
DSAGEN: Synthesizing Programmable
Spatial Accelerators

Jian Weng, Sihao Liu, Vidushi Dadu, Zhengrong Wang, 
Preyas Shah, Tony Nowatzki

University of California, Los Angeles

May 15th , 2020

1



Specialized Accelerators
Specialized architecture often occupies 
1/5~1/3 of publications in top conferences.

Apps
Idioms

Sw/Hw Interface

Specialized Mechanisms

Compiler

High-level Abstraction

2

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

ISCA'19 ASPLOS'19 MICRO'19 HPCA'20

Existing Domain-Specific Approach:



Design 
Space 

Explorer

Specialized 
Hardware

3

Apps

DSAGEN: Decoupled Spatial Accelerator Generator



DSAGEN: Decoupled Spatial Accelerator Generator

Apps

4

Compiler
Multiple
Xformed

IR

Candidate
Hardware

Design 
Space Exp.

Proposed
Hardware

Transformations 
with tradeoffs on 
performance and 
hardware cost



Outline

•Design Space — Decoupled-Spatial Architecture
• Insight from Prior Work
• The Programming Paradigm
• Design Space: Hardware Primitives (& Composition)

•Compilation

•Design Space Exploration

• Evaluation

5



S S

S

S S

S

S

× × × ×
+ +

+

Controller Activation

P
re

fe
tc

h
B

u
ff

er

S

PMU

S

S

PCU

S

S

S

PCU

S

PMU

S

S

PMU

S S

PCU

S

PMU

S

PCU

S

S

PMU

S

AG

AG

AG

AG

AG

AG

AG

AGM
em

o
ry

C
o

alescin
g U

n
it

C
o

alescin
g U

n
it

(a) ASPLOS18-MAERI (b) ISCA17-Plasticine

(c) ISCA17-Softbrain

• Decoupled-Spatial Paradigm
• Decoupled Compute/Memory

• Spatially exposed resources

• Design Space
• Composing hardware with 

simple primitives

• Architecture Description Graph 6

Controller Mem. 
Controller

Stream 
Dispatcher

Memory

Func. Unit

Memory

Switch

Control

Sync. Elem.



Background: Decoupled-Spatial Architecture

for (int i = 0; i < n; ++i)

c[i] += a[i] * b[i];

×

＋

a[0:n] b[0:n] c[0:n]

c[0:n]

7

Controller

Memory
Mem. 

Controller

×

＋

Scratch Memory

Sync. Elem

Switches

Processing 
Elements

Address 
Generator

Ctrl Host



Hardware Primitives: Processing Element

Function
Unit

Instruction 
Buffer

Instruction 
Scheduler

Register
File

MUX MUX

8

Dedicated (=1) Shared (>1)

Statically 
Scheduled

Dynamically 
Scheduled

Hardware 
Cost: Low

High

High

“Systolic” 1x Area
+ No contention
- Harder to map
- Higher power
*Softbrain

“CGRA” 2.6x Area 
+ Better resource 
utilization
- Harder to map
*Conventional CGRA

“Ordered Dataflow” 
2.1x Area
+ Better flexibility
*SPU

“Tagged Dataflow” 
5.8x Area
+ Better flexibility
+ Better resource 
utilization
*Triggered Instruction

& Switch



Hardware Primitives: Memory

•Memory
• Size
• Bandwidth
• Indirect Support

• a[b[i]]

• Atomic Update
• a[b[i]] += 1

0xee

…

4
0

0xfc
0xef

…

5
1

0xfd
0xfa

…

6
2

0xfe
0xfb

…

7
3

0xff

9

Ind. Address 
Generator

XBAR

FU FU FU FU

Reorder Buffer



Examples of ADG

10

Controller Mem. 
Controller

Stream 
Dispatcher

Memory

S S

S

S S

S

S

× × × ×
+ +

+

Controller Activation

P
re

fe
tc

h
B

u
ff

er

M
em

o
ry

× ×

Memory

× × × × × ×

+ + + + + + + +

+ + + +

S S S S

(a) Softbrain

(b) MAERI

(c) Diannao

+ + × ×

×

+

+

+

+ + × ×

×

+

+

+

(d) Data Path of 
Complex Mul.



Outline

•Decoupled-Spatial Architecture

•Compilation
• High-Level Abstraction
• Hardware-Aware Modular Compilation

•Design Space Exploration

• Evaluation

11



Compiling High-Level Lang. to Decoupled Spatial

• Programmer Hints
• Which code regions are offloaded onto the spatial accelerator.

• Which memory accesses can be decoupled intrinsics.

• Which offloaded regions should be concurrent.

Executable 
BinaryApps

?

How to abstract diverse underlying features with a unified high-level 
interface?

Pragma 
Annotation

12



An example of pragma annotation

#pragma config

{

#pragma stream

for (i=0; i<n; ++i)

#pragma offload

for (j=0; j<n; ++j)

a[i*n+j] += b[c[j]] * d[i*n+j];

}

← The computational instructions below will be offloaded

← The memory accesses below will be restricted

← The offloaded region in this compound body are concurrent

×

＋

b[] d[0:n] a[0:n]

a[0:n]

c[0:n]

×

＋

b[] d[0:n] a[0:n]

a[0:n]

c[0:n]

×

＋

13



Compiling High-Level Lang. to Decoupled Spatial

• Modular Transformation
• Specialized Hardware features often dictate the code transformation

• A fallback is required when the hardware feature is not available

Executable 
BinaryApps

?

How to hide the diversity of underlying hardware?

