniformly or weighted by VMM execution time.
Percentage of successful recoveries are out of detected
VMM f ailures. Percentageof silent failures are out of
manifested faults.

Manifested

DetectedDistribution
of Injections
Across CPUs

Successful
Recovery Rate

Silent
Single AppVM
Failure

Silent
System
Failure

Uniform 94.3% 6.0% 14.0%

Weighted 94.5% 6.6% 11.3%

Table 5 shows the injection results using the uniform
distribution across CPUs and when injection distribution is
weighted VMM execution time. The results are very similar.
This is due to a combination of two factors. First,the fraction of
injected faults leading to detected VMM failures is approximately
the same across the four CPUs (24%-27%). Second, under
uniform distribution of injections, 5.7% of detected VMM failures
result in unsuccessful recoveries. Consideringonly injections into
AppVM1, the corresponding number is almost the same — 5.2%.
Hence, with the weighted distribution of injections, most of the
injections are applied to a CPU whose behavior with respect to
injection closely matches the behavior of the overall system under
uniform distribution of injections.Since results from the two
injection distributions are very similar, the rest of the analysis in
this section is based on the uniform distribution results.

As explained in Section 2, VMM recovery that leads to the
failure of only a single AppVM is considered successful.
However, it is clearly preferable for none of the AppVMs to fail.
In our experiments, a single AppVM fails to correctly execute its
application in 32.6% of successful recoveries. Thevast majority
of such cases are due to the failure of netbench in AppVM0.The
failure of netbench is caused by blocked network interrupts at the
I/O controller after recovery, preventing netbench from receiving
additional packets from the sender host.Unfortunately, the
acknowledge interrupts mechanism discussed in Section 4 cannot
be used to solve this problem. To acknowledge an interrupt, the
CPU must be currently servicing that interrupt.However, a VMM
failure can occur after an I/O controller delivers an interrupt to the
CPU but before the CPU begins servicing the interrupt.Thus,
upon recovery, the CPU cannot acknowledge the interrupt, leaving

the interrupt blocked at the I/O controller. To resolve this
problem, there needs to be a way to clear pending interrupt states
in the I/O controller without performing a full hardware reset.
Based on code in the Linux kernel and Xen, there is a way to do
this (simulating an interrupt acknowledgment by setting the
interrupt trigger mode to edge then back to level). However, this
has not worked with our experimental setup, where the entire
target system is running in an FV VM.We plan to further
investigate this approach in future work.

ReHype failed to recover the VMM in only 5.7% of detected
failures. Approximately50% of failed recoveries are caused by
three problems: (1) failure of the PrivVM or DVM, preventing
successful completion of applications in more than one AppVM,
(2) a triple fault exception generated during the execution of the
failure handler triggering a hardware system reset, and (3) a
combination of problems causing the failure of both the
unixbench and netbench to complete successfully. The following
paragraphs discuss these three problems in more detail.

Failures of the PrivVM and DVM in problem (1) are due to
kernel panics in the VMs caused by state corruption and error
return values from hypercalls. Problem(1) can be partly resolved
by providing mechanisms to recover a PrivVM or DVM from
failures. DVM recovery has been previously explored in non-
VMM f ailure context [5, 15, 11]. A simple DVM recovery scheme
would include destroying the failed DVM, booting a new DVM in
its place, and restoring device access to the AppVMs.PrivVM
recovery can potentially be done in a similar way. Howev er,
unlike DVM recovery, recovering the PrivVM would require
preserving configurations of running VMs to allow the PrivVM
the ability to continue managing the VMs after recovery.

A double fault exception is generated if a fault is triggered
while trying to invoke an exception handler. A triple fault
exception is generated if a fault is triggered while trying to invoke
the double fault handler. Problem (2) above prevents the failure
handler from completing because a triple fault exception is
generated. Normally, this causes the hardware to perform a
system reset.With our setup, the VMM hosting our target system
in an FV VM performs an FV VM reset. This problem may be
caused by corruption of VMM state while executing the failure
handler. Corruptions can affect the interrupt descriptor table or
the page directory, which can lead to a triple fault exception.
There is evidence that the frequency of this problem could be
reduced by simplifying the failure handler, possibly including the
elimination of output of debugging information.

Problem (3) is caused by two independent problems that
prevented AppVM0 (netbench) and AppVM1 (unixbench) from
finishing their respective applications. Thefi rst problem is caused
by the blocking of network interrupts at the I/O controller after
recovery, preventing the netbench from continuing correctly. This
is the same problem described above with respect to successful
recoveries resulting in one failed AppVM. The second problem is
caused by a panic in AppVM1’s kernel after receiving an error
return value from a hypercall, preventing the unixbench from
completing correctly. The error return value may be caused by
inconsistencies within the VMM, and as discussed in
Subsection 2.3,may require maintaining redundant information
during normal operations to resolve. Fixing either problem
should improve overall successful recoveries.

