
Leveraging Hardware Probes and Optimizations for Accelerating
Fuzz Testing of Heterogeneous Applications

Jiyuan Wang
University of California, Los Angeles

USA
wangjiyuan@cs.ucla.edu

Qian Zhang
University of California, Riverside

USA
qzhang@cs.ucr.edu

Hongbo Rong
Intel Lab
USA

hongbo.rong@intel.com

Guoqing Harry Xu
University of California, Los Angeles

USA
harryxu@cs.ucla.edu

Miryung Kim
University of California, Los Angeles

USA
miryung@cs.ucla.edu

ABSTRACT

There is a growing interest in the computer architecture commu-

nity to incorporate heterogeneity and specialization to improve

performance. Developers can create heterogeneous applications that

consist of both host code and kernel code, where compute-intensive

kernels can be offloaded fromCPU to hardware accelerators. Testing

such applications on real heterogeneous architectures is extremely

challenging as kernels are black boxes, providing no information

about the kernels’ internal execution to diagnose issues such as

silent hangs or unexpected results. Additionally, inputs for hetero-

geneous applications are often large matrices, leading to a vast

search space for identifying bug-revealing inputs.

We propose a novel fuzz testing technique, HFuzz, to enable ef-

ficient testing on real heterogeneous architectures. HFuzz aims to

increase both the observability of hardware kernels and testing

efficiency through a three-pronged approach. First, HFuzz automat-

ically generates test guidance by inserting device-side in-kernel

hardware probes in addition to host-side software monitors. Second,

it performs rapid input space exploration by offloading compute-

intensive input mutations to hardware kernels. Third, HFuzz paral-

lelizes fuzzing and enables fast on-chip memory access, by utilizing

four FPGA-level optimizations including loop unrolling, shannon-

ization, data preloading, and dynamic kernel sharing.

We evaluate HFuzz on seven open-source OneAPI subjects from

Intel. HFuzz speeds up fuzz testing by 4.7× with HW-accelerated

input space exploration. By incorporating HW probes in tandem

with SWmonitors, HFuzz finds 33 defects within 4 hours and reveals

25 unique, unexpected behavior symptoms that could not be found

by SW-based monitoring alone.HFuzz is the first to design hardware

optimizations to accelerate fuzz testing.

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging; • Computer systems organization→ Heterogeneous.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0327-0/23/12.
https://doi.org/10.1145/3611643.3616318

KEYWORDS

Fuzz Testing, Heterogeneous Applications

ACM Reference Format:

Jiyuan Wang, Qian Zhang, Hongbo Rong, Guoqing Harry Xu, and Miryung

Kim. 2023. Leveraging Hardware Probes and Optimizations for Accelerating

Fuzz Testing of Heterogeneous Applications. In Proceedings of the 31st

ACM Joint European Software Engineering Conference and Symposium on the

Foundations of Software Engineering (ESEC/FSE ’23), December 3–9, 2023, San

Francisco, CA, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.

1145/3611643.3616318

1 INTRODUCTION

There has been a growing interest in developing specializable hard-

ware accelerators for domain-specific workloads for various per-

formance and energy benefits [11, 13, 16]. As an example, FPGA

can be easily customized to accelerate applications across a wide

variety of domains [9, 14] at lower power and higher performance

than general-purpose CPUs [10, 23, 42]. Major hardware vendors

are offering or plan to offer packages that include both CPUs and

FPGAs [1, 18]. Such hardware packages have also been made into

all major clouds to accelerate various analytic and learning tasks.

In recent years, fuzz testing has emerged as an effective test

generation technique for large software systems [40]. Most fuzzing

techniques, such as AFL [55], start from a seed input, generate

new inputs by mutating the previous input, and add new inputs to

the queue if they improve a given guidance metric such as branch

coverage. In this paper, we focus on fuzz testing (i.e. fuzzing) of

applications on a heterogeneous platform with a CPU host and an

FPGA device. Such a heterogeneous application consists of host code

and kernel code, and the host code offloads compute-intensive ker-

nels from the CPU to the FPGA to run. Despite the potential benefits

of FPGAs and their commercial availability to a broad user base,

programming FPGAs is notoriously difficult in practice. Ensuring

the correctness of FPGA programs, even seemingly-simple kernels,

could take a substantial amount of time in terms of months [46].

As such, FPGA programming can be done by only a small handful

of hardware experts [3, 35, 47]. Automatic fuzz testing of hetero-

geneous applications, together with root cause analysis of failures,

can greatly simplify FPGA programming, thereby making FPGAs

accessible to the masses.

There has been significant effort to ease the development of

heterogeneous applications with FPGAs. The most successful effort

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

1101

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3611643.3616318
https://doi.org/10.1145/3611643.3616318
https://doi.org/10.1145/3611643.3616318

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Jiyuan Wang, Qian Zhang, Hongbo Rong, Guoqing Harry Xu, and Miryung Kim

Figure 1: Latency breakdown of running applications on het-

erogeneous architectures. On average, data transfer into ker-

nels takes 60% of execution time, highlighted in gray.

is high-level synthesis (HLS) [15]. HLS raises the level of program-

ming abstraction from hardware description languages (such as

Verilog) to C/C++ dialects (such as SYCL/DPC++[25]), enabling

C/C++ developers on FPGAs. Even when heterogeneous applica-

tions are written in HLS languages, debugging and testing these

heterogeneous applications can remain a significant challenge due

to the following reasons:

Lack of Observability. FPGA is a device of massive parallelism.

Little debugging support exists to help high-level programmers.

Kernels run on an FPGA device as black boxes, and it often confuses

programmers, e.g., when the kernels silently deadlock. General-

purpose FPGA debugging [17, 33] works at the gate level. Even

when in-circuit debugging information is available, it is difficult to

correlate low-level gate signals with high-level variables in HLS

programs.

Consider a scenario where an application multiplies two matri-

ces A and B to create a new matrix M: M=A×B and then applies a

reciprocal transformation on each element of M. This application

has two kernels offloaded to FPGA: (1) matrix_multiply and (2)

transformer. To transfer the intermediate result M from the first to

the second kernel, a pipe is established to facilitate data transfer. For

each element in the matrix M, the first kernel writes its computed

value to the designated pipe, and the second kernel transformer

reads it from the pipe, computes the reciprocal, and transfers the

final result back to the host. With FPGA emulation, the application

works as expected because both kernels run at the same speed.

However, when run on an actual FPGA, the speed of the first kernel

generating a value can be different from the speed of the second

kernel consuming it. The developer should check the size of the

pipe, delay writing if it is full, or delay reading if it is empty. If

such check is not done, the pipe would be saturated or depleted,

resulting in data loss and wrong reciprocal outcomes. Currently,

due to a lack of observability into the dynamic usage of the pipe,

the developer may find it difficult to diagnose the root cause.

Costly Transfer of Data with High Redundancy. Traditional it-

erative fuzzing techniques often mutate a small part of a seed input

to generate new inputs. While this approach works well for many

CPU programs, it is extremely ineffective for applications that are

run on heterogeneous architectures. Inputs of heterogeneous appli-

cations are often large matrices and tensors, leading to significant

data access and transfer overheads—the host, which mutates the

matrices, must send newly mutated matrices (e.g., with only a few

elements modified) to the device. Figure 1 illustrates the latency

breakdown of running applications on Intel’s heterogeneous archi-

tecture. On average, data transfer from CPU to hardware kernels

takes 60% of the execution time. For a 100k×100k matrix, a single

process of offloading the new generated matrix from the fuzzer

to the device would take 2 minutes, prohibiting fast fuzzing on

heterogeneous architectures.

Overlooked Opportunities for FPGA-level Optimizations.

