
Hybrid Optimization/Heuristic
Instruction Scheduling for

Programmable Accelerator Codesign

Tony Nowatzki∗ Newsha Ardalani†

Karthikeyan Sankaralingam‡ Jian Weng∗

∗ † ‡

PACT 2018, Nov. 3rd

2

> CPU

Google TPU

Reconfigurable
Architectures

Coarse
Grain

3

Reconfigurable
Architectures

Coarse
Grain PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

Systolic Array

What if I don’t exactly want to
do dense matrix multiplies

with large matrices?

Google TPU

Systolic CGRA
(dedicated PE CGRA)

Problem: How can we map
computation to this effectively?

Circuit
Switched
Network

Processing
Element
(ALU etc.)

Perfectly-pipelined
execution
(1 computation
per cycle)

Examples: Charm, Camel,
Stream-Dataflow, FPCA,

DySER (almost), LSSD,
Morphosys, etc …

4

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

+ + + +

+ +

+

>

+

A[8] B[8] c[4]

?

∑

o[1]

× × × × × × × × --

Mapping TimingRouting

Computation Graph Hardware Graph

5

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

+ + + +

+ +

+

>

+

A[8] B[8] c[4]

?

∑

o[1]

× × × × × × × × --

Mapping TimingRouting

Computation Graph Hardware Graph

6

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

+ + + +

+ +

+

>

+

A[8] B[8] c[4]

?

∑

o[1]

× × × × × × × × --

Mapping TimingRouting

Computation Graph Hardware Graph

>

?

7

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

+ + + +

+ +

+

>

+

A[8] B[8] c[4]

?

∑

o[1]

× × × × × × × × --

Mapping TimingRouting

Computation Graph Hardware Graph

?

>

>

8

Mapping TimingRouting
Joint
Optimization

(days for solution)

Incremental
Optimization

Mapping TimingRouting

Mapping TimingRouting

Our Approach:
1. Phase Overlapping
2. Hybrid Scheduling

(high area increase or integer factors performance loss)

Joint
Heuristic

TimingRouting

(full throughput & seconds to minutes & low area overhead)

Mapping Routing

Technique Overview

9

Outline

• “Systolic” CGRAs
• Throughput sensitivity and fractional initiation intervals.

• Techniques for delay matching

• Scheduling Approach 1: Phasing-Overlapping
• Tractable Optimization through Overlapping

• Scheduling Approach 2: Hybrid Scheduling
• Heuristic to reduce search space

• Optimization to deal with tricky cases

• Evaluation

10

Requirements for Full-Pipelining

1. Sufficient Data Bandwidth: Data has to arrive at a
bandwidth of sufficient for one set of inputs / cycle.

2. No Compute Contention: Each instruction gets a
dedicated compute unit.

3. No Routing Contention: Each dependence gets a
dedicated routing path.

4. No Storage Contention: Each operand is guaranteed
a free storage location at each step.

11

Fully-pipelined Systolic CGRA

PE

PE

PE

PE

PE

PE

×

√

/

+

Must move forward! Can’t be consumed!

Delay
FIFO5

2

Mismatch=3

3

1

Mismatch=0

1 2 3 4 5 6Cycle:

12

Fully-pipelined Systolic CGRA

PE

PE

PE

PE

PE

PE

×

√

/

+

Delay
FIFO5

3

1

(2+2)

4

Mismatch=1

1 2 3 4 5 6Cycle:

13

Throughput Formula

• Inverse of initiation interval in compiler terminology.

=
FIFO Length

Max. Mismatch + FIFO Length

Delay-FIFOs Help
Reduce Latency
Mismatch

Provide buffer
space which
increases
throughput

But at the cost of area…

Throughput

14

Alternatives to Delay-FIFOs (1)

PE

PE

PE

PE

PE

PE

×

√

/

+
5

5

Use a longer route: Costs Routing Resources

15

Alternatives to Delay-FIFOs (2)

PE

PE

PE

PE

PE

PE

×

√

/

+
5

5

Pass through a PE: Costs Mapping Resources

Do a
NOP

This is also just
good for
improving
routing
bandwidth …

16

“Systolic” CGRA Challenge Summary

• Systolic CGRA throughput is very sensitive to timing
constraints

• Several ways to balance delays:
• Pass-through (affects mapping)

• Long route (affects routing)

• Delay FIFOs (affects timing)

• Mapping / Routing / Timing responsibilities are
highly interdependent

• Codesign: Either more delay FIFOs or more
advanced scheduler

17

Outline

• Challenges for pipelining “Systolic” CGRAs
• Throughput sensitivity and fractional initiation intervals.

