
DSAGEN: Synthesizing Programmable
Spatial Accelerators

Jian Weng§∗, Sihao Liu§∗, Vidushi Dadu∗, Zhengrong Wang∗, Preyas Shah†, Tony Nowatzki∗
∗University of California, Los Angeles †SimpleMachines, Inc.

{jian.weng,sihao,vidushi.dadu,seanzw,tjn}@cs.ucla.edu

Abstract—Domain-specific hardware accelerators can provide
orders of magnitude speedup and energy efficiency over general
purpose processors. However, they require extensive manual
effort in hardware design and software stack development. Au-
tomated ASIC generation (eg. HLS) can be insufficient, because
the hardware becomes inflexible. An ideal accelerator generation
framework would be automatable, enable deep specialization to
the domain, and maintain a uniform programming interface.

Our insight is that many prior accelerator architectures can
be approximated by composing a small number of hardware
primitives, specifically those from spatial architectures. With
careful design, a compiler can understand how to use available
primitives, with modular and composable transformations, to
take advantage of the features of a given program. This suggests
a paradigm where accelerators can be generated by searching
within such a rich accelerator design space, guided by the affinity
of input programs for hardware primitives and their interactions.

We use this approach to develop the DSAGEN framework,
which automates the hardware/software co-design process for
reconfigurable accelerators. For several existing accelerators, our
evaluation demonstrates that the compiler can achieve 80% of the
performance of manually tuned versions. For automated design
space exploration, we target multiple sets of workloads which
prior accelerators are design for; the generated hardware has
mean 1.3× perf2/mm2 over prior programmable accelerators.

I. INTRODUCTION

As a response to the slowing of technology scaling, spe-
cialized accelerators have proliferated in many settings and
across a wide variety of domains. Three basic strategies have
emerged for developing and using accelerators, each with their
own benefits and limitations:

• Automated Design (eg. HLS): High-level synthesis com-
piles languages like C with pragmas to custom hard-
ware [10]. While HLS is nearly automatic, the design space
is generally limited, and designs are not programmable.

• Domain Specific (eg. [1, 6, 20, 21, 25, 27, 31, 33, 34, 36, 38,
39, 42, 44, 46, 47, 50, 60, 74, 81, 82, 84, 86, 95, 96, 98, 99])1:
This approach customizes hardware for kernels within a
domain and provides a domain-specific hardware-software
interface. The advantages are high performance and suf-
ficient flexibility, at the cost of hardware/software effort,
which must be repeated as workloads evolve.

§Jian Weng and Sihao Liu are co-first authors.
1Note these are all from a single conference, MICRO 2019.

• General Purpose (eg. GPU, DSP, SIMD Extensions):
This approach enables a uniform programming interface
that has long term stability, but it lacks the degree of
specialization provided by the above.

There is a large space of applications for which the above
approaches is not satisfying: where some flexibility is needed
(either because of algorithm diversity/change, or the need for
sharing hardware), but the cost of a domain specific hardware
design and software-stack implementation cannot be justified.
For such settings, an ideal specialization approach would
yield the level of automation provided by HLS, enable deep
enough specialization to the domain, and maintain a uniform
programming interface. An ideal approach would also enable
the user to make a tradeoff between specialization efficiency
and generality, by intelligently tuning the flexibility of the
hardware and hardware/software interface.

A possible approach is to search within a flexible archi-
tecture design-space, guided by the computation and memory
patterns present in the set of desired target programs. A
central challenge is in defining this design space to be both
broad enough while still enabling specialization. Based on the
results of much prior work (eg. [20,45,65,69,78]), we believe
that decoupled spatial accelerators are a promising candidate.
Spatial refers to designs with hardware/software interfaces that
expose underlying hardware features. Decoupled refers to the
separation of memory access and computation pipelines.

These architectures are attractive first because they are effi-
cient – they expose low-enough level hardware details to take
advantage, and also enable specialization of memory access.
More importantly, it is possible to define a set of decoupled-
spatial primitives which have semantics understandable by a
compiler, so that they can be flexibly composed. Their modular
nature also means a unified hardware/software interface with
modest programmer hints can be developed.

Our goal is to develop the principles and usable framework
for this problem, which we refer to as programmable accelera-
tor synthesis. This involves taking as input a set of kernels (eg.
written in C with minimal programmer annotations) defining
the desired functionality, and serving as a proxy for generality.
The outputs are 1. a synthesizable hardware artifact which is
specialized to the nature of input applications, 2. a customized
hardware/software interface, and 3. (logically) a compiler
which can target the given design.

1

Target
Kernels

(C+Pragmas)

Target
Kernels

(C+Pragmas)

N Kernels

Architecture
Description
Graph (ADG)

Decoupled
Spatial
Arch.

Compiler
(llvm)

N Kernels ×
M Transforms

Kernels in
DAEIR

Kernels in
DAEIR

Kernels in
DAEIR

Kernels in
decoupled-

dataflow
form

Kernels in
decoupled-

dataflow
form

Kernels in
decoupled-

dataflow
form

Hardware
Mapper +

Efficiency Model×
Eliminated due to

hardware limitations

×

Optimized +
Compiled
Kernels

Optimized +
Compiled
Kernels

Eliminated due to
impossible mapping Eliminated b/c of poor

performance metric

×

Mem Mem

RTL Hardware Generation of Final Design (once converged)

Runs on

A
cc

el
. R

TL

Hardware
Generation

Design
Exploration

Normal
Compilation

Legend

Fig. 1: Overview of Programmable Accelerator Synthesis Framework – DSAGEN.

In this work we develop DSAGEN2, the decoupled spatial
architecture generator3, depicted in Figure 1. First, the archi-
tecture is represented as a graph – the architecture description
graph (ADG) – composed of primitive components, like pro-
cessing elements and switches, with flexible connectivity. The
framework may be used either for normal compilation, where
the ADG represents an instance of a hardware unit, or design-
space exploration (DSE), where the ADG is synthesized
through iterative refinement.

For either use case, the compiler first transforms each
input kernel into a decoupled dataflow representation; several
different versions of each kernel are created with different
sets of transformations, each targeted to particular architecture
features. Then the hardware mapper will distribute the program
to hardware resources, and evaluate an efficiency metric (eg.
performance×power×area) using a model. The best legal
version of the compiled program is chosen. During design
space exploration (DSE), the history of hardware mappings
is used to modify the ADG to improve efficiency, and this
repeats until convergence.

Challenge and Approach: The problem of programmable
accelerator synthesis opens several key challenges:

Sufficient Design Space: The design space could hypo-
thetically be defined as a template architecture with a few
parameters. We instead take the more extreme view that there
is value in 1. allowing choice of features at the ISA level,
2. allowing irregular connectivity between components. We
believe both are necessary to reach closer to the specialization
provided by a domain-specific architecture (DSA).

Compilation for Modular Features: Compiling for modular
features is challenging because of the different transformations
necessary for each feature. Our approach is to develop a
set of transformations targeting various hardware features,
and consider multiple combinations of these for mapping to
hardware (eliminating those not required for the given ADG).

Intelligent Design-space Exploration: At each step of DSE,
the framework must decide how to manipulate the ADG to
improve hardware efficiency. This is challenging given the vast

2Open-source repository: https://github.com/PolyArch/dsa-framework
3In some sense, DSAGEN can generate domain specific architectures.

design space and slow nature of spatial architecture compilers.
We propose a codesign algorithm which 1. leverages an
application-aware performance, area, and power model for
quick evaluation of the objective function, and 2. integrates
a novel solution-repairing spatial-architecture scheduler into
DSE to avoid redundant compilation.

Hardware Generation: With an arbitrary topology, generat-
ing a path to configure each hardware unit is non-trivial, and
it is also important as it will determine the time to switch
between program phases. We develop an architecture-aware
simulated annealing-based approach.

Key Results: According to our evaluation, hardware primitives
are expressive enough to approximate many state-of-the-art
decoupled spatial accelerators. Our compiler is able to generate
code with mean 1.25× execution time of the manual version
across several different domains, including those with control
and memory irregularity. We also demonstrate the capability
of our hardware software co-design algorithm, which is able to
achieve a balance between performance, and area and power
cost. Our contributions are:
• Recognizing a set of hardware primitives that compose a

rich design space for spatial accelerators.
• Automated flow for software-hardware codesign, with:

– Modular compilation for composable h/w primitives.
– Solution-repairing spatial-scheduling techniques.
– Configuration generation for irregular spatial topologies.

Paper Organization: We first discuss the background of
decoupled spatial architectures in Section II. Then we discuss
our formulation of their hardware primitives in Section III.
The compiler is discussed in Section IV, DSE in Section V,
and hardware generation in Section VI. Methodology and
evaluation is in Section VII and VIII. Finally, we discuss the
related work in Section IX.

II. DECOUPLED SPATIAL ARCHITECTURE BACKGROUND

Decoupled spatial architectures (eg. [17, 20, 45, 65, 92])
have shown capability to attain high performance with low
power/area overhead while retaining programmability. A de-
coupled spatial architecture is defined by two characteristics:
1. decoupled in the sense that there are customized pipelines

2

https://github.com/PolyArch/dsa-framework

c = 0
for (i=0; i<n; ++i)
 c += a[i] * b[i]

(a) Original Program

×

+

b[0:n]a[0:n]

(b) Decoupled Dataflow Form

c

0 ×

+

×

b[0:n]c

P2 P3

P4 P5 P6

P1

a[0:n]a[0:n]

+

0

×

+

(c) Decoupled Spatial Architecture

Interface Ports
(sync element)

Interface Ports
(sync element)

Memory Engines

P
ro

ce
ss

in
g

El
em

e
n

ts

Initial
const

Fig. 2: Example decoupled-stream program and h/w mapping.

for handling memory access and computation4, and 2. spatial
in the sense that aspects of low-level hardware execution, like
the network and scheduling of operations, is exposed through
the hardware/software interface.

Mapping applications to decoupled-spatial hardware in-
volves: 1. decoupling data access from computation opera-
tions, and mapping memory access to corresponding units; 2.
mapping computation onto processing elements, and commu-
nication to the on-chip network.

As a concrete example consider Figure 2(a), which is a
vector dot product. In Figure 2(b), the program is represented
as a decoupled dataflow graph [65], where memory accesses
are represented as coarse-grain streams, and computations are
dataflow graphs (in the example, the computation is “unrolled”
by two iterations). This decoupled dataflow form eliminates
the implicit memory ordering constraints of the original pro-
gram – disambiguated memory streams are simpler to map to
decoupled memories.