Fuzzing heterogeneous applications may be approached in a naïve

manner by treating hardware kernel invocations as analogous to

software function calls and repeatedly invoking them from an it-

erative input mutation loop. However, this approach ignores the

potential optimizing capability of FPGA, as the mutations often con-

sist of independent tasks that can be parallelized efficiently when

offloaded to the FPGA side. In other words, the nature of fuzzing (i.e.,

iterative input generation and program invocation) unlocks new

micro-architecture level performance optimizations. Indeed, we can

treat the domain of heterogeneous applications, not only as a new

target domain, but as a new enabler for accelerating automated test

generation. When software-style matrix input mutation is offloaded

to FPGA and is then combined with subsequent kernel invocation,

many micro-architecture level optimizations such as loop unrolling,

data preloading, shannonization, and dynamic kernel sharing are

now applicable for further performance speed-up.

HFuzz. We developed HFuzz, a novel fuzz testing tool that aims to

quickly reveal bugs in heterogeneous applications. Our key insights

are elaborated below:

First, to improve error observability during testing, HFuzz injects

hardware probes inside the kernels in tandemwith software monitors

inside the host. This is different from prior approaches that con-

sider an FPGA kernel as a black box and inject software monitors

only [58]. In HFuzz, both software monitors and hardware probes

are designed to effectively detect overflows caused by intermediate

variables within the FPGA kernel, as well as pipe saturation er-

rors that may occur during data transfer between different devices.

These hardware probes are injected through source-to-source trans-

formation and then synthesized for FPGA. With timely execution

feedback from the hardware probes, HFuzz prioritizes inputs that

provide a new behavior signal at the FPGA execution level. For

example, HFuzz monitors the saturation of a communication pipe

between two FPGA kernels and retains the inputs that lead to a

new maximum pipe saturation level for further mutations.

Second, HFuzz offloads input mutations into FPGA kernels to re-

duce unnecessary data transfer. For a vector-add example, instead

of repeatedly transferring a mutated input vector of size 106, HFuzz

retains the initial input vector in the FPGA buffer and mutates the

elements of the vector within the FPGA kernel. For another exam-

ple, the host-side mutation of a seed matrix with 10,000 elements

for 1,000 times takes 9.1 seconds, in our evaluation, while in-kernel

input mutation takes only 2.1 seconds.

Third, HFuzz implements four types of FPGA-level optimizations

to speed up fuzzing. For example, one such optimization is dy-

namic kernel sharing in parallel fuzzing loops, which enables a more

effective search space exploration when utilizing multiple input

generators, each with its own seed queue. HFuzz then invokes the

target kernel function using a mutated input selected from one of

1102

Leveraging Hardware Probes and Optimizations for Accelerating Fuzz Testing of Heterogeneous Applications ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

the seed queues and dynamically increases the probability of choos-

ing that input generator if the input yields new behavior signals at

the hardware execution level. The other three micro-architecture

level optimizations are loop unrolling which enables parallel itera-

tion, shannonization which precomputes operations and reduces

the latency of critical paths, and data pre-loading for fast memory

access by moving data from global memory to local memory. HFuzz

is the first to directly leverage the performance enhancing power

of FPGA for automated testing of heterogeneous applications on

an FPGA device.

We evaluate HFuzz’s effectiveness on seven programs. These

programs are from Intel’s OneAPI benchmarks for heterogeneous

applications with FPGA kernels [24]. We compare HFuzz against

four alternatives: (Alternative 1: AFL-like) an AFL-like grey-box

fuzzing tool that uses branch coverage as feedback and runs on the

host entirely, (Alternative 2: HeteroFuzz) the state-of-the-art testing

tool for heterogeneous applications using software monitors only,

(Alternative 3: NoKernelMutation) HFuzz with CPU-side input mu-

tation without offloading it to FPGA, and (Alternative 4: NoHWop-

timization) HFuzz without FPGA-level optimizations. It took HFuzz

much less time (i.e., 7%, 9.7%, 21.3%, and 29.4% of the time used by

the four alternatives) to find the same number of defects. Given

the same time budget (4 hours), HFuzz found 11×, 4.13×, 2.36×, and

1.03× more defects than the four alternatives. We tried longer time

(24 hours) but no more defect is found after 4 hours. Per the open

science policy, we make HFuzz’s artifacts, benchmark programs,

and datasets available at https://github.com/UCLA-SEAL/HFuzz.

In summary, this work makes the following contributions:

• To our knowledge, HFuzz is the first fuzz testing technique that

uses hardware probes in tandem with software monitors to guide

test input generation for heterogeneous applications.

• HFuzz is the first to unlock new micro-architecture level perfor-

mance optimizations for fuzz testing by mapping both iterative

input mutation and kernel invocation to FPGA-side computation.

It implements four FPGA-level optimizations and accelerates

fuzzing by 3.4×.

• HFuzz accelerates fuzz testing by 4.7× by directly synthesizing

input mutations within kernels on FPGA. This also reduces the

host-device data transfer overhead by 66%.

• With a 4-hour budget on seven benchmarks, HFuzz was able to

discover 33 defects, while traditional coverage-guided fuzzing

only uncovered 3 defects. Out of these 33 defects, 25 could not

have been found without the use of device-side feedback.

2 BACKGROUND

2.1 Heterogeneous Applications with FPGA

Driven by performance and energy benefits, heterogeneous com-

puting applications [7] contain code that is executed on different

kinds of processors such as CPU, GPU, and FPGA.

FPGAs are field programmable gate arrays. Modern FPGAs in-

clude millions of look-up tables (LUTs), thousands of embedded

block memories (BRAMs), thousands of digital signal processing

blocks (DSPs), and millions of flip-flop registers (FFs) [52]. Intel

provides CPU+FPGA multi-chip packages; with its recent acquisi-

tion of Altera, such integration is expected to be even tighter in the

1 for(int s = 1; s <= nsteps; ++s) {

2 ...

3 // Kernel: calculate velocity

4 h.parallel_for(n, [=](item<1> i){

5 acc0=0; acc1=0; acc2=0;

6 #pragma unroll factor=2

7 for(int j=0; j<n; j++) {

8 if (j==i) {continue};

9 int8 dx, dy, dz;

10 dx = p[j].pos[0]-p[i].pos[0];

11 dy = p[j].pos[1]-p[i].pos[1];

12 dz = p[j].pos[2]-p[i].pos[2];

13 int8 sqr=dx*dx+dy*dy+dz*dz;

14 acc0+=(kG*p[j].mass/sqr)*dx; //calculate acceleration

15 acc1+=(kG*p[j].mass/sqr)*dy;

16 acc2+=(kG*p[j].mass/sqr)*dz;}

17 p[i].vel[0]+=acc0*dt; //calculate velocity

18 p[i].vel[1]+=acc1*dt;

19 p[i].vel[2]+=acc2*dt;});});

Figure 2: Nbody-simulation: a heterogeneous version with

DPC++ high-level synthesis.
future. FPGA has made its way into modern data centers, including

Microsoft’s Azure, Amazon F1, and Intel DevCloud [2, 26, 54].

A heterogeneous application typically consists of host code exe-

cuted on the CPU and kernel code to be synthesized and executed on

FPGA or GPU. Host code initializes the device, allocates the device

memory, transfers data to the device, and invokes the compute-

intensive kernel on the device side. After the execution, it transfers

the kernel output back to the host and deallocates the memory.

To simplify kernel development, high-level-synthesis (HLS) [15,

21] lifts the abstraction of hardware development by automatically

generating register-transfer level (RTL) descriptions from code

written in C-like dialects. One example of HLS C/C++ dialects is

Intel’s Data Parallel C++ (DPC++), a cross-platform abstraction

layer that enables code to be targeted to different CPUs, GPUs, and

FPGAs [44, 45]. With DPC++, users can specify which hardware

platform to implement a kernel on. For example, a user may use a

compiler flag -Xsboard=intel_s10sx_pac to select Intel’s FPGA

S10. The user can develop a kernel function f, calling h.parallel_-

for(n,f) with a job handler h. This handler executes f with n de-

gree parallelism on FPGA S10. Consider the example in section 2.2.

