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Reconfigurable
Architectures
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Systolic Array

What if I don’t exactly want to 
do dense matrix multiplies 

with  large matrices?

Google TPU

Systolic CGRA
(dedicated PE CGRA)

Problem: How can we map 
computation to this effectively?

Circuit 
Switched 
Network

Processing 
Element 
(ALU etc.)

Perfectly-pipelined 
execution 
(1 computation    
per cycle)

Examples: Charm, Camel, 
Stream-Dataflow, FPCA, 

DySER (almost), LSSD, 
Morphosys, etc …
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Mapping TimingRouting
Joint 
Optimization

(days for solution)

Incremental 
Optimization

Mapping TimingRouting

Mapping TimingRouting

Our Approach:
1. Phase Overlapping
2. Hybrid Scheduling

(high area increase  or  integer factors performance loss)

Joint 
Heuristic

TimingRouting

(full throughput & seconds to minutes & low area overhead)

Mapping Routing

Technique Overview
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Outline

• “Systolic” CGRAs
• Throughput sensitivity and fractional initiation intervals.

• Techniques for delay matching

• Scheduling Approach 1: Phasing-Overlapping
• Tractable Optimization through Overlapping

• Scheduling Approach 2: Hybrid Scheduling
• Heuristic to reduce search space

• Optimization to deal with tricky cases

• Evaluation
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Requirements for Full-Pipelining

1. Sufficient Data Bandwidth: Data has to arrive at a 
bandwidth of sufficient for one set of inputs / cycle.

2. No Compute Contention: Each instruction gets a 
dedicated compute unit.

3. No Routing Contention: Each dependence gets a 
dedicated routing path.

4. No Storage Contention: Each operand is guaranteed 
a free storage location at each step.
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Fully-pipelined Systolic CGRA
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Fully-pipelined Systolic CGRA
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Throughput Formula

• Inverse of initiation interval in compiler terminology.

= 
FIFO Length

Max. Mismatch + FIFO Length

Delay-FIFOs Help 
Reduce Latency 
Mismatch

Provide buffer 
space which 
increases 
throughput

But at the cost of area…

Throughput
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Alternatives to Delay-FIFOs (1)
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Use a longer route:  Costs Routing Resources
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Alternatives to Delay-FIFOs (2)
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Pass through a PE:  Costs Mapping Resources

Do a 
NOP

This is also just 
good for 
improving 
routing 
bandwidth …
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“Systolic” CGRA Challenge Summary

• Systolic CGRA throughput is very sensitive to timing 
constraints

• Several ways to balance delays:
• Pass-through (affects mapping)

• Long route (affects routing)

• Delay FIFOs (affects timing)

• Mapping / Routing / Timing responsibilities are 
highly interdependent 

• Codesign: Either more delay FIFOs or more 
advanced scheduler
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Outline

• Challenges for pipelining “Systolic” CGRAs
• Throughput sensitivity and fractional initiation intervals.

• Techniques for delay matching

• Scheduling Approach 1: Phasing-Overlapping
• Tractable Optimization through Overlapping

• Scheduling Approach 2: Hybrid Scheduling
• Heuristic to reduce search space

• Optimization to deal with tricky cases

• Evaluation
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Optimization Background
• Prior work demonstrates optimization-based spatial 

scheduling: Integer Linear Programming [PLDI 2013], 
SMT [TOPLAS 2014]

• Basic Integer Linear Programming Approach:
• Decision Variables:

• Assigning instructions to PEs (binary)

• Assigning dependences to a set of Routes (binary)

• Assigning delays to each PE (integer)

• Linear Constraints: 
• Limit schedule to be legal

• We added three forms of delay-matching.
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Optimization Phases

• Joint Optimization: (50% Failure)
• Timeout -- Very restricted hardware of systolic CGRA

• Separate Phases:  (85% Failure)
• Fast, but doesn’t capture inter-dependence!