Compute 
Graph

Encoded
Mem. Stream

Pragma 
Annotation

Modular 
XFROM

14

Architecture 
Description 

Graph (ADG)



Modular Transformation

#pragma config

{

#pragma stream

for (i=0; i<n; ++i)

#pragma offload

for (j=0; j<n; ++j)

a[i*n+j] += b[c[j]] * d[i*n+j];

}

Inspect the hardware features to generate 
corresponding version of indirect memory

// With indirect support
Read c[0:n], stream0
Indirect b, stream0, stream1

// Without indirect support
for (j=0; j<n; ++j)

Scalar b[c[j]], stream0

×

＋

b[] d[0:n] a[0:n]

a[0:n]

c[0:n]

15



Compiling High-Level Lang. to Decoupled Spatial

Executable 
BinaryApps

How is the dependence graph of 
computational instructions mapped?

Compute 
Graph

Encoded
Mem. Stream

Pragma 
Annotation

Modular 
XFROM

16



Spatial Mapping

17

Sync

Sync

×

＋

1 1

2

1

2
3

4
3 +1

1. Placement: Map instruction to PE’s with corresponding capability.

2. Routing: Routing the dependence edges thru the spatial network.

3. Timing: If necessary, balance the timing of data arrival

• If one of 1-3 is not successful, revert some nodes and repeat 123

How is the dependence graph of 
computational instructions mapped?

4



Outline

•Decoupled-Spatial Architecture

•Compilation

•Design Space Exploration
• Drive the Search
• Evaluating Design Points
• Repairing the Mapping

• Evaluation

18



Design Space Exploration

Design Space 
Exp.

Multiple 
Xformed

IR

19

Evaluate the sw/hw pair

Map

Remap
Architecture 
Description 

Graph (ADG)

Create a new 
ADG based on 
the current



Estimation Model

•Performance
• Spatial architecture 

essentially enables hardware 
specialized sw-pipelining

• The ratio of data availability 
determines the performance

• Perf=#Inst * (Activity Ratio)

• Power/Area
• Synthesis can be time 

consuming
• A regression model can predict 

the trend of hardware cost

0

50

100

150

200

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

Model Validation
Area

Power

Synth.Model Synth.Model Synth.Model

Dense NN

MachSuite

Sparse CNN

20

The model has mean 
performance error of 7%, and
with maximum error 30%.



Repairing the Spatial Mapping
// Original Code
for (i=0; i<n; ++i)

c[i]+=a[i]*b[i];

×

＋

a[0:n] b[0:n] c[0:n]

c[0:n]

Sync

Sync

×

＋

Sync

Sync

×

＋

×

＋

Sync

Sync

×

＋

Sync

Sync

×

＋

×

＋

No Unrolling:

Unroll by 2:

21

×

＋

a[0:n] b[0:n] c[0:n]

c[0:n]

×

＋



Hardware/Software Interface Generation

•How to configure accelerator with arbitrary topology?
• Reuse the data path for configuration
• Find path(s) that cover(s) all the components
• A heuristic based heuristic algorithm to minimize the 

longest path of configuration

22

Sync

Sync

×

＋

• For a graph with m nodes covered by 
n paths, the longest path cannot be 

shorter than ⌈
𝑚

𝑛
⌉.

• We only introduces 40% overhead 
over the ideal bound.



Outline

•Decoupled-Spatial Architecture

•Compilation

•Design Space Exploration

• Evaluation
• Methodology
• Compiler
• Design Space Exploration

23



Methodology

• Performance
• Gem5 RISCV in-order core integrated with a cycle-accurate spatial 

accelerator simulator
• The in-order core is extended with stream decoupled ISA

• Power/Area
• All the components are implemented in Chisel RTL

• Synthesized in Synopsys DC 28nm @1.00GHz

• SRAM power/area are estimated by CACTI 7.0

24



Compiler Performance

• Softbrain — MachSuite
• Versatile accelerator can handle moderate irregularity

• SPU — Histogram, and Key Join
• Accelerator specialized for irregular workloads

• REVEL and Trigger — DSP
• Accelerator specialized for imperfect loop body

• MAERI — PolyBench
• Accelerator for neural network

25



0

5

10

15

20

25

30 Compiler Performance

compiled

manualMachSuite
(Softbrain)

Irregular
(SPU)

DSP
(REVEL)

DSP
(Trigger)

PolyBench
(MAERI)

26



Design Space Explorer

• Workloads
• Dense Neural Network

• MachSuite

• Sparse Convolutional Neural Network

• Initial Design
• A 5x5 mesh with all capability (arithmetic, control, and indirect)

• Objective: perf²/mm²

27



Design Space Explorer

0

50

100

150

200

250

300
Power Breakdown

fu nw

sync mem

0

100000

200000

300000

400000

500000

600000

Area Breakdown

28

Sparse CNN: 24h
MachSuite: 19.2h
Dense NN: 16h



HLS Manual DSAGEN

Frontend C+Pragma DSL/Intrinsics, etc. C+Pragma

Design Flow Nearly Automated Manual Nearly Automated

Input A Single
Application

Multiple Target 
Applications

Multiple Target 
Applications

Output Application-
Specific Accel.

ASIC/Programmable 
Accel.

A Programmable
Accelerator

Design Space Limited Rich Rich

29

Conclusion



Q&A

• Our framework is working in progress at: 
https://github.com/PolyArch/dsa-framework

• All the questions and comments are welcomed

30

https://github.com/PolyArch/dsa-framework