The spatial architecture shown in Figure 2(c) is composed
of memories, processing elements, switches, and ports (syn-
chronization elements). We will later refine these components
into modular primitives. Figure 2(c) also shows the mapping
of the program to the hardware substrate, where operations are
mapped onto the PEs, and all of the instruction dependences
are mapped onto the on-chip network (as it is shown in
Figure 2(c)). Each memory engine generates memory requests
– here array a and b are mapped to separate memories, and
processing elements operate on data as it arrives.

Comparing with the conventional Von-Neumann model, the
distributed nature of the PEs enables high concurrency without
the overheads multi-threading. Wide memory-access can feed
many PEs. Instruction dispatch overhead is amortized by
spatial fabric configuration.

III. DECOUPLED SPATIAL DESIGN SPACE

Here we overview our graph-based approach to hardware
description for our design space, and describe a set of modular
hardware primitives and their parameters. We then give a few
examples of architectures expressible within the design space.

4Specifically, the request initiator and response receiver are decoupled, also
known as explicit-decoupled data orchestration (EDDO) [73].

Processing
Element

Config

req resp

ins outs

Delay Element

Sync. Element ...

Config

• Set of Operations Desired
• Dynamic vs Static Scheduling
• Dedicated (one instr. per PE) vs

Temporal (many instr. per PE)
• # Live Values (Temporal Only)
• # Instructions (Temporal Only)

• # Inputs
• # Outputs
• Dedicated (one value per out) vs

Temporal (many values per out)
• # Instructions (Temporal Only)
• Routing Connectivity Matrix

• Capacity
• Banking
• Read/Write Port Bandwidth
• Reordering Degree
• Address Space ID

• Min/max Delay

• Buffer Size
• Backpressure Support

• Expressiveness of memory stream

Switchins outsSwitchins outs

Memory

Controller
• Dimensions of access pattern
• Inductive memory access
• Implicit vector padding
• Indirect memory access

Fig. 3: Modular Spatial Architecture Components.

A. Decoupled Spatial Primitives

Our approach is to develop a set of architecture primitives,
which are simple enough to be composable, are parameter-
izable enough to yield substantial benefits in customization,
and which have well-defined execution models that can be
understood by a compiler. Once these primitives are deter-
mined, the overall architecture can be described as a graph –
the architecture description graph (ADG).

Figure 3 describes the set of proposed spatial architecture
primitives. The basic elements are processing elements (PEs)
to perform computations, memories which provide abstrac-
tions for shared memory, switches and connections for forming
the network, and a control unit to synchronize different phases
of a program. Most components can specify a power-of-two
datapath bitwidth. What follows is a detailed description of
the design space.

Execution Model Parameters: One of the most important
factors for determining the tradeoff between generality and
efficiency is the “execution model” of the component: how
does the unit decide what and when to perform an action. We
allow parameterizability in two important dimensions:

Dynamic vs Static Scheduling: PEs and switches support
either static or dynamic scheduling of instruction execution
and routing. In static scheduling, the order of all operations
and data arrivals is determined by the compiler, whereas in
dynamic scheduling the operation is chosen dynamically based
on data arrival. Dynamic scheduling requires more power/area
to implement logic for checking operand readiness, which is

3

proportional to the instruction window of the PE. Moreover, it
needs flow-control on the network to balance the different rate
of incoming operands. Static scheduling loses this flexibility
but gains lower power/area overhead.

Dedicated vs Shared: Dedicated elements only support one
instruction or routing decision (eg. PEs in a systolic array
or some coarse grain reconfigurable architectures [20, 26,
65]), whereas shared elements temporally multiplex different
static instructions or routing decisions (eg. like some other
CGRAs [53, 54, 56, 62, 69, 85]). Shared elements are param-
eterized by the number of instructions supported. Dedicated
PEs have higher throughput by avoiding contention, and have
lower power/area overhead because of the smaller size of
the instruction buffer. Shared PEs enable more instruction
concurrency at the cost of area/power.

Processing Elements (PEs): In addition the above, PEs may
specify a set of instructions which are to be supported.
Functional units (FUs) which support the required functions
will be selected during hardware generation. This includes the
use of decomposable FUs – FUs that can be decomposed into
smaller power-of-two functions (eg. 64-bit adder into two 32-
bit adders). Dynamically scheduled PEs support stream-join
control [20], which enables them to conditionally reuse their
inputs or abstain from computation. This is useful to support
join operations in sparse linear algebra and database ops.

Switches: Central to this approach is the flexibility of the
switch, which can connect inputs and outputs with differing
bitwidths. A routing connectivity matrix describes which in-
puts can connect to which outputs, down to the granularity of
bytes. A switch may optionally be decomposable down to a
certain bitwidth, which means that it can route power-of-two
finer-grain datatypes independently [20]. Switch complexity
is a key determiner in the tradeoff between complexity and
efficiency. Complex networks may be formed out of multiple
switches, and switches may choose not to flop their output so
that a compound routing stage may execute in a single cycle.

Connections: Direct communication between hardware ele-
ments is specified with connections, and naturally these form
the edges of the ADG.

Delay Elements: Delay elements are essentially FIFOs used
for pipeline-balancing, parameterized by their depth. A deeper
delay element implies more area but helps the compiler meet
timing requirements [64]. Static-scheduled delay elements
offer a fixed delay, while dynamic scheduled delay elements
act as a buffer which is drained opportunistically.

Synchronization Elements: These units are the interface be-
tween dynamically scheduled elements (e.g. memory, dynamic
PEs) and static elements (static PEs). Their purpose is to
synchronize multiple inputs to a computation, to enable static
reasoning about the timing of all dependent events. They are
implemented as FIFO buffers, which may be configured to
fire (ie. to be read and popped) simultaneously based on the
presence of data. They are coordinated by a programmable
ready-logic, which can be configured statically to allow dif-

(a) CGRA Tile

s
Delay

(for pipeline

 balancing)

Proc. Elems
(dedicated,

static-sched)
Add Mul

s

s

s

Bitwise

Logical

Bitwise

Logical

(b) CCA-like Accelerator

(c) MAERI-Like Accelerator

s s s s

s s s s

s s s s
Ctrl

× × × × × × × ×
+ + + +

+ +
+

Mem.

CGRA
Tiles

s s s s

ssss

ssss

s s s s

ssss

ssss

s s s s

ssss

ssss

s s s

s s s

Sync

Sync

Distribution
Tree

Ctrl

CGRA
Tiles

(d) Softbrain-Like Accelerator

Mem.

s

Fig. 4: Example Architecture Description Graphs (ADGs).

ferent synchronization elements to be fired together.

Memories: The basic execution model of a memory is that
it arbitrates access from concurrent coarse grained memory
patterns, which we refer to as streams [15, 65]. The relative
ordering of streams can be synchronized with barriers.

Memories are parameterized by their capacity, width, and
number of concurrent streams. We presently support two fixed
candidate controllers, linear and indirect. The linear controller
is similar to the address generator in REVEL [92], which
is able to generate inductive 2d memory streams (eg. which
can enable triangular access patterns). The indirect generator
is similar to the controller in SPU [20], which can generate
indirect memory access (e.g. a[b[i]]). We also optionally
support atomic update operations by embedding compute units
within each bank (e.g. to support a[b[i]]+=1).

Control: Each of the above components accepts a control
input, which configures it for some coarse amount of work
(access patterns for memory and computation graphs for PEs
and switches). The control unit distributes work to other
components, and thus synchronizes all other units for each
phase of the algorithm. In this work, we assume the control
unit is a programmable core with stream-dataflow [65] ISA to
encode commands for other units.

B. Principles of Composition

One benefit of the ADG abstraction is the ability to cus-
tomize the datapath and memory features (and parameters)
for a set of related programs. Later, we discuss how the
compiler framework will attempt to take advantage of available
resources and topology.

We overview the basic principles and considerations for
composition. First, statically scheduled PEs and switches have
less hardware overhead than their dynamic counterparts, but
require that all inputs are available at a known time. The

4

synchronization element can provide such a guarantee by
buffering and releasing data in a coordinated fashion.

Analogously, dedicated elements have less hardware over-
head, as they do not store or arbitrate between multiple
instructions. However, if the timing of input operands is not
matched, there is no other work which can be performed, and
the pipeline will become imbalanced. Indeed, the throughput
loss will be proportional to this imbalance [64]. The delay
element allows a configurable delay to aid the compiler to
compensate to enable the use of dedicated elements efficiently.

Switches can connect PEs regardless of whether they use
static/dynamic scheduling, or if they are dedicated or shared.
The hardware generator will output the appropriate switch
depending on the properties of the connectors. The compiler
will then enforce that values do not flow from static to dynamic
PEs (without going through sync. elements) or from dedicated
to temporal PEs (due to overwhelming a temporal PE).

C. Design Space Capabilities & Limitations

Ability to Express Existing Architectures: Figure 4 shows
example architecture description graphs (ADGs), composed
from these primitives, for several existing architectures. These
graphs demonstrate topological generality, which controls
the ratio of datapath flexibility versus switch overhead:
CCA(b) [16] has the fewest switches, but has only limited
flexibility. Softbrain(d) [65] is the most flexible but with
highest overhead.

Beyond the topology, many existing accelerators can be ap-
proximated, primarily those that would be considered CGRAs.
The bounds on the expressiveness are better explained by the
limitations of the current ADG. There are several categories
of limitations with DSAGEN’s design space, which include
features which may be hypothetically added as well as funda-
mental limitations.

Potential Features:
• Coalescing: We could implement memory coalescing;

irregular access is currently supported through banking.
• Flexible Buses: Another example is arbitrary buses in the

topology. As of now, within the architecture network, buses
are only between memories and synchronization elements,
and on the outputs of processing elements.

• Alternate Control Cores: For designs that do not require
programmability, we could replace the control core with
much simpler FSMs or even a simple fixed stream RAM.

• Heterogeneous Cores: The ADG models a single instance
of a decoupled-stream architecture (ie. one control core).
We could add support for designs that connect multiple
unique instances, and perhaps a custom inter-core network.

