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Specialized Accelerators
Specialized architecture often occupies 
1/5~1/3 of publications in top conferences.

Apps
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Compiler
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Apps

DSAGEN: Decoupled Spatial Accelerator Generator



DSAGEN: Decoupled Spatial Accelerator Generator
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Outline

•Design Space — Decoupled-Spatial Architecture
• Insight from Prior Work
• The Programming Paradigm
• Design Space: Hardware Primitives (& Composition)

•Compilation

•Design Space Exploration

• Evaluation
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(a) ASPLOS18-MAERI (b) ISCA17-Plasticine

(c) ISCA17-Softbrain

• Decoupled-Spatial Paradigm
• Decoupled Compute/Memory

• Spatially exposed resources

• Design Space
• Composing hardware with 

simple primitives

• Architecture Description Graph 6
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Background: Decoupled-Spatial Architecture

for (int i = 0; i < n; ++i)

c[i] += a[i] * b[i];

×

＋

a[0:n] b[0:n] c[0:n]

c[0:n]
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Hardware Primitives: Processing Element

Function
Unit

Instruction 
Buffer

Instruction 
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Register
File

MUX MUX
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Dedicated (=1) Shared (>1)

Statically 
Scheduled

Dynamically 
Scheduled

Hardware 
Cost: Low

High

High

“Systolic” 1x Area
+ No contention
- Harder to map
- Higher power
*Softbrain

“CGRA” 2.6x Area 
+ Better resource 
utilization
- Harder to map
*Conventional CGRA

“Ordered Dataflow” 
2.1x Area
+ Better flexibility
*SPU

“Tagged Dataflow” 
5.8x Area
+ Better flexibility
+ Better resource 
utilization
*Triggered Instruction

& Switch



Hardware Primitives: Memory

•Memory
• Size
• Bandwidth
• Indirect Support

• a[b[i]]

• Atomic Update
• a[b[i]] += 1

0xee

…

4
0

0xfc
0xef

…

5
1

0xfd
0xfa

…

6
2

0xfe
0xfb

…

7
3

0xff

9

Ind. Address 
Generator

XBAR

FU FU FU FU

Reorder Buffer



Examples of ADG
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Outline

•Decoupled-Spatial Architecture

•Compilation
• High-Level Abstraction
• Hardware-Aware Modular Compilation

•Design Space Exploration

• Evaluation
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Compiling High-Level Lang. to Decoupled Spatial

• Programmer Hints
• Which code regions are offloaded onto the spatial accelerator.

• Which memory accesses can be decoupled intrinsics.

• Which offloaded regions should be concurrent.

Executable 
BinaryApps

?

How to abstract diverse underlying features with a unified high-level 
interface?

Pragma 
Annotation
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An example of pragma annotation

#pragma config

{

#pragma stream

for (i=0; i<n; ++i)

#pragma offload

for (j=0; j<n; ++j)

a[i*n+j] += b[c[j]] * d[i*n+j];

}

← The computational instructions below will be offloaded

← The memory accesses below will be restricted

← The offloaded region in this compound body are concurrent

×

＋

b[] d[0:n] a[0:n]

a[0:n]

c[0:n]

×

＋

b[] d[0:n] a[0:n]

a[0:n]

c[0:n]

×

＋
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Compiling High-Level Lang. to Decoupled Spatial

• Modular Transformation
• Specialized Hardware features often dictate the code transformation

• A fallback is required when the hardware feature is not available

Executable 
BinaryApps

?

How to hide the diversity of underlying hardware?

Compute 
Graph

Encoded
Mem. Stream

Pragma 
Annotation

Modular 
XFROM
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Modular Transformation

#pragma config

{

#pragma stream

for (i=0; i<n; ++i)

#pragma offload

for (j=0; j<n; ++j)

a[i*n+j] += b[c[j]] * d[i*n+j];

}

Inspect the hardware features to generate 
corresponding version of indirect memory

// With indirect support
Read c[0:n], stream0
Indirect b, stream0, stream1

// Without indirect support
for (j=0; j<n; ++j)

Scalar b[c[j]], stream0

×

＋

b[] d[0:n] a[0:n]

a[0:n]

c[0:n]
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Compiling High-Level Lang. to Decoupled Spatial

Executable 
BinaryApps

How is the dependence graph of 
computational instructions mapped?