- 11 -

The remaining recovery failures are caused by various VMM
corruptions and inconsistencies.Some of the causes of these
failures include: (1) corruption of VM’s VCPU registers causing
the new VMM to crash after recovery when restoring the VCPU,
(2) corruption of the timer heap which leads to a page fault in the
VMM when the old timer heap is walked to restore timer events,
and (3) page table corruption that causes the new VMM to page
fault early in the boot code. These problems require mechanisms
to check and ensure these data are ‘‘safe’’ to use as discussed in
Subsection 2.2. Checks are needed to ensure that critical VCPU
register values are consistent, e.g. code segment contains the
correct privilege, pointers in the timer heap are valid, and page
tables contain well formed entries before using or restoring them.

VMM corruptions can lead to failures that are not detectable
by simple crash and hang detectors. These silent failures can
manifest as failures of one or more VMs and/or failure of the
VMM to host additional VMs. As discussed in Section 2, the
reliability goal of ReHype is met if no more than one AppVM
fails due to a fault and the VMM can still host existing VMs and
create new VMs. In the case of a silent single AppVM failure, the
reliability goal is met.However, silent system failures, which are
silent VMM failures that result in more than one VM failure
and/or the failure of the VMM to host additional VMs, reduce the
reliability of the virtualized system. Hence, the rest of this section
discusses the causes of these failures.

In our experiments, silent VMM failures are roughly 20% of
all manifested failures. However, only 14% cause system failures
(Table 5). The remaining 6% cause a benchmark (netbench or
unixbench) in a single AppVM to complete incorrectly. This can
be caused by a failed hypercall causing a VM kernel panic or a
blocked interrupt. Roughly 60% of silent system failures are
caused by a hardware system reset due to a triple fault exception.
Unlike the triple fault exceptions discussed above that occurred
during the execution of the failure handler, in these cases, there
are no clear indications whether the failure handler ever executed.
Simplifying the failure handler, as described above, should allow
for a better understanding of this problem.

35% of silent system failures may be artifacts of the fault
injection setup.Specifically, in 20% of failures the host VMM
crashes the FV VM running the target system. This can happen if
the VMM attempts to access invalid state in the FV VM while
performing some operations on its behalf.For example, as part of
handling paging mode updates (writes to CR4 register) from an
FV VM using hardware-assisted paging, the VMM may map in
the page pointed to by the FV VM’s CR3 register. If the mapping
fails (no valid page) due to a corrupted CR3, the VMM will crash
the FV VM. With ReHype running directly on hardware, such a
scenario would likely result in a detected VMM failures, allowing
recovery to be attempted. 15% of silent system failures are
caused by communication failures (dropped event signals)
between the fault injection campaign on the host VMM and
campaign coordination code in the target system. In these cases,
the host campaign times out and records a target system failure
when it fails to receive a signal from the target system after an
injection. Inan actual deployment of ReHype, the same fault may
not be manifested or may be manifested in a different way,
possibly allowing recovery to be attempted.

The remaining 5% of silent system failures are cases in

which the kernel in the PrivVM or DVM crashed because of
memory corruption or hypercalls returning errors. This caused
more than one AppVM to fail completing its benchmark.
Mechanisms to recover the PrivVM and DVM should reduce this
type silent system failures.

7. Related Work
Many researchers have proposed rebooting subcomponents in
application software systems, operating systems, and virtualized
systems to increase system reliability and
availability [3, 21, 11, 15]. These works, however, hav e not
addressed how to preserve the subcomponents while rebooting the
underlying system.The two works that are most closely related to
ReHype are RootHammer [13] and Otherworld [4].

RootHammer reduces the time to reboot (rejuvenate) a
virtualized system by rebooting the Xen VMM and Domain0
while preserving in memory the states of VMs and their
configurations. Duringrejuvenation, Domain0 is properly shut
down and the VMs suspend themselves cleanly. Kexec [18] is
used to quickly reboot the Xen VMM and Domain 0, similar to
ReHype. Aftera reboot, Domain0 must re-instantiate and resume
all the VMs. This requires modifications to tools in Domain0 to
access VM configurations and state already resident in memory.