Fundamental Feature Limitations:
• Memory Consistency: First, DSAGEN does not provide

support for maintaining strict sequential memory access
semantics (only barrier-wise synchronization of memory
access). Therefore, the compiler and/or programmer is re-
sponsible for maintaining correctness of memory ordering.

• Speculation: DSAGEN does not support speculative exe-
cution or general memory disambiguation.

Because of the above, designs like DySER [26],
BERET [28], TRIPS [9], WaveScalar [88] and Tartan [55].
would not be expressible.

Examples: To make the limitations concrete, we discuss a
few examples of how DSAGEN could approximate several
accelerators which we do not explore further in this work.
• TABLA [49] uses a hierarchical mesh of static-scheduled

temporal PEs, each with their own scratchpad. We could
approximate TABLA if we decouple the scratchpad control
from the PE datapath control.

• Plasticine [78] first has scalar/vector FIFOs, serving a sim-
ilar purpose to sync. elements; the datapath is composed
of static-scheduled/dedicated PEs; its pattern memory unit
(PMU) is a combination of datapath plus banked scratch-
pad; its PCU has no memory and a larger datapath. Nested
fine-grain parallelism is supported by allowing dataflow
graphs to communicate. As noted, we do not yet support
memory coalescing for scratchpad.

• Time-scheduled Plasticine [97] can be similarly approx-
imated but with temporal PEs.

• Classic CGRAs [2, 17, 24, 53, 54, 56, 62, 85], which have
static-scheduled, shared-PEs, can be approximated, but we
will necessarily employ decoupled memories.

Domain-specific Designs: Domain-specific designs can be ap-
proximated, provided their FUs operate on primitive datatypes
(DSAGEN only supports power-of-two bitwidths). For exam-
ple, DianNao [12] can be instantiated with two scratchpads and
static-scheduled, dedicated PEs with a binary-tree intercon-
nect. On the other hand, Q100 [94] is harder to approximate,
as it uses non-primitive datatypes.

Clarification on our Goals: Though the ADG can approxi-
mate some existing architectures, we do not seek to create a
general compiler that rivals prior domain-specific compilers,
as this is a grand challenge problem. In the remainder of
our work, our goal is to create a compiler and design space
explorer that works as well as possible starting from a domain-
agnostic program representation.

IV. MODULAR DECOUPLED SPATIAL COMPILATION

A key challenge in building a DSE framework is compiling
a single, domain-neutral program representation to a variety of
hardware units, each with a unique combination of parameters
and ISA features. Here we describe the compiler’s responsi-
bilities, methods, and the modular compilation approach.

A. Compiler Overview

Compilation involves the following basic steps:
1) Region Choice: Decide which program regions to offload.
2) Region Concurrency: Which of these run concurrently.
3) Analyze Memory: Determine which accesses can be de-

coupled without violating program semantics.
4) Translate to Dataflow: Transform regions to dataflow IR.

5

5) Apply Loop Transformations: Apply generic transforma-
tions to each region for spatial/temporal locality.

6) Apply Modular Transformations: Apply transformations
specific to the selected hardware features in the ADG.

7) Schedule Computations: Map resources of concurrent
program regions to hardware resources.

8) Code Generation: Generate control code and spatial hard-
ware configuration.

Ideally, all steps in the compilation would be fully auto-
mated, however, this is difficult considering the limitations
of compiler analysis and programming languages. Instead,
we rely on programmer help for some aspects, which we
believe could also be accomplished by higher-level domain-
specific language compilers (eg. TVM [11] or Tensorflow).
First, we assume that the programmer or framework can
perform higher-level loop transformations to extract locality
(eg. loop blocking). Second, we rely on additional information
about memory aliasing in order to decouple memory accesses.
Finally, we rely on help for choosing which program regions to
consider offloading; this final aspect can be easily automated,
whereas the first two are more difficult.

In the following subsections, we describe the programming
interface, the basics of the compilation flow, generic trans-
formations, and our approach of modular compilation with
examples.

B. Programming Interface

A typical approach for programming an accelerator would
be to use a domain-specific language (DSL). While this is
appropriate for a fixed hardware and domain, our goal is to
enable the maximum possible freedom to include different pro-
gramming idioms. A general-purpose high-level programming
interface serves this purpose better, and we choose to use C.

On the other hand, the semantics of such languages are
not generally very rich, and we require some higher-level
information like regions to be offloaded, and memory alias
freedom. Therefore, this programming interface should expose
such information without violating the original semantics. For
this purpose we provide a number of simple pragmas. Figure 5
shows a simple example of each pragmas usage:

#pragma dsa config
{ #pragma dsa decouple
for (i = 0; i < n; ++i) {
#pragma dsa offload
for (j = 0; j < n; ++j)

c[i * n + j] = a[i * n + j] * b[j];
...

Fig. 5: An Example of Annotated Program

#pragma dsa offload: This pragma defines the code
region whose computation is desired to be offloaded to the
spatial accelerator.
#pragma dsa decouple: This pragma informs the

compiler that all memory dependences within the annotated re-
gion are enforced through data-dependences (i.e. no unknown
aliasing). This enables the compiler to hoist involved memory
operations out of the region.

for (i=0; i<n; ++i) {
 if (a[i] > b[i])
 c[i] = a[i]+1;
 else
 c[i] = b[i]+2;
}

(a) Original C Code

a[0:n]

CMP

Sel

b[0:n]

c[0:n]

(c) Data Depend. Graph

+ +

a[i]>b[i]

c[i]=a[i]+1

c[i]=b[i]+2

loop.header

loop.cleanup

(b) Control Flow graph

Fig. 6: Transform Control Dependence to Data Dependence.

#pragma dsa config: This pragma defines a program
scope where reconfiguration happens. This also indicates all
the offloaded regions are concurrent in this scope.

These three pragmas together inform the compiler about
the allowed concurrency and memory reordering. Such infor-
mation is agnostic to the underlying hardware, and is simple
enough for the programmer to reason about.

C. Compiler Transformation

The basic compilation flow involves four steps: decoupling
memory and computation, applying modular transformations,
spatial scheduling, and code generation.

Decoupling the Memory and Compute: To decouple com-
putation and memory operations, our compiler inspects code
blocks marked with the offload pragma, and slices the
memory operations (typically Load and Store in LLVM).
Address computation will be analyzed by LLVM’s SCEV
module, so that this information can later be used to hoist and
encode these memory operations in stream intrinsics [65]. Af-
ter slicing and decoupling address computations, the remaining
operations are transformed into a dataflow representation.

Data Dependence Transformation: Mapping control flows
onto the spatial accelerator requires transforming control
dependences to data dependence, and we use a variant of
the transformation to program dependence graphs [22]. Fig-
ure 6(a,b) shows that the original code and the control
flow graph with two branches, and Figure 6(c) shows the
transformed data dependence graph – both branches will be
executed, and a selector will select the proper value according
to the result of the comparison.

Modular Compilation: The compiler optimizes for the given
ADG’s hardware features. Before performing any hardware-
dependent transformations, the compiler will first inspect if the
underlying hardware has the corresponding feature to support
it. If not, we ensure that there is always a fallback that does
not use this feature to guarantee the success of compilation.

For example, if in the program there is an indirect memory
access (i.e. a[b[i]]), ideally, we want to encode this idiom
in indirect stream intrinsics. However, if the underlying hard-
ware is not capable, the analysis and transformation pass for
this idiom will be skipped/disabled. In final code generation,
the compiler will fall back to generating scalar operations
for this memory access. In Section IV-E, we will discuss the
technical details of these transformations.

Spatial Scheduling: There are three responsibilities of spatial
scheduling [64, 66]: 1. map instructions and memory streams

6

Unmap one or more mapped instructions (or streams);
for each unmapped instruction (or stream): do

for each compatible PEs (or memory): do
Route this instruction’s operands and dependences to

the network using Djkstra’s algorithm;
Recompute the timing (min/max time of each instr.);
Compute the objective based on timing and mapping;

end
Commit to the PE which yields the highest objective.;

end
Stop if the objective converges or maximum iters. reached;

Algorithm 1: Structure of scheduling algorithm iteration.

onto hardware units; 2. route dependences onto the network;
3. match the timing of operand arrival (for static components).

The first two responsibilities must be extended to support
mixing PEs with different execution models. For example,
data-dependent control flow can only be mapped to PEs with
dynamic scheduling (or be transformed to predication), and
instructions with low-rate computations (eg. from an outer-
loop) should favor shared PEs. Moreover, as discussed in Sec-
tion III-B, the scheduler must enforce constraints when ADG
components with different execution models communicate.

We adopt a stochastic search based algorithm, similar in
spirit to prior FPGA [51] and CGRA schedulers [52, 64]:
Each scheduling iteration attempts to improve the objective
by remapping some instruction or stream (see Algorithm 1).

To avoid local minima during the search, the routing and
PE resources are allowed to be overutilized, and the routing-
algorithm and objective minimization together minimize
overutilization. The objective is formulated as a weighted func-
tion which prioritizes minimizing the following: 1. overuti-
lization of PEs and network, 2. maximum initiation interval
of dedicated PEs, 3. latency of any recurrence paths. The
algorithm completes when there is no overutilization and when
the objective has converged (stable for several iterations).

Code Generation: The compiler goes through each candidate
of each code transformation, and chooses one with the highest
estimated performance (see Section V for more details on the
estimation model) for code generation. The code generator
removes the operations offloaded to the spatial architecture, en-
codes the decoupled data access/communication in controller
intrinsics, and injects memory fences to enforce the semantics.

D. Generic Optimizations

Enforcing dependences by stalling the whole spatial ar-
chitecture significantly harms the performance. We find two
idioms are quite useful to avoid this.

Producer-Consumer: Consider the example shown in Fig-
ure 7(a), where a value v produced by the first offloaded
region is consumed by the second. When it comes to this
idiom, the compiler will generate control code that directly
forwards the produced value to the consumer. This not only
avoids the synchronization overhead introduced by waiting for
the producer phase to be done, but also enables pipelining the
producer and consumer regions.

#pragma dsa decouple
for (i=0; i<n; ++i) {
v=0;
#pragma dsa offload
for (j=0; j<n; ++j)
v += a[i*n+j]*b[j];

#pragma dsa offload
for (j=0; j<n; ++j)
a[i*n+j] -= v*b[j];

}

#pragma dsa decouple
for (int i=0; i<n; ++i)
#pragma dsa offload
for (int j=0; j<m; ++j) {
c[j] += a[i]*b[j];

}
}

(a) Producer-Consumer (b) Repetitive Update

Fig. 7: Two typical idioms to avoid serialization.