2.2 An Illustrating Example: Nbody-simulation

Figure 2 illustrates the simulation of n particles moving over a

sequence of nsteps. Lines 10-12 calculate the distance between

particles, while Lines 14-16 calculate the acceleration. In lines

17-19, the program subsequently updates the particles’ velocities

based on the acceleration. These computations are extracted as

compute-intensive kernels and offloaded to an FPGA. To enable

parallelism and speed up the velocity calculation, the developer uses

h.parallel_for and loop unrolling #pragma unroll factor=2

(highlighted in red) at Lines 4 and 6.

When writing a heterogeneous application, a user must con-

servatively estimate the limit of hardware resources and specify

bitwidths for custom types and the size of buffers and pipes be-

cause all hardware resources are finite. Due to the need to finite

hardware resources, a heterogeneous application often contains

defects that cannot be detected statically via static analysis. This is a

problem that universally exists with all HLS languages. To illustrate,

consider the real defects in the Nbody-simulation.

1103

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Jiyuan Wang, Qian Zhang, Hongbo Rong, Guoqing Harry Xu, and Miryung Kim

Divide By Zero in Nbody-Simulation. For code in Figure 2,

with the input p.pos=[(1,2,4),...,(1,2,4)] , the velocity calcula-

tion on an FPGA A10 device produces absurdly large numbers

p.vel=[(-214748364,..),..] . This is because, when the kernel inputs

contain two particles with the same position, a divide-by-zero may

happen inside the kernel in Lines 14-16 due to sqr=0 at Line 13.

Overflow in Nbody-Simulation. When the kernel calculates the

acceleration of two particles in Figure 2, an in-kernel overflow could

occur if two particles are close to each other (i.e., sqr≈0 at Line

13). This is because when sqr is close to zero, acc becomes large.

When the inputs p.pos=[(81,0,0),(81,1,0),(81,0,1),...] are sent to

the kernel, it produces a small value sqr=1, leading to overflow for

the variables acc1; finally, the wrong result is sent back to the host.

State-of-the-Art. Grey-box fuzzing [58] generates program inputs

based on per-iteration execution feedback. Suppose that a user

uses grey-box fuzzing to monitor the value range of the inputs and

outputs of kernels on the host-side (CPU) code. For the divide-by-

zero bug that could occur in Figure 2, because sqr is an in-kernel

variable and does not appear in the host code, software-side grey-

box fuzzing [58] cannot easily reveal defects that originate from

the inside of the kernel.

HFuzz addresses the limitations of existing work by utilizing hard-

ware probes to monitor the intermediate states of kernels. HFuzz

identifies the in-kernel local variable sqr at Line 13 and inserts

hardware probes to track its value range. The input generation

process is then optimized by prioritizing inputs that result in new

minimum or maximum values of sqr. As a result, HFuzz is able to

effectively detect overflow when sqr reaches the small value sqr=1

and divide-by-zero defects when sqr reaches its minimum value 0.

3 APPROACH

HFuzz aims to find inputs that can trigger both in-kernel errors

and host-side errors for heterogeneous applications written in In-

tel’s DPC++ HLS [25]. HFuzz contains three novel components that

work in concert: (1) in tandem monitoring of software and hard-

ware feedback by injecting software monitors and in-kernel probes

(Section 3.1); (2) offloading input mutations to hardware kernels

(Section 3.2), and (3) FPGA-level optimizations to speed up itera-

tive input generation and kernel invocation (Section 3.3). HFuzz’s

design builds on two key insights. First, hardware-level parallelism

can bring notable performance enhancement for iterative fuzzing,

which is often characterized by independent task-level parallelism.

Second, grey-box fuzzing’s effectiveness can be significantly im-

proved by observing feedback signals from both hardware and

software.

The Fuzzing Process. The overall workflow of HFuzz is shown in

Algorithm 1. HFuzz takes as input a program ? written in Intel’s

DPC++ and produces concrete inputs that trigger defects in ? .HFuzz

first applies a source-to-source transformation to ? to produce an

instrumented version ?′, by inserting in-kernel probes and software

monitors that can guide fuzz testing. HFuzz selects an input genera-

tor� from a set of generator (. It then randomly offloads a random

seed input 8=′ from � ’s seed queue into the kernels. To generate

new inputs, HFuzz creates a new mutation kernel job in addition

to the original kernel, and utilizes parallelism within FPGAs to

Algorithm 1: Fuzzing workflow.

Input: program ? , input generator set (, mutation operator set$

1 FuzzingLoop(? , ()

2 begin

3 ?′ = instrument(?);

4 �443102: = ∅;

5 for 1..max do

6 � = (.B4;42C_8=?DC_64=4A0C>A () ;

7 8=′ = random_select(�);

8 ��, , �(, =

?′ .ℎ>BC, 8=_:4A=4;_<DC0C4_4G42DC4(in′,O);

9 for � ∈ {��,
⋃

�(, } do

10 if � ∉ �443102: then

11 increase_prob((,�);

12 6>>3_8=?DC = regenerate(� .<, 8=′) ;

13 � =�
⋃

{6>>3_8=?DC };

14 �443102: = �443102:
⋃

{5 };

15 end

16 end

17 end

18 end

Input: kernel_input :B , mutation_ops_set$

Output: ��, is a queue of triples (5 ,<, >DC) where 5 is

kernel-feedback,< is mutation, and >DC is kernel output

19 In_Kernel_Mutate_Execute(:B ,$)

20 begin

21 for i = 1..MAX do

22 operator > = select_op($);

23 start B = random_generate();

24 end 4 = random_generate();

25 mutation< = {(>, B, 4)};

26 �=@D4D4 = �=@D4D4
⋃

mutate_input(>, B, 4, :B);

27 end

28 foreach 8= ∈ �=@D4D4 do

29 (5 ,<,>DC)=ExecuteOnDevice(8=) ;

30 ��, = ��,
⋃

(5 ,<,>DC) ;

31 end

32 return ��,

33 end

mutate the input locally. The target function directly accesses the

new input from local memory. In this process of input mutation and

target execution, HFuzz incorporated four FPGA level optimizations

for performance efficiency. As shown in Algorithm 1 at Lines 10-15,

inputs that advance either software or hardware feedback are saved

to the input queue as 6>>3_8=?DC for the next fuzzing iteration. If

a new input generated by generator � results in new feedback,�

will be considered a favored generator and its activation probability

will be increased with �#�'��(�_%'$�((,�) at Line 11.

3.1 Injecting HW Probes in addition to SW
Monitors

HFuzz, for the first time, directly introduces application-specific

observability to hardware kernels by inserting hardware probes.

It leverages these kernel probes in tandem with software-level

monitors to form effective feedback signals to stretch heterogeneous

application behavior.

1104

Leveraging Hardware Probes and Optimizations for Accelerating Fuzz Testing of Heterogeneous Applications ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 1: Mutations accelerated by hardware.

Average

Category Description SW Mutations In-kernel Mutations Speedup

M1 Sparsity Replace non-zeros with zeros from for i in s..e do # pragma unroll 4.31×

Mutation index B to 4 , or do the opposite {vector[i]=0} for i in s..e{vector[i]=0});

M2 Copy Replace each element from index B to 4 for i in s..e do # pragma unroll 3.98×

Mutation with element at B {vector[i]=vector[s]} for i in s..e{vector[i]=vector[s]});

M3 Addition Add constant 0 to each element for i in s..e do # pragma unroll 3.21×

Mutation from index B to 4 {vector[i]+=a} for i in s..e{vector[i]+=a});

M4 Bit Mutate an element with binary XOR for i in s..e do # pragma unroll 4.42×

Mutation given a constant G {vector[i]ˆ= (1«x)} for i in s..e {vector[i]ˆ= (1«x)});

1 //First kernel...