Compute 
Graph

Encoded
Mem. Stream

Pragma 
Annotation

Modular 
XFROM
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Spatial Mapping
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1. Placement: Map instruction to PE’s with corresponding capability.

2. Routing: Routing the dependence edges thru the spatial network.

3. Timing: If necessary, balance the timing of data arrival

• If one of 1-3 is not successful, revert some nodes and repeat 123

How is the dependence graph of 
computational instructions mapped?
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Outline

•Decoupled-Spatial Architecture

•Compilation

•Design Space Exploration
• Drive the Search
• Evaluating Design Points
• Repairing the Mapping

• Evaluation
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Design Space Exploration

Design Space 
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Multiple 
Xformed
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Estimation Model

•Performance
• Spatial architecture 

essentially enables hardware 
specialized sw-pipelining

• The ratio of data availability 
determines the performance

• Perf=#Inst * (Activity Ratio)

• Power/Area
• Synthesis can be time 

consuming
• A regression model can predict 

the trend of hardware cost
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The model has mean 
performance error of 7%, and
with maximum error 30%.



Repairing the Spatial Mapping
// Original Code
for (i=0; i<n; ++i)

c[i]+=a[i]*b[i];

×

＋

a[0:n] b[0:n] c[0:n]

c[0:n]

Sync

Sync

×

＋

Sync

Sync

×

＋

×

＋

Sync

Sync

×

＋

Sync

Sync

×

＋

×

＋

No Unrolling:

Unroll by 2:
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×

＋

a[0:n] b[0:n] c[0:n]

c[0:n]

×

＋



Hardware/Software Interface Generation

•How to configure accelerator with arbitrary topology?
• Reuse the data path for configuration
• Find path(s) that cover(s) all the components
• A heuristic based heuristic algorithm to minimize the 

longest path of configuration
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Sync

Sync

×

＋

• For a graph with m nodes covered by 
n paths, the longest path cannot be 

shorter than ⌈
𝑚

𝑛
⌉.

• We only introduces 40% overhead 
over the ideal bound.



Outline

•Decoupled-Spatial Architecture

•Compilation

•Design Space Exploration

• Evaluation
• Methodology
• Compiler
• Design Space Exploration
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Methodology

• Performance
• Gem5 RISCV in-order core integrated with a cycle-accurate spatial 

accelerator simulator
• The in-order core is extended with stream decoupled ISA

• Power/Area
• All the components are implemented in Chisel RTL

• Synthesized in Synopsys DC 28nm @1.00GHz

• SRAM power/area are estimated by CACTI 7.0
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Compiler Performance

• Softbrain — MachSuite
• Versatile accelerator can handle moderate irregularity

• SPU — Histogram, and Key Join
• Accelerator specialized for irregular workloads

• REVEL and Trigger — DSP
• Accelerator specialized for imperfect loop body

• MAERI — PolyBench
• Accelerator for neural network
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Design Space Explorer

• Workloads
• Dense Neural Network

• MachSuite

• Sparse Convolutional Neural Network

• Initial Design
• A 5x5 mesh with all capability (arithmetic, control, and indirect)

• Objective: perf²/mm²
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Design Space Explorer
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Sparse CNN: 24h
MachSuite: 19.2h
Dense NN: 16h



HLS Manual DSAGEN

Frontend C+Pragma DSL/Intrinsics, etc. C+Pragma

Design Flow Nearly Automated Manual Nearly Automated

Input A Single
Application

Multiple Target 
Applications

Multiple Target 
Applications

Output Application-
Specific Accel.

ASIC/Programmable 
Accel.

A Programmable
Accelerator

Design Space Limited Rich Rich
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Conclusion



Q&A

• Our framework is working in progress at: 
https://github.com/PolyArch/dsa-framework

• All the questions and comments are welcomed
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https://github.com/PolyArch/dsa-framework