Repetitive In-Place Update: As shown in Figure 7(b), the
array c[j] is undergoing a repetitive in-place update. The
compiler first inspects the size of the data updated each
time (in this case, this is m). Then the compiler compares
this number with the capability (the size) of the on-chip
synchronization buffers. If this data size fits in the buffer, the
compiler routes data directly between producer and consumer
(on the datapath) to avoid the unnecessary memory traffic
and memory fences. Otherwise, the compiler will rewrite the
update loop level by tiling it so that data size updated each
time can fit in the capability of the synchronization buffers.

E. Modular Code Transformation

Here we discuss three key modular code transformations.

Resource Allocation: A simple example of a hardware feature
which the compiler should be robust to is its size (in com-
putation and memory bandwidth). This can be accomplished
by choosing the degree of vectorization to match hardware
capability. It may be unknown how much to vectorize each
concurrent program region, as it depends on whether an
efficient schedule exists on the ADG for that degree. Thus
the degree of vectorization becomes a modular feature which
the compiler explores.

Control-Dependent Memory Access: Control-dependent
memory access is common in kernels which perform “joins”,
for example merge sort, database join, and sparse tensor oper-
ations. Figure 8(a,b) gives an example program (sparse inner-
product multiply) and its control-flow graph. A naive mapping
of the program to a spatial architecture would preserve the
data dependence from the control decision back to the pointer
increment (backwards branch in Figure 8(b)). This introduces
a long recurrence chain which limits the performance.

This can be avoided by decoupling the memory access and
reusing inputs based on the control flow, as shown in the
resulting decoupled dataflow in Figure 8(c) (this automates
the stream-join transformation [20]). This transformation is
only valid if the hardware supports dynamic scheduling, as
the data-consumption is data-dependent. However, it is hard
for the compiler to know whether this transformation will be
successful, because until mapping the program to hardware,
it is uncertain whether there exists enough PEs and switches
which support dynamic scheduling in the right topology, which
are not yet being consumed by other resources. Thus this is a
feature the compiler explores whether to use.

7

for (i0=0, i1=0; i0<n0 && i1<n1;) {
 if (k0[i0]<k1[i1]) {
 ++i0; // pop k0, v0
 } else if (k0[i0]>k1[i1]) {
 ++i1; // pop k1, v1
 } else {
 // implicitly k0[i0] == k1[i1]
 acc += v0[i0]*v1[i1]; // do compute
 ++i0; ++i1; // pop both
 }
}

i0<n0 && i1<n1

k0[i0]<k1[i1] ++i0

k0[i0]>k1[i1] ++i1

acc+=v0[i0]*v1[i1]

++i1++i0

Latch

End

k0[0:n0]

acc

CMP ×

+

Pop,
when <=

Exe, when ==

Pop,
when >=

Pop,
when <=

(a) Original C Code (Sparse Inner Product) (b) Control Flow Graph (c) Data Dependence Graph

Decoupled Streams

Cond. Predications

+ Computation Inst.

Data Dependence

Control Depencence

Pop,
when >=

Generic Ctrl Block

k1[0:n1] v0[0:n0] v1[0:n1]

All the branches are dominated by the result
of the comparison between k0[i0] and k1[i1].

Fig. 8: Control-dependent Memory Access transformed to Data Dependence.

Indirect Memory Access: Indirect memory access and atomic
update is quite common in many critical workloads that have
irregular memory patterns, for example histogramming, graph
processing, and sparse matrix operations. If the underlying
hardware has support (ie. with indirect memory controller),
the compiler should vectorize these operations.

However, even on hardware instances which support these
idioms, its difficult to tell how much memory bandwidth
will be available for any given stream until after scheduling
the program. Therefore, such transformations are a modular
feature which is explored by the compiler.

V. AUTOMATED DESIGN SPACE EXPLORATION

DSAGEN can perform an automated codesign between the
input programs and hardware, selecting the best set of trans-
formations to each program along with a fine-grain selection
of hardware features based on iterative graph search. The basic
iterative approach to codesign is as follows:
1) Start with some initial default ADG.
2) At each step:

a) Create a modified ADG where a random number of
components are added or removed (with random con-
nectivity), without exceeding the power and area budget.

b) Schedule all N input kernels to the spatial architecture,
with M different versions of each kernel, corresponding
to different unrolling (ie. vectorization) factors.

c) Estimate the performance of every version of each
kernel, based on a performance model.

d) Select the best performing version of each kernel, and
estimate the objective function.

e) If the objective improves, continue with the new ADG.
3) Repeat until the objective (eg. perf2/mm2) converges

The following subsections describe how we improve the
time-per-iteration through a novel spatial-scheduling repair
technique, as well as the performance and power/area models.

A. Fast DSE with Repairing Scheduler

Challenge: Length of DSE Step: The most time consuming
aspect of each iteration is evaluating the performance aspect
of the objective function. This is due to the fact that the
performance of a spatial architecture can only be determined

c[]

×

acc

b[]a[]

×

out

acc

×

>

i1[] i2[]

v1[] v2[]

×

acc

b[]a[]

×
PEsPEs

out

i1[] i2[]v1[] v2[]

×>

acc

Schedule
repaired

No repair
required

×

acc

b[]a[]

×

Sync
Elem

PEsPEs

out

i1[] i2[]v1[] v2[]

×>

acc
Delete
This PE

×

acc

b[]a[]

×

Sync
Elem

PEsPEs

out

i1[] i2[]v1[] v2[]

×>

acc
Delete
This PE

Desched
-ule

×

acc

b[]a[]

×

Sync
Elem

PEsPEs

out

i1[] i2[]v1[] v2[]

×>

acc
Delete
This PE

Desched
-ule

Dense
Vec-Mult

Sparse
Vec-Mult

out

out

(a) Input
Decoupled
Dataflow

(b)ADG
Update

(c) Sched.
Repair

Rescheduled

Mem.

Mem.

Fig. 9: Example of DSE Step with Schedule Repair.

once the program is mapped to the hardware; the mapping
affects the memory and resource contention, as well as the
latency of any critical dependencies. Unfortunately, spatial
scheduling is known to be a lengthy algorithm, with practical
heuristics taking on the order of at least minutes for larger
problems [52,64,66,71,75], and sometimes even longer. What
exacerbates this problem further is that the compiler must
consider different sets of transformations due to its modular
approach, multiplying the overhead by some factor.

Insight: The ADG at each iteration is not completely dif-
ferent: perhaps some edges are added to increase network
connectivity, processing elements may be added to increase
performance, and a small subset of the above may be deleted
to improve area/power overheads. For many incrementally
changed ADGs, the previous schedule will still be valid. Even
when a hardware component which is used by a program
region is deleted, the remainder of the schedule is still valid.

Repairing Spatial Scheduler: Therefore, we propose a DSE-
approach with a repairing spatial scheduler. After each ADG

8

modification, the set of schedules being explored are updated
to reflect the new hardware. Specifically, any aspect of the
input program which used a deleted ADG component is also
deleted from the schedule. Then schedule repair is performed
(during step 2b), which attempts to both repair the incomplete
schedule, as well as try to take advantage of any added hard-
ware features. Scheduling repair is natural with the iterative-
stochastic spatial scheduler described in Section IV, as this
algorithm is anyways iterative – repair is implemented as
starting with an initial possibly-unfinished schedule.

Figure 9 shows an example of a DSE step, where the
input programs (dense and sparse vector multiply) are being
explored. Figure 9(b) shows the ADG modification step; in
this case the ADG modifier randomly chooses to delete the
lower left PE; this invalidates the position and timing of the
accumulate for the sparse multiply. The scheduler would then
perform schedule repair on its dataflow, moving its accumulate
to another available PE.

B. Performance Modeling Approach

We estimate the performance of a transformed code by
estimating the IPC: IPC = #Insts× Activity Ratio.

The activity ratio is limited either by bandwidth from
memory, or dependences within or between program regions.
Therefore, the performance model computes 1. the memory
bandwidth required to achieve fully pipelined execution, and
2. if there are any dependences (eg. loop-carried dependence),
the impact of those dependences on activity ratio. The memory
bandwidth activity ratio is computed as the minimum ratio of
bandwidth-requested / bandwidth-supplied for each memory.
The dependence activity ratio is computed as the number
of concurrent computation instances in the pipeline which
can hide each dependence / dependence latency. Concurrent
instances can be determined by analyzing the length of data
stream, and the dependence latency is available in the spatial
schedule. Finally, we need the execution frequency in order
to normalize the importance of each region, for which we
leverage LLVM’s BlockFreqencyInfo.

C. Power/Area Modeling Approach

The iterative exploration approach requires a quick and ac-
curate evaluation of the power/area of the proposed hardware.
Traditional synthesis tools are too time-consuming to achieve
a practical DSE. Therefore, we use an analytical regression
model for power/area evaluation. A dataset of all hardware
modules with a sampling of possible parameters (number of
I/O links, data width, register file size etc.) was synthesized to
build the analytical model. For PEs, the power/area overhead
includes its constituent function units. As an optimization, we
develop functional units which support multiple functions (eg.
a 32-bit adder which can also perform subtract, and which can
also be decomposed into two 16-bit adders).

D. Limitations

We assume that the change of the on-chip network topology
and the parameters of each component will not significantly

affect the clock frequency of the implemented hardware,
because of the difficulty of estimating the synthesis timing
and violation. Therefore, we fix each switch to flop its output
so that each switch becomes a stage in the datapath pipeline.
This makes it much less likely for the network to significantly
harm the critical path.

Other Fixed Features During DSE: Similarly, some other
features are fixed during DSE, even though the ADG could
express them. This includes memories, for which we currently
assume one memory interface (fixed) and one scratchpad
(parameters of which are explored). We also do not change
any parameters of the control core.

VI. HARDWARE GENERATION

The hardware generator not only produces RTL, but also
formalizes the software/hardware interfaces.

Bitstream Encoding: Each component of the spatial archi-
tecture has local registers to store the bitstream that encodes
the programmable information: A switch’s bitstream encodes
the routing information. A PE’s bitstream encodes instructions
opcodes, execution timing (for static PEs only), and instruc-
tion tags (for shared PEs only). A synchronization element’s
bitstream encodes the cycles of delay. The spatial architecture
is configured by loading the bitstream into these registers.