• Techniques for delay matching

• Scheduling Approach 1: Phasing-Overlapping
• Tractable Optimization through Overlapping

• Scheduling Approach 2: Hybrid Scheduling
• Heuristic to reduce search space

• Optimization to deal with tricky cases

• Evaluation

18

Optimization Background
• Prior work demonstrates optimization-based spatial

scheduling: Integer Linear Programming [PLDI 2013],
SMT [TOPLAS 2014]

• Basic Integer Linear Programming Approach:
• Decision Variables:

• Assigning instructions to PEs (binary)

• Assigning dependences to a set of Routes (binary)

• Assigning delays to each PE (integer)

• Linear Constraints:
• Limit schedule to be legal

• We added three forms of delay-matching.

19

Optimization Phases

• Joint Optimization: (50% Failure)
• Timeout -- Very restricted hardware of systolic CGRA

• Separate Phases: (85% Failure)
• Fast, but doesn’t capture inter-dependence!

• In-between Joint: (75% Failure, poor throughput)

Mapping TimingRouting

Mapping TimingRouting

Mapping TimingRouting

20

Our Approach: Phase Overlapping
• Insight: Phase Interdependence Matters

• But relationship between adjacent phases is more relevant…

• Phase Overlapping:
• Perform Mapping and Routing together
• Discard Routing (keep Mapping)
• Perform Routing and Timing together

• Good: Only 15% fail, mostly fully-pipelined

• Remaining Problems:
• Mapping/routing phase takes time (90% or more)
• Sometimes, we get an unlucky mapping/routing (looks like

high potential, but cannot be fixed for timing)

TimingRouting

Mapping Routing

21

Overview

• “Systolic” CGRAs
• Throughput sensitivity and fractional initiation intervals.

• Techniques for delay matching

• Scheduling Approach 1: Phasing-Overlapping
• Tractable Optimization through Overlapping

• Scheduling Approach 2: Hybrid Scheduling
• Heuristic to reduce search space

• Optimization to deal with tricky cases

• Evaluation

22

Hybrid Scheduling: Integrate Heuristic

• Insight: Mitigate the problems overlapped scheduling by
trying things repeatedly if we got an unlucky mapping.

• But … Optimization won’t work for mapping/routing
• Still too slow (and do we really need it?)

• ILP solver’s don’t tend to generate unique solutions

• Hybrid Approach: Use a heuristic for the
mapping/routing phase, to quickly get a plausible
mapping, then optimize the routing and timing together.

TimingRouting

Mapping RoutingHeuristic:

Optimization:

23

A Heuristic for Hybrid Scheduling

• Need a heuristic that quickly generates unique
schedules!

• Basic Approach: Stochastic Scheduling
• Iteratively build schedule in topological order (fast)

• Normally be rational: Choose a location for each
instruction which minimizing routing resources and
timing mismatch.

• Occasionally be irrational: Choose a purposely bad
mapping, hoping that it might help later on (unique)

• Repeat a few times to find a good schedule (good)

• Objective function: Minimize total mismatch (to
make routing/timing scheduling easier)

24

Intuition for Solution Quality

0

2

4

6

8

10

12

14

16

0 200 400 600 800

O
b

je
ct

iv
e:

 M
is

 +
 L

at
/5

0

Seconds into scheduling (32-1 reduction in CNN)

Heuristic

Overlapped

Hybrid

25

Outline

• “Systolic” CGRAs
• Throughput sensitivity and fractional initiation intervals.

• Techniques for delay matching

• Scheduling Approach 1: Phasing-Overlapping
• Tractable Optimization through Overlapping

• Scheduling Approach 2: Hybrid Scheduling
• Heuristic to reduce search space

• Optimization to deal with tricky cases

• Evaluation

26

Methodology – Accelerator Modeling

• Softbrain Accelerator
• 5x5 Processing Elem (PE)
• 64-bit datapath (subword)
• Heterogeneous Grid
• All FUs are fully pipelined

• Simulation: All blocks simulated at
cycle-level in gem5, single “core”

• Area Analysis
• Synthesize Chisel-based design in

55nm tech library.
• Assumes Control core (single-issue

inorder 16KB I$/D$) + 4KB SPAD

• Workloads (accelerator centric)
• MachSuite, CNN/DNN, Dense Linear

Algebra QR/Cholesky/FFT)

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

IO
 In

te
rf

ac
e

Softbrain [ISCA 2017]

Stream
SPAD

Streaming
Cache

Ctrl
Core

27

Does delay FIFO area matter?