2 h.parallel_for(range(M, P), [=](auto index) {

3 int sum = 0;

4 #pragma unroll factor=2

5 for (int i = 0; i < num_element; i++) {

6 sum += a[index[0]][i] * b[i][index[1]];

7 if (min_sum>sum) min_sum=sum;

8 if (max_sum<sum) max_sum=sum;}

9 bool flag;

10 KToKPipe::write(sum, flag);

11 KToKPipeSize++;//Pipe usage Probe

12 DeviceToHostKToKPipe::write(KToKPipeSize);

13 DeviceToHostMax_sum::write(max_sum);//sum's Value Range Probe

14 DeviceToHostMin_sum::write(min_sum);});});

15 //Second kernel...

16 h.single_task([=]() {

17 for (size_t i = 0; i < number_element; ++i) {

18 out[i] = KToKPipe::read();

19 KToKPipeSize--;//Pipe usage Probe

20 DeviceToHostKToKPipe::write(KToKPipeSize);

21 out[i] = reciprocalTransform(output[i]); }});});

22 for(int i=0; i<number_element; i++) {//SW monitor for kernel output

23 outmin=min(outmin, output[i]);

24 outmax=max(outmax, output[i]);}

Figure 3: Matrix transform: inserted Value Range Probes

are in the green rectangle. InsertedPipe Usage Probes are in

the red rectangles. Inserted SWMonitors are in the orange

rectangle.

Hardware Probes.While OS virtualization could provide the ap-

pearance of unbounded resources for the code executed on tradi-

tional CPUs, kernel functions are physically mapped to resource-

limited heterogeneous architectures. This distinction leads to unique

failures that are often induced by resource limitations on the device-

side, which are not easily detectable when running software sim-

ulators. For example in Figure 2, a local variable sqr customizes

regular integers to 8-bit integers for resource efficiency. Overflow

conditions can occur if the variable’s value exceeds its customized

bitwidth. As another example, pipe saturation between two consecu-

tive kernel functions can lead to read and write failures. In fact, such

incorrect intermediate computation states within hardware kernels

have been identified as the primary reason for hardware-originated

bugs. HFuzz takes advantage of this observation, identifies local

variables within kernels that hold intermediate states, and injects

hardware probes to expose potential failures in kernel.

HFuzz automates the process of hardware probe insertion through

source to source transformation, creating an instrumented kernel.

From such instrumented kernel, intermediate states in the HW de-

vice are sent directly to the host code using dedicated host-kernel

communication channels. The channels are implemented as global

FIFO buffers and can be accessed from both the host and the kernel.

The kernel side writes hardware feedback into the channels, while

the host side reads information from the channels. Both read and

write operations are non-blocking, in order to minimize any addi-

tional overhead to the original kernel logic. To expose intermediate

computation states, HFuzz identifies in-kernel local variables and

pipe usage via a C/C++ AST analysis [4]. As shown in Figure 3,

in-kernel variable sum is highlighted in green, and pipe usage is

highlighted in red. With a focus on in-kernel local variable and pipe

monitoring, HFuzz aims to uncover the two most commonly seen

errors in custom hardware accelerators: overflows resulting from

the resource and bitwidth finitization, as well as read/write failures

caused by communication pipe saturations.
• Value Range Probe: HFuzz creates a value range monitor that

checks the maximum and minimum value for each in-kernel

variable. In Figure 3, HFuzz inserts probes on the intermediate

variable sum which saves the cumulative sum of the product

a[index[0]][i]*b[i][index[1]]. These probes monitor theminimum

and maximum value of sum. HFuzz also constructs channels

DeviceToHostMax_sum and DeviceToHostMin_sum to send these cap-

tured values back to the host at Line 13-14.

• Pipe Usage Probe:HFuzz creates a pipe usagemonitor for each com-

munication pipe. Consider the same example in Figure 3. HFuzz

uses an AST analysis tool [4] to identify the locations of two ker-

nel functions: matrix_multiply at Line 1-14 and transformer

Line 16-21. We identify the variable name, KToKPipe used for

pipe-based data transfer between the two kernels. By using

KToKPipe::write() and KToKPipe::read(), the first kernel

writes its result sum at Line 10 and the second kernel reads the

value from this pipe at Line 18 in Figure 3. HFuzz applies source

to source transformation to inject a counter-based usage monitor

for this pipe and update the counter KToKPipeSize at Line 11

and Line 19 in Figure 3. Then HFuzz sends this counter value

to the host by creating another direct communication channel,

called DeviceToHostKToKPipe at Line 12 and Line 20.

Software Monitors. In addition to in-kernel probes, HFuzz inserts

a set of software monitors on the host side, specialized to the cus-

tom FPGA accelerator synthesized on the device. We monitor: (1)

the number of loop iterations, because it is related to pipelining

and loop unrolling, common optimizations for parallelization im-

plementation on FPGA; (2) the value range of each kernel input

and output; (3) the kernel execution time, as hang or unexpectedly

slow execution could be an indicator of failures. HFuzz retrieves

the time and loop unrolling information from the HLS compilation

1105

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Jiyuan Wang, Qian Zhang, Hongbo Rong, Guoqing Harry Xu, and Miryung Kim

report generated by DPC++. Besides, to monitor the value range of

each kernel input and output, HFuzz inserts a value range monitor

before and after each kernel, as shown in Lines 22-24 of Figure 3.

3.2 Offloading Input Mutations to Kernels

The traditional fuzzing process involves repeatedly mutating seed

inputs and feeding them into a target program. The implicit assump-

tion underlying such mutations is that seed inputs can be mutated

and sent to the target program fast. Unfortunately, this assumption

does not hold true for heterogeneous applications. Inputs to hetero-

geneous applications are often large matrices, leading to significant

data transfer overheads between CPU and FPGA. We observe that

local data transfer—data transfer within FPGAs, consumes less than

89% of the time required for data transfer between the fuzzer and

the kernel. Additionally, in the process of fuzzing, a variety of in-

dependent mutation operations are frequently employed on small

segments of the same seeds with the aim of exploring the input

space. Thus, we can avoid repetitive data transfer by offloading

the seed inputs to hardware kernels and mutating them directly

within FPGAs. To achieve this, HFuzz creates a dedicated kernel for

mutations in parallel to the original kernel, as well as a segment of

on-chip memory for the storage of seeds and newly generated in-

puts. The mutation kernel and the original kernel function are both

synthesized to the FPGA hardware concurrently. Table 1 shows four

supported mutation operators. Because mutation operators are all

order-independent and deterministic, HFuzz modifies all elements

in the seed input at once. A resulting input can be re-generated

given the seed and a concrete instance of mutation.

Consider Figure 3 as an example. The first kernel code computes

the matrix product with two input matrices. We show how HFuzz

tracks the feedback and mutates the input step by step in Table 2.

With the initial seed input offloaded to the kernel, HFuzz tracks

hardware feedback from the in-kernel variable sum at Line 2 by the

inserted in-kernel probes in the green rectangle (column Hardware

Probes in Table 2). After we apply the M3 Addition Mutation with

loop unrolling optimization, from the starting offset s=1 to the

ending offset e=4 on array a, a greybox fuzzer that only monitors

the value range for the kernel interface variables a and b would

discard the input [-20,5,7,7,9,20] because it does not achieve a

new value spectra at the software level. However, HFuzz saves the

corresponding mutation information, since this input registers a

new feedback at the hardware level for the in-kernel variable sum.

3.3 FPGA Optimizations for Fuzzing

Traditional fuzz testing can be naïvely applied to heterogeneous

applications by treating hardware kernel invocations as equiva-

lent to software function calls. However, such straightforward ap-

plication of software-style fuzzing results in severe performance

inefficiencies. In heterogeneous applications, there is a distinct

opportunity to utilize hardware micro-architecture level optimiza-

tions to accelerate the traditional fuzzing process. Both iterative

matrix mutations and target executions involve independent tasks,

enabling task-level parallelism.

HFuzz applies four FPGA optimizations to accelerate iterative

matrix mutations and target execution, including loop unrolling,

shannonization, local memory access, and dynamic kernel sharing.