Configuration: We add one extra bit to the on-chip network
to indicate a configuration message, which will be routed ac-
cording to a static path determined by the hardware generator.
There can exist multiple configuration paths, and each unit
must be on some path. The configuration data also includes the
ID of its destination, so the component can identify relevant
configuration data to keep and not-relevant data to forward.

Config. Path Generation: Our framework supports arbitrary
topologies, so we must construct a set of configuration paths
which minimizes configuration time. We define the problem
as finding one or more paths that covers all the nodes in the
ADG which minimizes the length of the longest path. In our
approach, we first use a spanning-tree like algorithm to get
multiple initial paths. Then we iteratively apply a heuristic: cut
a node from the longest path and connect to any nearby shorter
paths. This continues until the maximum length converges.

Limitations: The hardware generator has limited capability
to change the encoding format of each module. A future
optimization would be to reduce the configuration bits for
specifying a register based on the number of registers. An-
other potential optimization is to choose the most efficient
implementation at gate-level for the same functionality to meet
latency/throughput/frequency tradeoffs (like replacing a carry-
ripple adder with carry-lookahead adder).

The capability of the generator to reuse hardware circuits
for implementing different functionality is also limited. For
example, it can reuse the hardware of a 64-bit adder to
achieve 8-bit SIMD addition, but it is not currently able to
reuse the alignment circuit of the floating-point divider to
complete a shifting operation. Further optimizations at circuit
and functional unit composition level is future work.

9

Benchmarks MachSuite Sparse Dsp PolyBench

Workloads md crs/ellpack mm stencil-2d stencil-3d histogram join qr chol fft mm 2mm 3mm atax bicg mvt
Data Size 128× 16 464× 4 643 1302 × 33 322 × 16× 2 210 × 216 768× 2 322 322 210 323 323 323 322 322 322

TABLE I: Workload Specification

VII. METHODOLOGY

ISA & Compiler: We use a RISCV-based control core.
We extend Clang to implement required pragmas, which are
conveyed as metadata to our LLVM-based [48] compiler, and
use the RISCV GCC assembler backend.

Target Accelerators: We chose five accelerators to instantiate
(approximately), to stress different hardware features:
• Softbrain [65] is instantiated using a mesh of static-

scheduled/dedicated PEs and switches and a single non-
banked scratchpad memory.

• MAERI [45] is approximated similarly to Softbrain, but
with its novel tree-based topology.

• Triggered Instructions [69] is approximated with a mesh
of dynamic-scheduled/temporal PEs. Our designs assume
a group of PEs shares access to a decoupled scratchpad.

• SPU [20] is similar but has dynamic-scheduled/dedicated
PEs, and banked scratchpad.

• REVEL [92] composes static-scheduled and dynamic-
scheduled PEs in one mesh, and allows communication
through synchronization elements.

In our experiments, we assume that accelerators are inte-
grated to a high-bandwidth L2 cache (75 GB/s).

Simulation: For performance, we implemented a cycle-level
simulator for all ADG components. This is integrated with
gem5 [7] to use its RISCV core [80] as the control core.

Benchmarks: We selected several workloads from multiple
domains: 6 workloads from MachSuite [79], 5 benchmarks
from PolyBench [77], 2 microbenchmarks from SPU [20]
workloads, and 4 DSP workloads targeted by REVEL [92].
Table I shows the data size of each workload.

For our compiler, we added pragmas in Section IV. We also
implemented manually mapped accelerator code in assembly.
The original C codes are used as baselines, which are compiled
by GCC-8 with -O3, on Intel Xeon Silver 4116 @2.10GHz.

Power and Area Analysis: We implemented a parameterized
CGRA generator with Chisel [5] backend to generate acceler-
ator RTL. We synthesized the generated RTL using Synopsys
DC with UMC 28nm UHD library (SVT, ff, 0.99v), with target
1ns clock period (1GHz). For floating-point units, we used
Matlab HDL coder and Synopsys SMC. Using the results of
synthesis, we constructed an analytical regression model for
quick power/area estimation within the design-space explorer.

VIII. EVALUATION

We evaluate DSAGEN’s compiler, design space explorer
and hardware generator. The major takeaways are:
• The compiler achieves 80% of the performance of man-

ually tuned versions, and each modularized compilation
feature can be independently enabled/disabled.

• According to our estimation, the design space explorer is
able to save 42% power and area over the initial hardware.

• The automated DSE generates hardware with mean 1.3×
perf2/mm2 comparing with prior programmable accelera-
tors across multiple sets of workloads.

A. Modular Compilation

Performance: Figure 10 shows that the compiler achieves
89% of the performance of manually tuned versions. The
performance degradation is mainly due to a lack of peephole
optimizations in the compiler: the manual versions exploit
features of the low-level ISA to reduce the number of control
instructions. An outlier is fft, which is 2× slower in both
REVEL and Triggered Instructions. In the last of several
iterations of fft, the stride of data access becomes so small
that the compiled version may generate too many requests to
the same line, which underutilizes the scratchpad bandwidth.
The manual version peels down these underutilized iterations,
and combines these requests to avoid this pattern.

Modularity: To demonstrate the robustness of the modular-
ity, we evaluate the performance on a baseline architecture
with different sets of features turned on/off. The baseline
architecture is a 4x4 mesh of dedicated static PEs, 64-bit
network, and 512-bit wide scratchpad. Three key features can
be individually enabled or disabled:
• “shared” designs replace four dedicated PEs with shared

PEs to balance resource utilization across inner/outer loops.
• “dynamic” scheduling confers the ability to handle

control-dependent data-reuse (aka. stream join [20]).
• “indirect” designs support vectorized indirect load/update.
Figure 12 shows how each feature affects the performance.

Here, 0/1 means the corresponding feature is disabled/enabled.
PolyBench workloads are all simple dense linear kernels with
mostly perfect loops, so adding or removing features does
not change the performance. However, DSP workloads heavily
benefit from shared PEs for their outer-loop computations, and
Sparse workloads benefit from indirect access and dynamic
scheduling due to frequent data-dependence. Across all work-
loads, the best design includes all features.

B. Design Space Exploration

The goal of our design space exploration is to demonstrate
the ability to automatically tune the fine-grain hardware/soft-
ware features and architecture topology. We evaluate three
different sets of workloads:
• MachSuite: This set represents a variety of workloads with

different needs and some irregularity. This allows us to
compare DSAGEN’s design (DSAGENMachSuite) against
a hand-designed accelerator for these kinds of workloads:
Softbrain [65].

10

crs elc
k
ge

mmmd
st2

d
st3

d gm
0

5

10
Sp

ee
du

p
softbrain

compiler
manual

join his
t

gm
0

10

20

spu

chk
y qr fft mm gm

0

5

10

revel

chk
y qr fft mm gm

0

2

4
trigger

2m
m
3m

m
ata

x
bic

g
mvt gm

0

2

4

6
maeri

Fig. 10: Compiler versus Manual-Tuned Performance
0 2000 4000 6000

200

300

400

500

600

ob
je

ct
iv

e
(IL

P2
/m

m
2
)

Time(s):

incremental
scrath

Fig. 11: Repair versus Re-Mapping

0
0

0
0

0
1

0
1

0
0

1
1

1
0

0
1

0
1

1
1

0
1

1
11/4

1/2
1
2
4
8

16

Sp
ee

du
p

PolyBench

0
0

0
0

0
1

0
1

0
0

1
1

1
0

0
1

0
1

1
1

0
1

1
1

MachSuite

0
0

0
0

0
1

0
1

0
0

1
1

1
0

0
1

0
1

1
1

0
1

1
1

Sparse

0
0

0
0

0
1

0
1

0
0

1
1

1
0

0
1

0
1

1
1

0
1

1
1

Dsp

0
0

0
0

0
1

0
1

0
0

1
1

1
0

0
1

0
1

1
1

0
1

1
1

Overall

shared
dynamic
indirect

Speedup
Perf/Area

0
6
12
18
24
30
36

Pe
rf/

m
m

2

Fig. 12: Modular Compilation Impact on Performance

20 40 60 80 1000

5

10

15

20

Lo
ng

es
t c

on
fig

. p
at

h

#Nodes:

3 paths 6 paths 9 paths

Fig. 13: The Length of Configuration
Path (gray: ideal, black: generated)

• Dense neural networks: We evaluate convolution, pool-
ing, and classifier kernels, which have regular access and
control. This allows us to compare the generated design
(DSAGENDenseNN) against not only Softbrain, but also a
domain-specific accelerator: DianNao [12].

• Sparse convolutional neural network: This is a sin-
gle workload: outer-product multiply and resparsifica-
tion. It has regular computation but data-dependent mem-
ory access. We compare DSAGENSparseCNN against
SCNN [70] (a fixed accelerator) and SPU [20] (a pro-
grammable accelerator for sparse workloads).

We perform three DSE runs starting from the same initial
hardware, a 5×4 mesh with full capability, including control
flow, FU decomposability, and an indirect memory controller.
The design space explorer estimates the performance, power,
and area using the model discussed in Section V, and the
objective function is perf2/mm2. The explorer runs up to 200
scheduling iterations to initialize or repair the mapping after
changing the hardware. The algorithm will exit after 750
iterations without objective improvement.

Figure 14 shows how the area (left bar), power (right bar),
and overall objective (color intensity) evolve during design
space exploration. The first two iterations initialize the explo-
ration: after the datapaths are mapped to the initial hardware
in the first iteration, the redundant features, including known
unneeded functional units and address generation capability
are removed. Because of the objective function, achieving
better performance has higher priority than saving resources.
Therefore, in these three DSE runs, the estimated performance
is enhanced, and then the explorer trims redundant resources.
It is hard to map sparse CNN’s datapaths onto the initial
hardware within a few iterations, so the explorer in the
early iterations adds some redundant compute and routing
resources to ease the difficulties of mapping. For MachSuite,
the memory bandwidth is the bottleneck, so the explorer adds
more initially. Subsequently the explorer focuses on enhancing

0 1 16 28 91 15
3

29
9

33
5

38
7

42
1

48
4

57
3

58
0

61
2

62
6

64
7

68
7

93
2

12
34

13
28

14
43

15
67

17
51

19
77

24
64

29
62

35
35

50
09

60
68

0k

100k

200k

300k

400k

500k

ar
ea

 (m
m

2
)

MachSuite
obj:

fu n/w sync. mem.