RootHammer operates within a healthy and functioning
virtualized system.Hence, there is no concern for the safety of
the VMM due to corrupted VM states during VM re-integration or
the need to resolve inconsistencies, such as acquired locks and
interrupted hypercalls. Onthe other hand, ReHype aims to
recover a failed VMM that can be corrupted and may have
inconsistencies within the VMM state, between the VMM and
VMs, and between the VMM and hardware.

Unlike RootHammer, ReHype preserves Domain0 and
management structures for VMs across a VMM failure. As
discussed in Subsection 2.2, this can be unsafe as states can
become corrupted. However, preserving Domain0 allows
recovery to occur without any modifications to the VMs as is
needed with RootHammer. In addition, without tying Domain0
recovery to the VMM recovery, recovery latency can be reduced
as VMs can continue to operate as soon as the VMM is booted
without having to also wait for Domain0 to boot. A possible
extension of ReHype is to follow the microreboot of the VMM
with a subsequent proactive rejuvenation, scheduled at a
convenient time, involving recovery of Domain0 and re-creation
of the VM structures in the VMM.

Otherworld [4] allows a Linux kernel to be recovered from
failures while preserving the state of the running processes.
KDump [6] is used to load and boot a new kernel. Thenew kernel
boots within a reserved memory space. Hence, the memory
contents of the failed system are preserved. InReHype, the VMM
is booted with access to the entire system memory and does not
need a large preserved memory region (64MB used in
Otherworld). With Otherworld, processes are restored by
recreating the process descriptors and copying the process
memory from the old memory region. ReHypereuses the VM
descriptors and does not need to copy the VM memory. Both
approaches require mechanisms to ensure the safety of the reused
data (see Section 2.2).

- 12 -

With Otherworld, restoration of kernel components requires
traversing many complex data structures in a possibly corrupted
kernel. This increases the chance of failed recoveries. ReHype
benefits from the simplicity of the state that the VMM keeps for
the VMs, enabling a simpler recovery process and increasing the
chance of a successful recovery. Specifically, the number of
components that must be restored in a VMM for each VM is
small, as discussed in Section 3.

Otherworld must individually restore kernel resources that
are used by the processes, such as open files, signal handlers, and
shared memory IPC.The network stack and pipes cannot yet be
restored. Applicationsthat use such kernel resources need to have
custom crash procedures to perform application specific recovery
tasks, such as re-opening sockets or restarting the application.
With ReHype, all the states of the applications are maintained
within the VM. Hence, application failure handlers or any other
application modifications are not needed. VM failure handlers
could be useful for performing data integrity checks in the VM
using VM-specific knowledge. Sincethere are fewer types of
VMs than there are applications, if VM failure handlers are
needed, fewer have to be written.

8. Conclusions and Future Work
We hav e developed the ReHype mechanism that recovers from
hypervisor failure, using microreboot, while preserving the state
of running VMs. The basic version of ReHype recovered
successfully from only 5.6% of detected hypervisor failures. We
used fault injection results to guide incremental improvements of
ReHype, leading to a success rate of over 90%. Theincremental
improvements involved a combination of mechanisms to repair
VMM corruption and resolve inconsistencies within the VMM,
between the VMM and VMs, and between the VMM and the
hardware. Ourresults indicate that almost half of the remaining
failed recoveries (3% of detected failures) may be resolved by
performing PrivVM or DVM recovery, simplifying the failure
handler, and clearing pending interrupts in the I/O controller.
14% of manifested faults lead to undetected VMM failures that
result in system failures. 60%of these failures are caused by a
single problem — triple fault exception leading to a system reset.

In future work, we will add PrivVM and DVM recovery to
enhance overall system reliability. We also plan to evaluate
ReHype on bare hardware to check whether any of our results are
significantly skewed by our current experimental setup, where the
target system is in an FV VM.Additional areas of interest are:
evaluation and optimization of recovery latency, preserving FV
VMs across a VMM microreboot, and additional stressing of
ReHype using, for example, injected software errors.

Acknowledgments
This work was supported, in part, by a donation from the Xerox
Foundation University Affairs Committee.

References
[1] ‘‘UnixBench,’’ www.tux.org/pub/tux/benchmarks/System/unixbench.
[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.

Neugebauer, I. Pratt, and A. Warfield, ‘‘Xen and the Art of
Vi rtualization,’’ Nineteenth ACM Symposium on Operating Systems
Principles, Bolton Landing, NY, pp. 164-177 (October 2003).

[3] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox,

‘‘ Microreboot - A Technique for Cheap Recovery,’’ 6th Symposium
on Operating Systems Design and Implementation, San Francisco,
CA, pp. 31-44 (December 2004).