1 for (int i = s; i < e; i++) {

2 if (A[i]==0) {A[i] = generate_number(seed);}}

(a) Original mutation

1 int local_A[e-s];

2 #pragma unroll factor=4

3 for (int i = 0; i < e-s; i++) {local_A[i] = A[i+s];}

4 int t = generate_number(seed);

5 for (int i = 0; i < e-s; i++) {

6 if (local_A[i]==0) {

7 local_A[i] = t;

8 t = generate_number(seed);}}

9 #pragma unroll factor=4

10 for (int i = 0; i < e-s; i++) {A[i+s] = local_A[i];}

(b) Optimized mutation in kernel

Figure 4: Sparsity mutation: replace the zero elements to non-

zero elements from index s to index e.

These optimizations are not specific to HFuzz or Intel’s heteroge-

neous architecture, and thus also are applicable to other applications

on other FPGAs. For instance, loop unrolling is a technique that

can be used to optimize iterative computations that do not have sig-

nificant data dependencies between iterations, and it can be applied

independently of the specific FPGA platform.

1. Dynamic Kernel Sharing. In traditional fuzzing, the difficulty

of testing often arises from the need to explore deep branches within

the program. However, when testing heterogeneous applications,

errors tend to occur due to variations in the range of values for

in-kernel variables and resource usage. This presents a significant

challenge of rapid input space exploration especially when inputs

are large matrices.

We propose a dynamic, probabilistic kernel-sharing method to

interleave the exploration of input search space originating from

multiple seeds in heterogeneous applications. To implement this

method, HFuzz employs four input generators that share the same

target kernel and each has its own seed queue. These input genera-

tors start with different seed inputs and, during each iteration, one

generator is chosen based on an activation probability array. The

selected generator then picks a seed input from its queue, mutates

it within the kernel, and sends the generated input to the target

kernel function via on-chip memory on the device. If the generated

input results in new feedback, it is saved in the generator’s seed

queue for use in future fuzzing iterations.

HFuzz utilizes an adaptive approach to input generation by se-

lecting an input generator and its associated seed queue based

on an activation probability array. The selection process involves

evaluating the performance of each generator and adjusting its

probabilities accordingly. For instance, if a new input generated by

generator� results in new feedback, it will be considered a favored

generator and its activation probability will be increased. Other-

wise, it will be labeled as an inactive generator and its activation

probability will be decreased. This approach allows for efficient

input space exploration and ensures that the test generation is

1106

Leveraging Hardware Probes and Optimizations for Accelerating Fuzz Testing of Heterogeneous Applications ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 2: Example execution of input generator � .

Mutation Kernel Hardware Probes Software Monitors New Value Over- Save Memorization

ID Operator Inputs Variable Min Max Min Max Range flow Input HW Range SW Range %�
Seed N/A sum -56 168 N/A No N/A [-56,168] 0.25

a[][1]=[-20, 2, 4, 4, 6, 20] a -20 20 N/A [-20, 20]

b[1][]=[1, -10, -4, -14, 28, 0] b -14 28 N/A [-14, 28]

1 M3 sum -202 54 Yes No Yes [-202, 168] 0.3

start s=1 a[][1]=[-20, 5, 7, 7, 9, 20] a -20 20 No [-20, 20]

end e=4 b[1][]=[1, -10, -4, -14, 28, 0] b -14 28 No [-14, 28]

2 M2 sum -70 140 No No No [-202, 168] 0.25

start s=1 a[][1]=[-20, 5, 5, 5, 5, 20] a -20 20 No [-20, 20]

end e=4 b[1][]=[1, -10, -4, -14, 28, 0] b -14 28 No [-14, 28]

3 M3 sum 20 -140 No Yes Yes [-202, 168] 0.3

start s=1 a[][1]=[-20, 8, 10, 10, 12, 20] a -20 20 No [-20, 20]

end e=4 b[1][]=[1, -10, -4, -14, 28, 0] b -11 28 No [-14, 28]

focused on areas that are likely to yield new feedback:

%� =

%� + U if� is chosen and HFuzz

gets new feedback

%� − U
;−1 if� is not chosen and HFuzz

gets new feedback

%� − U if� is chosen and HFuzz

gets no new feedback

%� + U
;−1 if� is not chosen and HFuzz

gets no new feedback

(1)

In our experiment, we set the number of generators ; to be 4. The

initial activation probability for each generator %� is set to 1/; = 0.25.

The update factor U is predefined as 0.05. In Table 2, in the second

execution (ID 2), inputs generated by generator � increased the

hardware monitor range. As a result, HFuzz increases the activation

probability of � from 0.25 to 0.25+U = 0.3.

2. Data Preloading [28]. Matrix mutation on large matrices re-

quires a significant amount of data read and write operations. To

improve efficiency, it is crucial to minimize memory access time for

input vectors or matrices. Many heterogeneous computing systems,

such as Intel oneAPI, have both global memory that can be accessed

by both kernel and host code, and on-chip local memory that is

only accessible by kernel code. Accessing local memory within the

kernel typically has a shorter latency than accessing global memory.

We thus apply data preloading to transfer data from global memory

to local memory.

In Figure 4b, HFuzz reduces memory access costs (highlighted in

red) by transferring data from array A to the local array local_A.

This results in a reduction of memory access cost as seen at Lines 6-

7 in the optimized code, compared to the original code in Figure 4a

at Line 2. This optimization leads to a 1.31x speedup in the mutation

process.

3. Shannonization [27]. Sparsity mutation replaces zero elements

with non-zero elements. It necessitates the implementation of a

null check for each element in the matrix. As shown in Line 2 of

Figure 4a, an if statement is added to accomplish this. However, this

if statement induces extra hardware overhead, as it increases the

delay in the critical path. Each time the if condition is satisfied (i.e.

A[i]==0), the operation generate_number needs to be computed,

which can slow down the overall performance.

Shannonization improves performance by precomputing opera-

tions within a loop and removing them from the critical path. In this

example, HFuzz applies shannonization (highlighted in green in Fig-

ure 4b) by precomputing the operation generate_number at Line

4, and removing it from the critical path inside the branch at Line 6.

Then HFuzz precomputes the next value of t = generate_number

at Line 8 for a later iteration of the loop to use when required

(that is, the next time local_A[i]==0). This precomputation can

be done simultaneously within the loop, allowing for a reduction in

the critical path delay and leading to a 1.24x speedup in the sparsity

mutation process.

4. Loop Unrolling [29]. Software-style mutations on large vectors

and matrices are often performed by modifying one or some partic-

ular elements. Line 2 in Figure 4a shows an example mutation based

on a for loop. Such direct application of loops on hardware neglects

the potential for hardware parallelism, resulting in inefficient use

of hardware resources.

Loop unrolling improves performance by creatingmultiple copies

of the loop body, thus the required number of iterations is reduced.

In the example shown in Figure 4b, the #pragma unroll directive

(highlighted in orange) causes the kernel to unroll the loop by a

factor of 4, as specified by the factor=4 argument. The compiler

then expands the pipeline by quadrupling the number of operations

and loading three times more data. This results in a 4x speedup of

the loop process.

4 EVALUATION

We evaluate the following research questions:

RQ1 How much improvement in defect detection capability is

achieved by incorporating both device-side feedback and

host-side feedback in HFuzz?

RQ2 How much speed-up is achieved by in-kernel input muta-

tions?

RQ3 Howmuch speed-up is achieved by FPGA-level optimizations

for fuzzing?

RQ4 Howmuch overhead is incurred by injecting hardware probes

in HFuzz?

To assess the improvement in defect detection and fuzzing accel-

eration, we compare HFuzz against four baselines.

(1) Alternative 1 AFL-like: This option uses branch-coverage

guided fuzzing similar to AFL and performs input mutations

on CPU side.

1107

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Jiyuan Wang, Qian Zhang, Hongbo Rong, Guoqing Harry Xu, and Miryung Kim

0 100 200
0

2

4

6

Time (min)

R1

0 100 200

Time (min)

R2

0 100 200

Time (min)

R3

0 100 200

Time (min)

R4

0 100 200

Time (min)

R5

0 100 200

Time (min)

R6

HeteroFuzz NoKernelMutation AFL-like

NoHWoptimization HFuzz

0 100 200

Time (min)

R7

Figure 5: # Number of Defects

(2) Alternative 2 HeteroFuzz: This option is a replication of the

state-of-art work HeteroFuzz [58] for Intel DPC++. Com-

pared to HFuzz, it does not have in-kernel probes on FPGA

devices and considers only software monitoring feedback.