FIFO
Length

Scheduling
Difficulty

Area (mm2) Overhead

2 Very Hard 0.528 9.67%

3 Hard 0.543 12.90%

7 Medium 0.606 25.85%

15 Easy 0.736 52.86%

28

Methodology – Experimental Setup

• Scheduler Designs:
• Joint Optimization

• Overlapped Optimization

• Heuristic Only

• Hybrid (overlap/part heuristic)

• Scheduling Timeout: 20 Minutes

• Problem: How to compare schedulers that across a
set of workloads that may fail?
• We don’t! Instead, we seed all schedulers with an initial

solution from the heuristic.

• Joint and Overlapped are also hybrid schedulers in the
evaluation, just using a more traditional approach.

Performance vs Time vs Complexity

0.7

0.75

0.8

0.85

0.9

0.95

1

FI
FO

: 1
5

FI
FO

: 7

FI
FO

: 3

FI
FO

: 2

FI
FO

: 1
5

FI
FO

: 7

FI
FO

: 3

FI
FO

: 2

FI
FO

: 1
5

FI
FO

: 7

FI
FO

: 3

FI
FO

: 2

FI
FO

: 1
5

FI
FO

: 7

FI
FO

: 3

FI
FO

: 2

Joint Overlapped Heuristic Hybrid

Fi
ri

n
g

R
at

e
(I

te
ra

ti
o

n
s/

C
yc

le
)

Throughput

0

100

200

300

400

500

600

FI
FO

: 1
5

FI
FO

:
7

FI
FO

:
3

FI
FO

:
2

FI
FO

: 1
5

FI
FO

:
7

FI
FO

:
3

FI
FO

:
2

FI
FO

: 1
5

FI
FO

:
7

FI
FO

:
3

FI
FO

:
2

FI
FO

: 1
5

FI
FO

:
7

FI
FO

:
3

FI
FO

:
2

Joint Overlapped Heuristic Hybrid

A
ve

ra
ge

 S
ch

e
d

u
lin

g
Ti

m
e

(S
ec

.)

Average Scheduling Time

30

Conclusions

• Systolic CGRAs gain efficiency by simplifying the
execution model.

• Consequence is tradeoff between easy scheduling
low hardware overhead, and high performance:
• Minimizing delay-FIFO size is key factor in reducing area

and increasing scheduler difficulty in finding minimum II.

• Two novel techniques:
• Phase Overlapping (capture the phase interdependence)

• Hybrid Scheduling (using heuristic to generate solutions)

• Broadly, codesign is the key to success of future
reconfigurable architectures.

31

Thank you

Scheduling-time Sensitivity

0.7

0.75

0.8

0.85

0.9

0.95

1

FI
FO

: 1
5

FI
FO

: 7

FI
FO

: 3

FI
FO

: 2

FI
FO

: 1
5

FI
FO

: 7

FI
FO

: 3

FI
FO

: 2

FI
FO

: 1
5

FI
FO

: 7

FI
FO

: 3

FI
FO

: 2

FI
FO

: 1
5

FI
FO

: 7

FI
FO

: 3

FI
FO

: 2

Joint Overlapped Heuristic Hybrid

Fi
ri

n
g

R
at

e

(I
te

ra
ti

o
n

s/
C

yc
le

)

Throughput 20 min 40 min 1 hr

1

10

100

1000

FI
FO

: 1
5

FI
FO

: 7

FI
FO

: 3

FI
FO

: 2

FI
FO

: 1
5

FI
FO

: 7

FI
FO

: 3

FI
FO

: 2

FI
FO

: 1
5

FI
FO

: 7

FI
FO

: 3

FI
FO

: 2

FI
FO

: 1
5

FI
FO

: 7

FI
FO

: 3

FI
FO

: 2

Joint Overlapped Heuristic Hybrid

A
vg

. S
ch

e
d

u
lin

g
Ti

m
e

(S
ec

.)

Average Scheduling Time 20 min 40 min 1 hr

33

Modeled vs
Measured
Throughput

Heuristic Hybrid Overlapped Joint