0

50

100

150

200

250

po
we

r (
m

w)

2s
2s

45
s

11
0s

39
4s

78
0s

12
63

s
14

56
s

18
17

s
19

67
s

24
13

s
31

53
s

32
07

s
33

97
s

35
36

s
38

24
s

42
14

s
68

65
s

10
41

3s
11

21
2s

12
32

2s
13

46
8s

14
98

0s
17

27
2s

22
22

0s
26

86
4s

32
47

9s
50

74
7s

69
36

9s

200 300 400 500 600

0 1 8
25

8
41

5
76

9
10

11
13

71
15

73
16

36
18

11
22

50
23

70
28

02
31

93
34

94
38

55
44

16
52

45
61

99
71

12
79

52
94

56
10

72
1

10
84

1

100k

200k

300k

400k

500k

ar
ea

 (m
m

2
)

Dense NN
obj:

fu n/w sync. mem.

50

100

150

200

250

po
we

r (
m

w)

2s
2s 6s

84
1s

14
49

s
29

90
s

41
36

s
65

03
s

77
41

s
80

67
s

90
80

s
11

31
4s

11
83

2s
13

98
9s

15
81

1s
17

16
8s

18
91

8s
21

72
4s

26
03

8s
31

17
6s

35
83

2s
40

38
6s

49
23

2s
56

31
2s

57
06

6s

400 600 800 1000 1200 1400 1600 1800

0 1 10 13 28 75 78 83 88 92 97 11
3

14
5

21
1

33
8

39
5

47
9

12
36

16
29

20
04

24
59

29
52

35
91

42
93

53
14

71
52

11
80

3
18

97
4

200k

400k

600k

800k

ar
ea

 (m
m

2
)

Sparse CNN
obj:

fu n/w sync. mem.

100

200

300

400

po
we

r (
m

w)

15
3s

15
3s 45
8s

63
7s 14

73
s

63
29

s
68

84
s

80
40

s
90

98
s

10
01

4s
11

05
5s

14
36

6s
21

05
1s

34
36

3s
59

79
5s

71
37

1s
86

39
8s

86
40

1s
86

40
2s

86
40

4s
86

40
6s

86
40

8s
86

41
0s

86
41

2s
86

41
6s

86
42

1s
86

43
3s

86
44

9s

0 1000 2000 3000 4000

Fig. 14: Automated Design Space Exploration

the reuseability of on-chip network across multiple workloads,
and minimizing the synchronization element depth.

Overall, our design space explorer saves mean 42% of the
area and achieve mean 12× objective improvement over the
initial hardware across the three selected sets of workloads.

11

Est. Synth. Est. Synth. Est. Scaled0

50k

100k

150k

200k

250k
ar

ea
 (µ

m
2
)

DSAGEN
(Dense NN)

DSAGEN
(MachSuite)

Softbrain
Est. Synth. Est. Scaled0

100k

200k

300k

400k

500k

ar
ea

 (µ
m

2
)

DSAGEN
(Sparse CNN)

SPU
0

25

50

75

100

125

po
we

r (
m

w)

fu n/w sync mem.

0

60

120

180

240

300

po
we

r (
m

w)

Fig. 15: Comparing generated hardware to prior accelerators.

Model Validation: We validate our power/area regression
model by comparing the numbers against synthesis. The results
are shown in Figure 15. The bold label is the corresponding
hardware, which is either a DSE generated hardware or exist-
ing reconfigurable accelerator. “Est.”, “Synth”, and “Scaled”
stand for “estimated by the regression model”, “obtained by
synthesis”, and “obtained from prior paper by technology
scaling” respectively.

For the generated hardware, the estimate is 4-7% smaller
than the synthesis area/power. While the model was tuned
by synthesizing each component alone, extra structures are
required to meet timing for the whole fabric. Our estimated
model shows a somewhat large discrepancy between estimated
and scaled area/power of Softbrain and SPU, which is partly
due to microarchitecture5 and technology/scaling differences.
Further, some overhead may be due to having to provide more
general protocols for modularity.

To validate the performance model, we simulate the gen-
erated hardware with the compiled programs after DSE. The
model has mean performance error of 7%, with maximum
error of 30%. The maximum error occurred in stencil-3d,
because our model does not yet capture the performance
impact of excessive control instructions.

Quality of the Generated Hardware: Figure 15 shows
comparison of DSAGEN designs with corresponding
less-specialized programmable accelerators (Softbrain and
SPU). According to our regression model’s estimation,
DSAGENDenseNN and DSAGENSparse CNN saves 64% and 18%
area comparing against SPU and Softbrain for respective
workloads. While DSAGENMachSuite introduces 1.2× area
overhead comparing with Softbrain, it also provides 1.2×
speedup (favorable given the objective function).

We also compare against scaled domain-specific accelera-
tors, DianNao and SCNN, for reference; this is not particularly
accurate due to technology differences. DSAGENDenseNN has
overhead of 2.4× area and 2.6× power over scaled DianNao.
DSAGENSparseNN is 1.3× area and power over SCNN. We
believe the overhead is mainly from reconfigurability. While
these accelerators use a specific network (eg. tree in DianNao),
DSAGEN’s irregular network does not converge perfectly to
these specific, perhaps optimal, topologies. There is still future
work to be done to improve the design space exploration.

5Softbrain’s design [65] assumed delay structures could be eliminated by
the compiler, which prior work [64] found not to be true.

Schedule Repair: We compare two different strategies, tra-
ditional scheduling (map entire dataflow every iteration) and
our schedule repair approach. During DSE, after each iteration
of the hardware update, both perform up to 200 scheduling
iterations. The result is shown in Figure 11 for the MachSuite
workloads. At the early stages, both strategies have a very
close objective, because there are abundant resources on the
hardware and scheduling is simple. Remapping the whole
schedule can still succeed within 200 iterations. When the
hardware resources become tight, the traditional scheduler
cannot succeed on these more efficient designs, because it
has to re-discover the entire mapping. Overall, schedule repair
leads to a 1.3× better objective for DSE.

Configuration Path: Improving the configuration time can aid
performance of short program regions. Configuration time is
dominated by the longest configuration path. We evaluate the
path generator by giving it multiple mesh spatial architectures
(2× 2 to 5× 5 PEs) under the constraint of having 3, 6, and
9 configuration paths, and the result is shown in Figure 13.
The dashed lines are the ideal lengths (for a network with n
nodes, p paths, the longest path cannot be shorter than dnp e),
and the solid lines are the actual lengths. The path generator
only introduces mean 1.4× overhead versus the ideal.

IX. RELATED WORK

DSE for General Purpose Processors: Custom fit pro-
cessors [23] is a framework to build application-specialized
VLIW designs. Somewhat related proposals target customized
VLIW or superscalar pipelines through some codesign pro-
cess [4, 18, 19, 32, 35, 57]. Another related work is for gen-
eral purpose processors called Liberty [89], which uses a
microarchitecture specification to generate simulators and
perform DSE. Similar frameworks include Expression [29],
UPFAST [67] and LISA [72]. None of these support spatial
architectures.

Network Synthesis: Network synthesis techniques enable
customized network topologies based on workload properties.
One example is SUNMAP [59], which performs network
topology synthesis, and similar techniques have been devel-
oped for irregular network topologies [76, 90]. DRNoC [43]
and Connect [68] are network generators tailored for FPGAs.
DRNoC is particularly relevant, as it generates a network
based on the application’s task graph. These NoC generators
only addresses network design without considering computa-
tion. Other works map applications onto potentially irregular
NoCs [37, 58], but do not perform codesign search.

Accelerator Design Frameworks: CGRA-ME [13] is a de-
sign framework for static-scheduled CGRAs. It uses a C
programming strategy, and includes fast power and area mod-
els [63]. The framework has a generic spatial scheduler for
any topology based on integer linear programming [14, 91];
this is too slow for DSE. Several works explore the design
space for CGRAs, including ADRES [8] and the KressArray
Xplorer [30]. Kim et al. develop a design space exploration
framework tailored for DSP applications [40]. EGRA [3]

12

is another template-based CGRA which supports compound
functional units (we do too through composition). RADISH
is a CGRA generator which uses genetic algorithms to search
for compound PEs based on a corpus of applications [93]. Suh
et al. propose a CGRA with heterogeneous FUs, amenable to
DSE [87].

The Spatial [41] compiler uses DSE to map parallel pro-
grams to FPGAs and the Plasticine [78] CGRA, with an opti-
mizer called HyperMapper [61]. It is fundamentally orthogonal
as it is targeting the compilation problem and not DSE of the
architecture itself.
µIR [83] is an IR and framework for designing application-

specific accelerators that exposes microarchitecture features as
first-order primitives.

Key Differences: None of the above 1. have a design
space including multiple execution models (eg. dynamic+static
scheduling, dedicated+temporal PEs), and 2. perform topology
search to specialize the hardware datapath to a set of programs.

X. CONCLUSION

To broaden the potential of acceleration, this work develops
an approach and framework, DSAGEN, for programmable
accelerator synthesis. In this paradigm, an accelerator can be
developed by composing simple spatial architecture primitives,
and also be generated through automated codesign. Codesign
works because the compiler can understand how best to use the
simple primitives that are composed in an architecture descrip-
tion graph. Modular compiler transformations can robustly tar-
get accelerators with different ISA features, parameterizations,
and topologies. Further, only traditional languages are required
with relatively little programmer intervention.

More broadly, the field of computer architecture has histor-
ically grappled with what should be the layers of abstraction
from hardware to software to enable efficient designs. A fixed
ISA has been both the typical assumption and a persistent
burden. This work suggests that the ISA does not need to
be the hardware/software abstraction which designers rely on,
at least for the domain of accelerators. Instead, a modular
accelerator description can serve that purpose, and enable
much greater flexibility to explore deeply specialized designs.

REFERENCES

[1] B. Akin, Z. A. Chishti, and A. R. Alameldeen, “ZCOMP: reducing DNN cross-
layer memory footprint using vector extensions,” in MICRO, 2019.

[2] M. Annaratone, E. A. Arnould, T. Gross, H. T. Kung, M. S. Lam, O. Menzil-
cioglu, and J. A. Webb, “The Warp Computer: Architecture, Implementation,
and Performance,” IEEE Transactions on Computers, 1987.