(3) Alternative 3 NoKernelMutation: This option disables in-

kernel mutations and performs input mutations on the CPU.

(4) Alternative 4 NoHWoptimization: This option disables hard-

ware optimizations and only uses one input queue instead.

Benchmarks. We choose seven applications from Intel’s OneAPI

GitHub repositories [24]: (R1) Matrix-transform. It has two ker-

nels—one for matrix multiplication M=A*B and the other for re-

ciprocal transformation on each element of M; (R2) Matrix-mul:

multiplication of two matrices; (R3) Complex-mul: multiplication of

two vectors of complex numbers in parallel; (R4) APSP: the Floyd-

Warshall algorithm to find the shortest path between the pairs of

vertices in a graph; (R5) Nbody-sim: Simulation of a dynamical

system of particles under the influence of gravity; (R6) Hidden-

Markov-model: a statistical model using a Markov process; (R7)

Match-num: reading data from the host and sending the numbers

that match a set of pre-defined constants back to the host.

These benchmarks are widely used in hardware acceleration

literature [46] and cover a representative set of optimizations used

in kernels (e.g., custom bitwidth, loop unrolling, etc.) and exhibit

different memory usage patterns (e.g., buffer memory and unified

shared memory for kernel input and output, kernel-to-kernel pipe

and kernel-to-host pipe, local memory for in-kernel variables, etc.).

Testing difficulties for heterogeneous applications do not depend

on the code size; rather, it depends on how hardware resources

are synthesized (e.g., in-kernel variables, loop unrolling) and the

communication channel details between software and hardware and

between hardware kernels. These benchmarks’ kernels are widely

used and their code size is similar to commercial HLS benchmarks.

They are complex in both optimizations and memory arrangements

and hard to get right.

Experimental Environment. All experiments were conducted

on Intel DevCloud A10 nodes [26]. The automated kernel probe in-

sertion was implemented using DPC++ compiler and Pycparser [4].

The refactored programs were synthesized to RTL and targeted to

Intel Arria 10 GX FPGA [30]. We also tried HFuzz on other FPGAs

like Intel Stratix 10 SoC FPGA [31] and achieved similar results.

Table 3: Example symptoms of kernel defects in R1.

ID Symptom Description HeteroFuzz Find

S1 Kernel The value of intermediate ✓

Runtime variables sum at line 2 of

Overflow Figure 3 exceeds its bitwidth

capacity, leading to a wrong result.

S2 Pipe Pipe write failure happens ×

Write when FPGA attempts to write

Failure into a pipe when the pipe is full.

S3 Pipe Pipe read hang happens ×

Read when FPGA attempts to read

Hang synchronously from an empty pipe.

S4 Division sum in line 5 of Figure 3 ×

by Zero equals 0, leading to divide

by zero at line 21.

S5 Incorrect CPU and FPGA produce different ✓

Loop results when the input array size

Unrolling num_element is not multiple of 2.

4.1 Defect Detection by HW and SW Feedback

We assess the effectiveness of HFuzz’s feedback guidance by com-

paring the number of defects detected through combined hardware

probes and software monitors to that of HeteroFuzz, which relies

solely on software monitors. For each benchmark, we generate test

inputs using HFuzz and HeteroFuzz for 4 hours. We tried longer

time (24 hours) but no more defect is found after 4 hours. Using

the generated inputs, we then perform differential testing between

CPU-only executions and CPU+FPGA executions and measure the

number of defects (i.e., diverging outcomes) found.

Figure 5 shows the average experimental results from ten runs.

HFuzz is able to detect 3.1× more defects than HeteroFuzz. For

example, for R5 Nbody-simulation, without monitoring in-kernel

variable sqr, HeteroFuzz cannot find the divide-by-zero error we

mentioned in Section 2.2 at Lines 16-18 in Figure 2. When using

HeteroFuzz, the value range of kernel inputs does not reflect the

change in the square of distance between particles sqr. HFuzz,

instead, directly monitors the value range of in-kernel variable sqr,

and finds the defects when sqr reaches its minimum value 0. In

total, HeteroFuzz finds 8 unique defects in 16.5 hours, while HFuzz

finds the same defects in 1.6 hours—almost 90% reduction in the

testing time.

Table 3 lists five defects found byHFuzz in R1 Matrix-transform.

First, S1 shows an overflow occurred in the FPGA execution due

to the in-kernel variable sum at Line 3 in Figure 3. It happens when

1108

Leveraging Hardware Probes and Optimizations for Accelerating Fuzz Testing of Heterogeneous Applications ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

R1 R2 R3 R4 R5 R6 R7

10
4

10
5

In
p
u
t
T
ri
al
s

HFuzz NoKernelMutation

Figure 6: Number of Input Trials

the input vector a includes a large number such as 2090401586. By

monitoring in-kernel variable sum’s value range, HFuzz increases

the chance of generating a new vector with large numbers.

Second, two kernels in R1 use a 128-byte pipe to facilitate direct

data transfer. As mentioned in Section 1, when the first kernel

produces results faster than the second kernel can consume, the pipe

may become saturated. Consequently, a pipe write failure occurs

silently and the newly written value is lost, shown as S2 in Table 3.

This may further lead to another defect S3: pipe read hang. The

second kernel in Figure 3 reads values from the pipe for number_-

elements times. However, if the number of values successfully

written to the pipe is less than number_elements, the second kernel

will hang at this pipe read. Both defects cannot be detected by prior

workHeteroFuzz because host-side softwaremonitors cannot detect

the saturation of commutation pipes.

Third, S4 depicts a divide-by-zero error caused by the inter-

mediate result sum in the second kernel reciprocalTransform at

Line 21 in Figure 3. It happens when both two input matrices are

sparse matrices. On CPU, this execution may raise a division-by-

zero exception; however, it silently returns an unexpected number

on FPGA instead. By monitoring sum’s value range, HFuzz triggers

this defect by generating inputs using Sparsity Mutation.

Fourth, since R1 makes two copies of the loop body at Line 4

in Figure 3 by using #pragma unroll factor=2, a wrong result

happens if the number of loop iterations num_elements is not a

multiple of the unroll factor 2.

HFuzz achieves 10.3× speed-up and finds 25 new defects

compared toHeteroFuzz, demonstrating the combined ben-

efit of hardware probes and software monitors.

4.2 Speed-up from In-kernel Input Mutations

To assess speed-up enabled by offloading input mutations to FPGA

devices, we compare HFuzz with a downgraded version NoKernel-

Mutation. We measure the number of generated inputs and defects

found within the same 4-hour budget.

Figure 6 reports the average number of input trials within 4 hours.

For example, in R7, NoKernelMutation generates 23225 inputs,

while HFuzz generates 100918 inputs (5.3× speed-up) by avoiding

redundant data transfer and parallelizing input mutations. In R2,

NoKernelMutation and HFuzz enumerate 15824 and 112940 inputs

respectively, leading to 7.1× speed-up. R2 achieves higher speedup

than R7 because its performance is more dominated by data transfer

as shown in Figure 1.

Figure 5 shows the number of defects found by NoKernelMu-

tation. While NoKernelMutation reports 14 unique defects in 24

hours, HFuzz detects the same defects in 5.1 hours, which translates

to 4.7× speed-up in defect detection. These defects are not found by

NoKernelMutation, because it wastes time in sequentially mutating

inputs in CPU and sending the large data to the kernel.

HFuzz reduces the need for data transfer by offloading

mutations into kernels and thus speeds up fuzzing by 4.7×.