• In-between Joint:  (75% Failure, poor throughput)

Mapping TimingRouting

Mapping TimingRouting

Mapping TimingRouting
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Our Approach: Phase Overlapping
• Insight:  Phase Interdependence Matters

• But relationship between adjacent phases is more relevant…

• Phase Overlapping:
• Perform Mapping and Routing together
• Discard Routing (keep Mapping)
• Perform Routing and Timing together

• Good: Only 15% fail, mostly fully-pipelined

• Remaining Problems:
• Mapping/routing phase takes time (90% or more)
• Sometimes, we get an unlucky mapping/routing (looks like 

high potential, but cannot be fixed for timing)

TimingRouting

Mapping Routing
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Overview

• “Systolic” CGRAs
• Throughput sensitivity and fractional initiation intervals.

• Techniques for delay matching

• Scheduling Approach 1: Phasing-Overlapping
• Tractable Optimization through Overlapping

• Scheduling Approach 2: Hybrid Scheduling
• Heuristic to reduce search space

• Optimization to deal with tricky cases

• Evaluation



22

Hybrid Scheduling: Integrate Heuristic

• Insight: Mitigate the problems overlapped scheduling by 
trying things repeatedly if we got an unlucky mapping.

• But … Optimization won’t work for mapping/routing
• Still too slow (and do we really need it?)

• ILP solver’s don’t tend to generate unique solutions

• Hybrid Approach: Use a heuristic for the 
mapping/routing phase, to quickly get a plausible 
mapping, then optimize the routing and timing together.

TimingRouting

Mapping RoutingHeuristic:

Optimization:
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A Heuristic for Hybrid Scheduling

• Need a heuristic that quickly generates unique
schedules!

• Basic Approach: Stochastic Scheduling
• Iteratively build schedule in topological order (fast)

• Normally be rational: Choose a location for each 
instruction which minimizing routing resources and 
timing mismatch.

• Occasionally be irrational: Choose a purposely bad 
mapping, hoping that it might help later on (unique)

• Repeat a few times to find a good schedule (good)

• Objective function: Minimize total mismatch (to 
make routing/timing scheduling easier)



24

Intuition for Solution Quality
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Outline

• “Systolic” CGRAs
• Throughput sensitivity and fractional initiation intervals.

• Techniques for delay matching

• Scheduling Approach 1: Phasing-Overlapping
• Tractable Optimization through Overlapping

• Scheduling Approach 2: Hybrid Scheduling
• Heuristic to reduce search space

• Optimization to deal with tricky cases

• Evaluation
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Methodology – Accelerator Modeling

• Softbrain Accelerator
• 5x5 Processing Elem (PE)
• 64-bit datapath (subword)
• Heterogeneous Grid
• All FUs are fully pipelined

• Simulation: All blocks simulated at 
cycle-level in gem5, single “core”

• Area Analysis
• Synthesize Chisel-based design in 

55nm tech library.
• Assumes Control core (single-issue 

inorder 16KB I$/D$) + 4KB SPAD

• Workloads (accelerator centric)
• MachSuite, CNN/DNN, Dense Linear 

Algebra QR/Cholesky/FFT)
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Does delay FIFO area matter?

FIFO
Length

Scheduling 
Difficulty

Area (mm2) Overhead

2 Very Hard 0.528 9.67%

3 Hard 0.543 12.90%

7 Medium 0.606 25.85%

15 Easy 0.736 52.86%
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Methodology – Experimental Setup

• Scheduler Designs:
• Joint Optimization

• Overlapped Optimization

• Heuristic Only

• Hybrid (overlap/part heuristic)

• Scheduling Timeout: 20 Minutes

• Problem: How to compare schedulers that across a 
set of workloads that may fail?
• We don’t!  Instead, we seed all schedulers with an initial 

solution from the heuristic.

• Joint and Overlapped are also hybrid schedulers in the 
evaluation, just using a more traditional approach.



Performance vs Time vs Complexity
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Conclusions

• Systolic CGRAs gain efficiency by simplifying the 
execution model.

• Consequence is tradeoff between easy scheduling 
low hardware overhead, and high performance:
• Minimizing delay-FIFO size is key factor in reducing area 

and increasing scheduler difficulty in finding minimum II.

• Two novel techniques:
• Phase Overlapping (capture the phase interdependence)

• Hybrid Scheduling (using heuristic to generate solutions)

• Broadly, codesign is the key to success of future 
reconfigurable architectures.
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Thank you



Scheduling-time Sensitivity
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Modeled vs 
Measured
Throughput

Heuristic    Hybrid      Overlapped    Joint