[3] G. Ansaloni, P. Bonzini, and L. Pozzi, “EGRA: a coarse grained reconfigurable
architectural template,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 19, no. 6, pp. 1062–1074, 2010.

[4] M. Auguin, F. Boeri, and E. Carriere, “Automatic exploration of vliw proces-
sor architectures from a designer’s experience based specification,” in Third
International Workshop on Hardware/Software Codesign, Sep 1994.

[5] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović, “Chisel: Constructing hardware in a Scala
embedded language,” in 49th DAC, 2012.

[6] E. Baek, H. Lee, Y. Kim, and J. Kim, “FlexLearn: fast and highly efficient
brain simulations using flexible on-chip learning,” in 52nd MICRO, 2019.

[7] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5 simulator,”
SIGARCH Comput. Archit. News, 2011.

[8] F. Bouwens, M. Berekovic, A. Kanstein, and G. Gaydadjiev, “Architectural
exploration of the ADRES coarse-grained reconfigurable array,” in ARC 2007.

[9] D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin, L. K. John, C. Lin,
C. R. Moore, J. Burrill, R. G. McDonald, W. Yoder et al., “Scaling to the end
of silicon with EDGE architectures,” Computer, 2004.

[10] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson,
S. Brown, and T. Czajkowski, “Legup: high-level synthesis for fpga-based
processor/accelerator systems,” in 19th FPGA, 2011.

[11] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan, L. Wang,
Y. Hu, L. Ceze et al., “Tvm: An automated end-to-end optimizing compiler for
deep learning,” in 13th OSDI, 2018.

[12] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, “DianNao: a
small-footprint high-throughput accelerator for ubiquitous machine-learning,”
in 19th ASPLOS. ACM, 2014.

[13] S. A. Chin, N. Sakamoto, A. Rui, J. Zhao, J. H. Kim, Y. Hara-Azumi,
and J. Anderson, “CGRA-ME: a unified framework for cgra modelling and
exploration,” in 28th ASAP, July 2017.

[14] S. A. Chin and J. H. Anderson, “An architecture-agnostic integer linear
programming approach to cgra mapping,” in 55th DAC, 2018.

[15] S. Ciricescu, R. Essick, B. Lucas, P. May, K. Moat, J. Norris, M. Schuette, and
A. Saidi, “The Reconfigurable Streaming Vector Processor (RSVP),” in 36th
MICRO. IEEE, 2003.

[16] N. Clark, M. Kudlur, H. Park, S. Mahlke, and K. Flautner, “Application-
specific processing on a general-purpose core via transparent instruction set
customization,” in MICRO, 2004.

[17] J. Cong, H. Huang, C. Ma, B. Xiao, and P. Zhou, “A fully pipelined and
dynamically composable architecture of CGRA,” in 22th FCCM, 2014.

[18] T. M. Conte and W. Mangione-Smith, “Determining cost-effective multiple
issue processor designs,” in ICCD, Oct 1993.

[19] T. M. Conte, K. N. P. Menezes, and S. W. Sathaye, “A technique to determine
power-efficient, high-performance superscalar processors,” in HICSS, 1995.

[20] V. Dadu and T. Nowatzki, “Towards general purpose acceleration by exploiting
common data-dependence forms,” in 52nd MICRO, 2019.

[21] Y. Feng, P. Whatmough, and Y. Zhu, “ASV: accelerated stereo vision system,”
in 52nd MICRO, ser. MICRO ’52. ACM, 2019.

[22] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence graph
and its use in optimization,” ACM Trans. Program. Lang. Syst., vol. 9, no. 3,
pp. 319–349, Jul. 1987.

[23] J. A. Fisher, P. Faraboschi, and G. Desoli, “Custom-fit processors: Letting
applications define architectures,” in MICRO, 1996.

[24] S. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R. Taylor, and
R. Laufer, “PipeRench: a coprocessor for streaming multimedia acceleration,”
in 26th ISCA, 1999.

[25] A. Gondimalla, N. Chesnut, M. Thottethodi, and T. N. Vijaykumar, “SparTen:
A sparse tensor accelerator for convolutional neural networks,” in 52nd MI-
CRO, 2019.

[26] V. Govindaraju, C.-H. Ho, T. Nowatzki, J. Chhugani, N. Satish, K. Sankar-
alingam, and C. Kim, “DySER: unifying functionality and parallelism special-
ization for energy-efficient computing,” IEEE Micro, Sep. 2012.

[27] S. Gudaparthi, S. Narayanan, R. Balasubramonian, E. Giacomin, H. Kambal-
asubramanyam, and P. Gaillardon, “Wire-aware architecture and dataflow for
CNN accelerators,” in 52nd MICRO, 2019.

[28] S. Gupta, S. Feng, A. Ansari, S. Mahlke, and D. August, “Bundled execution of
recurring traces for energy-efficient general purpose processing,” in MICRO,
2011.

[29] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, and A. Nicolau, “Ex-
pression: a language for architecture exploration through compiler/simulator
retargetability,” in DATE, March 1999.

[30] R. Hartenstein, M. Herz, T. Hoffmann, and U. Nageldinger, “Kressarray
xplorer: a new cad environment to optimize reconfigurable datapath array
architectures,” in DAC, Jan 2000.

[31] K. Hegde, H. A. Moghaddam, M. Pellauer, N. C. Crago, A. Jaleel,
E. Solomonik, J. S. Emer, and C. W. Fletcher, “ExTensor: an accelerator for
sparse tensor algebra,” in 52nd MICRO, 2019.

[32] B. K. Holmer and A. M. Despain, “Viewing instruction set design as an
optimization problem,” in 24th MICRO. ACM, 1991.

[33] W. Hua, Y. Zhou, C. D. Sa, Z. Zhang, and G. E. Suh, “Boosting the perfor-
mance of CNN accelerators with dynamic fine-grained channel gating,” in
52nd MICRO, 2019.

[34] C. Huang, Y. Ding, H. Wang, C. Weng, K. Lin, L. Wang, and L. Chen, “ecnn: A
block-based and highly-parallel CNN accelerator for edge inference,” in 52nd
MICRO, 2019.

[35] I. J. Huang and A. M. Despain, “High level synthesis of pipelined instruction
set processors and back-end compilers,” in DAC, Jun 1992.

[36] W. Huangfu, X. Li, S. Li, X. Hu, P. Gu, and Y. Xie, “MEDAL: scalable DIMM
based near data processing accelerator for DNA seeding algorithm,” in 52nd
MICRO, 2019.

[37] R. M. J. Hu, “Energy-aware mapping for tile-based noc architectures under
performance constraints,” in ASP-DAC, Jan 2003.

[38] J. Jang, J. Heo, Y. Lee, J. Won, S. Kim, S. Jung, H. Jang, T. J. Ham, and J. W.
Lee, “Charon: Specialized near-memory processing architecture for clearing
dead objects in memory,” in 52nd MICRO, 2019.

[39] K. Kanellopoulos, N. Vijaykumar, C. Giannoula, R. Azizi, S. Koppula,
N. Mansouri-Ghiasi, T. Shahroodi, J. Gómez-Luna, and O. Mutlu, “SMASH:

13

co-designing software compression and hardware-accelerated indexing for
efficient sparse matrix operations,” in 52nd MICRO, 2019.

[40] Y. Kim, R. N. Mahapatra, and K. Choi, “Design space exploration for effi-
cient resource utilization in coarse-grained reconfigurable architecture,” IEEE
transactions on very large scale integration (VLSI) systems, vol. 18, no. 10,
pp. 1471–1482, 2009.

[41] D. Koeplinger, M. Feldman, R. Prabhakar, Y. Zhang, S. Hadjis, R. Fiszel,
T. Zhao, L. Nardi, A. Pedram, C. Kozyrakis et al., “Spatial: A language and
compiler for application accelerators,” in PLDI, 2018.

[42] S. Koppula, L. Orosa, A. G. Yaglikçi, R. Azizi, T. Shahroodi, K. Kanellopou-
los, and O. Mutlu, “EDEN: enabling energy-efficient, high-performance deep
neural network inference using approximate DRAM,” in 52nd MICRO, 2019.

[43] Y. E. Krasteva, F. Criado, E. d. l. Torre, and T. Riesgo, “A fast emulation-based
noc prototyping framework,” in ReConFig, Dec 2008.

[44] H. Kwon, P. Chatarasi, M. Pellauer, A. Parashar, V. Sarkar, and T. Krishna,
“Understanding reuse, performance, and hardware cost of DNN dataflow: A
data-centric approach,” in 52nd MICRO, 2019.

[45] H. Kwon, A. Samajdar, and T. Krishna, “MAERI: enabling flexible dataflow
mapping over dnn accelerators via reconfigurable interconnects,” SIGPLAN
Not., vol. 53, no. 2, pp. 461–475, Mar. 2018.

[46] Y. Kwon, Y. Lee, and M. Rhu, “TensorDIMM: A practical near-memory pro-
cessing architecture for embeddings and tensor operations in deep learning,”
in 52nd MICRO, 2019.

[47] A. D. Lascorz, S. Sharify, I. Edo, D. M. Stuart, O. M. Awad, P. Judd,
M. Mahmoud, M. Nikolic, K. Siu, Z. Poulos et al., “Shapeshifter: Enabling
fine-grain data width adaptation in deep learning,” in 52nd MICRO, 2019.

[48] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in CGO ’04, pp. 75–88.

[49] D. Mahajan, J. Park, E. Amaro, H. Sharma, A. Yazdanbakhsh, J. K. Kim,
and H. Esmaeilzadeh, “TABLA: a unified template-based framework for
accelerating statistical machine learning,” in HPCA, 2016.

[50] V. S. Mailthody, Z. Qureshi, W. Liang, Z. Feng, S. G. D. Gonzalo, Y. Li,
H. Franke, J. Xiong, J. Huang, and W. Hwu, “DeepStore: in-storage accel-
eration for intelligent queries,” in 52nd MICRO, 2019.

[51] L. McMurchie and C. Ebeling, “PathFinder: a negotiation-based performance-
driven router for fpgas,” in 3rd FPGA, Feb 1995.

[52] B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R. Lauwereins, “Exploiting
loop-level parallelism on coarse-grained reconfigurable architectures using
modulo scheduling,” IEE Proceedings - Computers and Digital Techniques,
vol. 150, no. 5, pp. 255–61–, Sept 2003.