4.3 Speed-up from FPGA-level Optimizations

To evaluate the effectiveness of FPGA-level optimizations for input

generation, we created a downgraded version of our tool NoHWop-

timization, which disables this feature. We evaluated the time taken

to find the same defects. The results are shown in Figure 5. Com-

pared to NoHWoptimization, HFuzz finds the same 33 bugs 3.4x

faster, taking only 8.3 hours as opposed to 28 hours.

In R1 (e.g., Figure 3), the detected defects include (1) a divide-

by-zero error when the kernel takes as input two sparse matrices

and (2) an overflow error when the kernel takes as input two dense

matrices with large elements. Because inputs leading to these de-

fects are distinct from each other, traditional mutational fuzzers

with a single input queue may be inefficient to find them. In fact, it

takes 2 hours to mutate two sparse matrices into dense ones. HFuzz

uses one hardware optimization technique, called dynamic kernel

sharing, to enable simultaneous exploration of input subspaces

originating from different seeds. For that, HFuzz utilizes multiple

input generators. One generator � starts with dense matrices and

another generator � starts with sparse matrices. HFuzz can detect

these two bugs by interleaving generator � and generator � based

on runtime feedback. For example, when generator � reaches its

maximum value and triggers an overflow, it can no longer provide

any new feedback. HFuzz will switch to generator � and detect the

divided-by-zero error. HFuzz reduces the detection time to 5 mins.

HFuzz achieves 3.4× speed-up in the detection of detects

by implementing hardware optimizations. Loop unrolling,

shannaization, and fast memory access directly speed up

the mutation process. Dynamic kernel sharing enables

efficient input space exploration.

4.4 Probe Overhead

Inserting hardware probes into the original kernels may cause extra

overhead on hardware resources, as reported in Table 4. We mea-

sure four types of hardware resource, including ALUT (a lookup

table implementing the boolean function), FF (flip flops for storing

temporary data), RAM (random access memory blocks), and DSP (a

digital signal processing unit for common fixed-point and floating-

point arithmetic). The inserted kernel probes incur a relatively large

overhead for a simple kernel because the inserted probes signifi-

cantly increase kernel logic complexity compared to the original

kernel. In R2, compared to the original kernel with 9592 ALUTs and

14466 FFs, inserted probes used 22% more ALUTs and 33% more FFs.

For a relatively complex kernel R4, the overhead is 6% ALUT and

10% FFs. The extra resource usage mainly comes from (1) the probe

computation including read and write, and (2) the kernel dispatch

logic establishes the communication between kernel and host.

1109

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Jiyuan Wang, Qian Zhang, Hongbo Rong, Guoqing Harry Xu, and Miryung Kim

Table 4: Resource overhead from injecting hardware probes.

ID/Program #LUT #FF #RAM #DSP Freq
/MHz

R1/ Orig 15932 25088 137 4.5 247
Matrix_trans Probe 17905 34320 192 4.5 246

R2/ Orig 9592 14466 492 16 259
Matrix_mul Probe 12032 19443 492 16 247

R3/ Orig 11545 18494 106 6 273
Complex_mul Probe 11203 27117 106 6 253

R4/ Orig 60468 92249 555 195 221
APSP Probe 64327 101229 558 195 212

R5/ Orig 23642 44352 309 34 270
Nbody_sim Probe 27612 50549 317 34 260

R6/ Orig 48706 64987 395 67 257
HMM Probe 56562 87392 491 67 247

R7/ Orig 2239 1357 67 12 279
Match_num Probe 3828 2033 73 12 259

Such overhead could be further reduced bymanual optimizations.

For example, Curreri [17] performs resource sharing by using the

same FIFO probe for multiple feedback signals.

Hardware probe insertion uses 24% extra LUT, 29% extra

FF, and 8% extra RAM, and reduces frequency by 5% on

average. However, it enables an overall 10.3× speed-up in

defect detection by providing hardware feedback.

5 THREATS TO VALIDITY

We discuss the threats to validity as follows.

Device Dependence. Our experiments run all kernel executions

on two prominent FPGA cards: S10 and A10 [30, 31], which are

among the most widely used FPGAs currently. This specific con-

figuration may constrain the applicability of our results to other

devices, such as Intel’s Altera, because the divergence symptoms

detected could differ across different platforms. While the absolute

values of execution time and symptoms depend on configurations,

we believe that HFuzz will preserve its overall advantages in terms

of acceleration and divergence-detection capability when extended

to various platforms.

Time Limit. We empirically set four hours as the time limit for

fuzzing. Longer execution time may expose more divergence errors

or more execution paths as suggested in [32]; however, this time

limit is reasonable, as we did not see any increase in new types of

divergence errors with a higher time limit for subjects R1-R7.

Scalability. The insertion of our probes relies on the static analysis

of heterogeneous programs and often necessitates human interven-

tion to address potential transformation errors. This process can

become challenging, particularly for complex in-kernel logic within

large programs. Further experimentation is essential to validate

the scalability of our method. However, our benchmarks may look

small in size from the software engineering perspective, but they

are sizable in the hardware community. Rosseta benchmarks [59]

and heterogeneous applications in Intel Devcloud are comparable

in size (i.e., hundreds of lines of code.) Testing complexity for het-

erogeneous applications do not depend on the lines of code size.

Instead, they depend on factors such as how hardware resources

are synthesized (e.g., in-kernel variables, loop unrolling), as well

as the nuanced details of the communication channels between

software and hardware, as well as among hardware kernels.

6 RELATED WORK

Fuzz Testing. Traditional fuzzing starts from a seed input, runs

the program on the selected input, generates new inputs by mutat-

ing the previous input, and adds new inputs to the queue if they

improve a given guidance metric such as branch coverage. Instead

of using coverage as guidance, several techniques use custom guid-

ance mechanisms. UAFL [50] incorporates typestate properties and

information flow analysis to detect the use-after-free vulnerabili-

ties. BigFuzz [57] monitors dataflow operator coverage in tandem

with branch coverage for dataflow-based analytics. For example,

MemLock [51] employs both coverage and memory consumption

metrics. AFLgo [5] extends AFL to direct fuzzing towards user-

specified target sites. SiliFuzz [48] finds CPU defects by fuzzing

software proxies, like CPU simulators or disassemblers, and then

executing the accumulated test inputs (known as the corpus) on ac-

tual CPUs on a large scale. PerfFuzz [36] uses the execution counts

of exercised instructions together with branch coverage to iden-

tify inputs revealing pathological performance. HeteroFuzz [58]

generates concrete test inputs for heterogeneous applications to

perform differential testing between CPU vs. CPU+FPGA. Unlike

HFuzz, HeteroFuzz treats the kernels as black boxes and performs

software-level monitoring only. All these techniques rely on pure

software-level feedback either at the level of code coverage or using

custom monitors. None leverages hardware probes in tandem with

software monitors to guide test input generation, like HFuzz.

A fuzzing loop consists of multiple invocations of a target pro-

gram with different inputs in an independent manner; thus, it pro-

vides a natural opportunity for parallelism. AFL++ [20] injects a

fork server, which tells the target to fork itself to run, and thus

realizes parallel fuzzing across multiple CPU cores or across a fleet

of systems. For example, P-Fuzz [49] distributes unique seeds to

run fuzzing in parallel, and PAFL [38] maintains global and local

guiding information for synchronizing parallel fuzzing jobs. These

techniques accelerate fuzz testing via distributed computation on

CPU, unlike HFuzz, none accelerates fuzzing by using FPGAs. HFuzz

pushes iterative input mutation directly to an FPGA kernel, and

benefits from the massive hardware parallelism intrinsic to FPGA

during iterative testing of heterogeneous applications.

Coverage-guided greybox fuzzing adds test cases into the set

of seeds if they exercise the new path or new behavior. However,

most seeds exercise the same “high-frequency” paths. To explore

more paths with the same number of tests, researchers develop

strategies to select seeds wisely. AFLFast [6] models coverage-based

greybox fuzzing as a Markov chain, and assigns different selection

probabilities for different seeds. EcoFuzz [53] improves AFLFast’s

Markov chain model and presents a variant of the Adversarial

Multi-Armed Bandit model. EcoFuzz sets three states of the seeds

set and develops a unique adaptive scheduling algorithm. While

these techniques select seeds based on probabilities, none of them

leverages FPGA-level optimizations to speed up seed selection with

dynamic kernel sharing.