[4] A. Depoutovitch and M. Stumm, ‘‘Otherworld - Giving
Applications a Chance to Survive OS Kernel Crashes,’’ 5th ACM
European Conference on Computer Systems, Paris, France,
pp. 181-194 (April 2010).

[5] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and M.
Williamson, ‘‘Safe Hardware Access with the Xen Virtual Machine
Monitor,’’ 1st Workshop on Operating System and Architectural
Support for the on demand IT InfraStructure (OASIS) (ASPLOS)
(October 2004).

[6] V. Goyal, E. Biederman, and H. Nellitheertha, ‘‘Kdump, A Kexec-
based Kernel Crash Dumping Mechanism,’’ lse.sourceforge.net/
kdump/documentation/ols2oo5-kdump-paper.pdf (2005).

[7] W. Gu, Z. Kalbarczyk, R. K. Iyer, and Z. Yang, ‘‘Characterization of
Linux Kernel Behavior Under Errors,’’ International Conference on
Dependable Systems and Networks, San Francisco, CA, pp.459-468
(June 2003).

[8] W. Gu, Z. Kalbarczyk, and R. K. Iyer, ‘‘Error Sensitivity of the
Linux Kernel Executing on PowerPC G4 and Pentium4
Processors,’’ International Conference on Dependable Systems and
Networks, Florence, Italy, pp. 887-896 (June 2004).

[9] I. Hsu, A. Gallagher, M. Le, and Y. Tamir, ‘‘Using Virtualization to
Validate Fault-Tolerant Distributed Systems,’’ International
Conference on Parallel and Distributed Computing and Systems,
Marina del Rey, CA, pp. 210-217 (November 2010).

[10] Intel Corporation, Intel 64 and IA-32 Architectures Software
Developer’s Manual: Volume 3A, 2010.

[11] H. Jo, H. Kim, J.-W. Jang, J. Lee, and S. Maeng, ‘‘Transparent Fault
Tolerance of Device Drivers for Virtual Machines,’’ IEEE
Tr ansactions on Computers 59(11), pp. 1466-1479 (November
2010).

[12] K. Kourai and S. Chiba, ‘‘A Fast Rejuvenation Technique for Server
Consolidation with Virtual Machines,’’ International Conference on
Dependable Systems and Networks, Edinburgh, UK, pp.245-255
(June 2007).

[13] K. Kourai and S. Chiba, ‘‘Fast Software Rejuvenation of Virtual
Machine Monitors,’’ IEEE Transactions on Dependable and Secure
Computing (May 2010).

[14] M. Le, A. Gallagher, and Y. Tamir, ‘‘Challenges and Opportunities
with Fault Injection in Virtualized Systems,’’ First International
Workshop on Virtualization Performance: Analysis,
Characterization, and Tools, Austin, TX (April 2008).

[15] M. Le, A. Gallagher, Y. Tamir, and Y. Turner, ‘‘Maintaining
Network QoS Across NIC Device Driver Failures Using
Vi rtualization,’’ 8th IEEE International Symposium on Network
Computing and Applications, Cambridge, MA, pp.195-202 (July
2009).

[16] A. Menon, J. R. Santos, Y. Turner, G. J. Janakiraman, and W.
Zwaenepoel, ‘‘Diagnosing Performance Overheads in the Xen
Virtual Machine Environment,’’ First ACM/USENIX Conference on
Virtual Execution Environments, Chicago, IL, pp. 13-23 (June
2005).

[17] W. T. Ng and P. M. Chen, ‘‘The Systematic Improvement of Fault
Tolerance in the Rio File Cache,’’ 29th Fault Tolerant Computing
Symposium, Madison, WI, USA, pp. 76-83 (June 1999).

[18] A. Pfiffer, ‘‘Reducing System Reboot Time With kexec,’’
devresources.linuxfoundation.org/andyp/kexec/whitepaper/kexec.pdf
(April 2003).

[19] M. Rosenblum and T. Garfinkel, ‘‘V irtual Machine Monitors:
Current Technology and Future Trends,’’ IEEE Computer 38(5),
pp. 39-47 (May 2005).

[20] M. Sullivan and R. Chillarege, ‘‘Software Defects and their Impact
on System Availability: A Study of Field Failures in Operating
Systems,’’ 21st Fault-Tolerant Computing Symposium, Montreal,
Quebec, Canada, pp. 2-9 (June 1991).

[21] M. M. Swift, B. N. Bershad, and H. M. Levy, ‘‘Improving the
Reliability of Commodity Operating Systems,’’ ACM Transactions
on Computer Systems 23(1), pp. 77-110 (February 2005).