[53] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins, “ADRES: an
architecture with tightly coupled vliw processor and coarse-grained reconfig-
urable matrix,” in FPL, 2003.

[54] E. Mirsky, A. DeHon et al., “MATRIX: a reconfigurable computing architec-
ture with configurable instruction distribution and deployable resources.” in
FCCM, vol. 96, 1996, pp. 17–19.

[55] M. Mishra, T. J. Callahan, T. Chelcea, G. Venkataramani, S. C. Goldstein,
and M. Budiu, “Tartan: Evaluating spatial computation for whole program
execution,” in 12th ASPLOS, 2006.

[56] T. Miyamori and K. Olukotun, “REMARC (abstract): Reconfigurable multi-
media array coprocessor,” in 6th FPGA, 1998.

[57] J. M. Mulder, R. J. Portier, A. Srivastava, and R. in’t Velt, “An architecture
framework for application-specific and scalable architectures,” in 16th ISCA,
1989.

[58] S. Murali and G. De Micheli, “Bandwidth-constrained mapping of cores onto
noc architectures,” in DATE, vol. 2, Feb 2004.

[59] S. Murali, G. De Micheli, G. De Micheli, and G. De Micheli, “SUNMAP: a
tool for automatic topology selection and generation for nocs,” in 41st DAC.
ACM, 2004.

[60] A. Nag, C. N. Ramachandra, R. Balasubramonian, R. Stutsman, E. Giacomin,
H. Kambalasubramanyam, and P. Gaillardon, “GenCache: leveraging in-cache
operators for efficient sequence alignment,” in 52nd MICRO, 2019.

[61] L. Nardi, D. Koeplinger, and K. Olukotun, “Practical design space explo-
ration,” 2018.

[62] C. Nicol, “A coarse grain reconfigurable array (CGRA) for statically scheduled
data flow computing,” WaveComputing WhitePaper, 2017.

[63] K. Niu and J. H. Anderson, “Compact area and performance modelling for
cgra architecture evaluation,” in FPT, Dec 2018.

[64] T. Nowatzki, N. Ardalani, K. Sankaralingam, and J. Weng, “Hybrid optimiza-
tion/heuristic instruction scheduling for programmable accelerator codesign,”
in 27th PACT, 2018.

[65] T. Nowatzki, V. Gangadhar, N. Ardalani, and K. Sankaralingam, “Stream-
dataflow acceleration,” in 44th ISCA, 2017.

[66] T. Nowatzki, M. Sartin-Tarm, L. De Carli, K. Sankaralingam, C. Estan, and
B. Robatmili, “A general constraint-centric scheduling framework for spatial
architectures,” in 34th PLDI, 2013.

[67] S. Önder and R. Gupta, “Automatic generation of microarchitecture simula-
tors,” in ICCL, 1998.

[68] M. K. Papamichael and J. C. Hoe, “Connect: re-examining conventional
wisdom for designing nocs in the context of FPGAs,” in FPGA, 2012.

[69] A. Parashar, M. Pellauer, M. Adler, B. Ahsan, N. Crago, D. Lustig, V. Pavlov,
A. Zhai, M. Gambhir, A. Jaleel et al., “Triggered Instructions: a control
paradigm for spatially-programmed architectures,” in 40th ISCA, 2013.

[70] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany,
J. Emer, S. W. Keckler, and W. J. Dally, “SCNN: an accelerator for
compressed-sparse convolutional neural networks,” in 44th ISCA, 2017.

[71] H. Park, K. Fan, S. A. Mahlke, T. Oh, H. Kim, and H.-s. Kim, “Edge-centric
modulo scheduling for coarse-grained reconfigurable architectures,” in 17th
PACT, 2008.

[72] S. Pees, A. Hoffmann, V. Zivojnovic, and H. Meyr, “Lisa-machine description
language for cycle-accurate models of programmable dsp architectures,” in
DAC, 1999.

[73] M. Pellauer, Y. S. Shao, J. Clemons, N. Crago, K. Hegde, R. Venkatesan, S. W.
Keckler, C. W. Fletcher, and J. Emer, “Buffets: An efficient and composable
storage idiom for explicit decoupled data orchestration,” in 24th ASPLOS,
2019.

[74] L. Pentecost, M. Donato, B. Reagen, U. Gupta, S. Ma, G. Wei, and D. Brooks,
“MaxNVM: maximizing DNN storage density and inference efficiency with
sparse encoding and error mitigation,” in 52nd MICRO, 2019.

[75] P. M. Phothilimthana, T. Jelvis, R. Shah, N. Totla, S. Chasins, and R. Bodik,
“Chlorophyll: Synthesis-aided compiler for low-power spatial architectures,”
in 35th PLDI, 2014.

[76] A. Pinto, L. P. Carloni, and A. L. Sangiovanni-Vincentelli, “Efficient synthesis
of networks on chip,” in 21st ICCD, 2003.

[77] L.-N. Pouchet, “Polybench: The polyhedral benchmark suite,” URL:
http://www. cs. ucla. edu/pouchet/software/polybench, 2012.

[78] R. Prabhakar, Y. Zhang, D. Koeplinger, M. Feldman, T. Zhao, S. Hadjis,
A. Pedram, C. Kozyrakis, and K. Olukotun, “Plasticine: A reconfigurable
architecture for parallel paterns,” in 44th ISCA, 2017.

[79] B. Reagen, R. Adolf, Y. S. Shao, G. Wei, and D. Brooks, “MachSuite:
benchmarks for accelerator design and customized architectures,” in IISWC,
Oct 2014.

[80] A. Roelke and M. R. Stan, “RISC5: Implementing the RISC-V ISA in gem5,”
2017.

[81] F. Sadi, J. Sweeney, T. M. Low, J. C. Hoe, L. T. Pileggi, and F. Franchetti,
“Efficient SpMV operation for large and highly sparse matrices using scalable
multi-way merge parallelization,” in 52nd MICRO, 2019.

[82] E. Sadredini, R. Rahimi, V. Verma, M. Stan, and K. Skadron, “eAP: A scalable
and efficient in-memory accelerator for automata processing,” in 52nd MICRO,
2019.

[83] A. Sharifian, R. Hojabr, N. Rahimi, S. Liu, A. Guha, T. Nowatzki, and A. Shri-
raman, “µir -an intermediate representation for transforming and optimizing
the microarchitecture of application accelerators,” in 52nd MICRO, 2019.

[84] F. Silfa, G. Dot, J. Arnau, and A. González, “Neuron-level fuzzy memoization
in rnns,” in 52nd MICRO, 2019.

[85] H. Singh, M.-H. Lee, G. Lu, N. Bagherzadeh, F. J. Kurdahi, and E. M. C.
Filho, “MorphoSys: an integrated reconfigurable system for data-parallel and
computation-intensive applications,” IEEE Trans. Comput., vol. 49, no. 5, pp.
465–481, May 2000.

[86] J. R. Stevens, A. Ranjan, D. Das, B. Kaul, and A. Raghunathan, “Manna: An
accelerator for memory-augmented neural networks,” in 52nd MICRO, 2019.

[87] D. Suh, K. Kwon, S. Kim, S. Ryu, and J. Kim, “Design space exploration
and implementation of a high performance and low area coarse grained
reconfigurable processor,” in CFP, Dec 2012.

[88] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin, “WaveScalar,” in 36th
MICRO, ser. MICRO 36, 2003.

[89] M. Vachharajani, N. Vachharajani, D. A. Penry, J. A. Blome, and D. I. August,
“Microarchitectural exploration with Liberty,” in 35th MICRO, 2002.

[90] Wai Hong Ho and T. M. Pinkston, “A methodology for designing efficient on-
chip interconnects on well-behaved communication patterns,” in 9th HPCA,
Feb 2003.

[91] M. J. Walker and J. H. Anderson, “Generic connectivity-based CGRA mapping
via integer linear programming,” in 27th FCCM, 2019.

[92] J. Weng, S. Liu, Z. Wang, V. Dadu, and T. Nowatzki, “A hybrid systolic-
dataflow architecture for inductive matrix algorithms,” in HPCA, 2019.

[93] M. Willsey, V. T. Lee, A. Cheung, R. Bodı́k, and L. Ceze, “Iterative search for
reconfigurable accelerator blocks with a compiler in the loop,” IEEE TCAD,
vol. 38, no. 3, pp. 407–418, 2018.

[94] L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and K. A. Ross, “Q100: The
architecture and design of a database processing unit,” in 19th ASPLOS, 2014.

[95] T. Xu, B. Tian, and Y. Zhu, “Tigris: Architecture and algorithms for 3d
perception in point clouds,” in 52nd MICRO, 2019.

[96] M. Yan, X. Hu, S. Li, A. Basak, H. Li, X. Ma, I. Akgun, Y. Feng, P. Gu,
L. Deng et al., “Alleviating irregularity in graph analytics acceleration: a
hardware/software co-design approach,” in 52nd MICRO, 2019.

[97] Y. Zhang, A. Rucker, M. Vilim, R. Prabhakar, W. Hwang, and K. Olukotun,
“Scalable interconnects for reconfigurable spatial architectures,” in 46th ISCA,
2019.

[98] M. Zhu, T. Zhang, Z. Gu, and Y. Xie, “Sparse Tensor Core: algorithm and
hardware co-design for vector-wise sparse neural networks on modern gpus,”
in 52nd MICRO, 2019.

[99] Y. Zhuo, C. Wang, M. Zhang, R. Wang, D. Niu, Y. Wang, and X. Qian,
“GraphQ: scalable pim-based graph processing,” in 52nd MICRO, 2019.

14

	Introduction
	Decoupled Spatial Architecture Background
	Decoupled Spatial Design Space
	Decoupled Spatial Primitives
	Principles of Composition
	Design Space Capabilities & Limitations

	Modular Decoupled Spatial Compilation
	Compiler Overview
	Programming Interface
	Compiler Transformation
	Generic Optimizations
	Modular Code Transformation

	Automated Design Space Exploration
	Fast DSE with Repairing Scheduler
	Performance Modeling Approach
	Power/Area Modeling Approach
	Limitations

	Hardware Generation
	Methodology
	Evaluation
	Modular Compilation
	Design Space Exploration

	Related Work
	Conclusion
	References