1110

Leveraging Hardware Probes and Optimizations for Accelerating Fuzz Testing of Heterogeneous Applications ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

High Level Synthesis & In-Circuit Debugging. To ease the

development of heterogeneous applications, HLS tools automat-

ically generate RTL descriptions from C/C++ programs. To help

debugging HLS-generated circuits, Inspect [8] introduces software

debugger-like capabilities, including gdb-like breakpoints, step, and

data inspection. It tracks file names and line numbers in HLS code,

so that HW probes at the level of wires and registers could be linked

to specific lines in the HLS code. A user can monitor each variable

for its data width and the number of elements in an array. Monson

and Hutchings [41] design a debugger for HLS-generated FPGA-

based circuits via source instrumentation by connecting C expres-

sions to top-level ports that serve as debug signals. HLScope [12]

is a performance debugger that traces the cause of stalls for HLS-

generated circuits. Curreri et al. realize in-circuit assertions for

timing analysis and stall-relate bugs [17]. While these debuggers

and HFuzz leverage a similar mechanism of injecting HW probes,

HFuzz’s goal is different—it improves the effectiveness of grey-box

fuzzing for heterogeneous applications by designing meaningful

monitors at both software and hardware levels.

In the hardware design community, circuit verification, includ-

ing formal verification and runtime verification, has been used

to validate code written in hardware description languages (Ver-

ilog, VHDL, etc.). For example, RFUZZ [34] is a circuit-level input

generator for FIRRTL IR (UC Berkeley’s RTL variant). RFUZZ in-

vents a notion of MUX toggle coverage for circuit testing at the

gate level and employs a rapid memory resetting on FPGA for RTL

circuit verification. However, their monitors are gate-level and not

application-specific. Qin and Mishra present a scalable test genera-

tion technique [43] for hardware kernels in Verilog by interleaving

concrete and symbolic execution to bridge the gap between model

checking and testing. Kourfali and Stroobandt [33] exploit parame-

terization of LUTs and routing infrastructures in an FPGA to create

a virtual debugging overlay network inside circuits. These circuit

testing and verification techniques find bugs in kernels at RTL level,

while HFuzz targets end-to-end testing of heterogeneous applications

written in HLS. In other words, it is not feasible to directly compare

HFuzz against these in-circuit verification techniques.

FPGA Performance Optimizations.Ma et al. explored various

loop optimization techniques, such as loop tiling, loop interchange,

and loop unrolling to reduce memory consumption and data move-

ment when mapping deep convolutional neural networks [39] to

FPGA. Zhang et al. adopt data buffering techniques to hide the

memory access latency and interconnects, avoiding data transfer

overhead from the global memory to FPGAs on-chip memory [56].

Li et al. [37] use pipeline optimizations when mapping layer-by-

layer computation to multiple FPGAs resources. Pipelining can

increase hardware utilization and achieve high throughput by pre-

venting the computing engines to become idle due to imbalanced

computation speed across layers. Other widely used kernel opti-

mizations include I/O optimization by sharing resources among

computation tasks at different time stamps. Another optimization

is retiming, which moves edge-triggered registers across combina-

torial gates or LUTs to improve timing while ensuring identical

behavior, etc [22]. Inspired by these FPGA-level performance op-

timizations, HFuzz designs four unique FPGA-level optimizations

to accelerate the combined computation of input generation and

kernel invocation: dynamic kernel sharing, shannonization, loop

unrolling, and data buffering. HFuzz is a pioneering tool—the first

to embody FPGA-level optimizations to enhance fuzzing efficiency

and effectiveness for heterogeneous applications.

SNAP [19] leverages the existing CPU pipeline and hardware fea-

tures to optimize the bitmap update required for coverage-guided

testing. As opposed to SNAP that targets fuzzing traditional pro-

grams running on a CPU and simply uses existing hardware features

as a black box acceleration aid, HFuzzHFuzz designs new FPGA-level

optimizations for mapping input generation and kernel invocation

to FPGAs and empirically demonstrates significant fuzzing speed-

up from these optimizations (3.4×).

7 DATA AVAILABILITY

Per the open science policy, we make HFuzz’s artifacts, bench-

mark programs, and datasets available at https://github.com/UCLA-

SEAL/HFuzz.

8 CONCLUSION

In recent years, performance improvement in CPU has slowed sig-

nificantly to only a few percent—due to challenges in power supply

scaling, heat dissipation, space and cost. This trend necessitates the

needs to embrace heterogeneous computer architectures such as

GPU and FPGA. In particular, FPGA is a promising, reprogrammable

alternative for improving performance and energy efficiency. How-

ever, due to the lack of observability into FPGA execution and

complex interaction between CPU and kernel execution on FPGA,

developing and testing heterogeneous applications is extremely

inaccessible to regular software engineers.

HFuzz is the first grey-box testing approach leverages the capabil-

ity of heterogeneous hardware for testing heterogeneous applications.

In particular, HFuzz injects hardware probes in addition to injecting

software monitors to better guide input generation and offloads

iterative input generation to hardware accelerators. HFuzz speeds

up fuzzing by offloading input mutations to FPGAs by 4.7× with-

out sacrificing any defect detection capability. It speeds up testing

10.3× on average by gathering meaningful signals from hardware

execution directly by injecting in-kernel probes. This work fits the

domain of software testing, as it targets HLS C/C++ dialects and it

has the potential to significantly improve correctness in the new

era of heterogeneous computing, where regular software developers

write code in HLS C/C++ to exploit custom hardware acceleration.

ACKNOWLEDGMENTS

The participants of this research are in part supported by NSF

grants 1956322, 1764077, 1460325, 2106383, 2106404, Amazon gift,

Samsung contract, and Regents Faculty Fellowship offered by UCR

Academic Senate.

REFERENCES
[1] Paul Alcorn. 2022. AMD to Fuse FPGA AI Engines Onto EPYC Processors, Arrives

in 2023. https://www.tomshardware.com/news/amd-to-fuse-fpga-ai-engines-
onto-epyc-processors-arrives-in-2023.

[2] Amazon.com. 2021. Amazon EC2 F1 Instances: Run Custom FPGAs in the AWS
Cloud. https://aws.amazon.com/ec2/instance-types/f1.

[3] David F. Bacon, Rodric Rabbah, and Sunil Shukla. 2013. FPGA Programming
for the Masses. Commun. ACM 56, 4 (apr 2013), 56–63. https://doi.org/10.1145/
2436256.2436271

[4] E Bendersky. 2012. PyCParser C Parser and AST Generator Written in Python.

1111

https://www.tomshardware.com/news/amd-to-fuse-fpga-ai-engines-onto-epyc-processors-arrives-in-2023
https://www.tomshardware.com/news/amd-to-fuse-fpga-ai-engines-onto-epyc-processors-arrives-in-2023
https://aws.amazon.com/ec2/instance-types/f1
https://doi.org/10.1145/2436256.2436271
https://doi.org/10.1145/2436256.2436271

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Jiyuan Wang, Qian Zhang, Hongbo Rong, Guoqing Harry Xu, and Miryung Kim

[5] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoud-
hury. 2017. Directed Greybox Fuzzing. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, David Evans, Tal Maklin,
and Dongyan Xu (Eds.). Association for Computing Machinery (ACM), United
States of America, 2329–2344. https://doi.org/10.1145/3133956.3134020 ACM
Conference on Computer and Communications Security 2017
, CCS 2017 ;
Conference date: 30-10-2017 Through 03-11-2017.

[6] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-
based greybox fuzzing as markov chain. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. 1032–1043.

[7] Andre R Brodtkorb, Christopher Dyken, Trond R Hagen, Jon M Hjelmervik, and
Olaf O Storaasli. 2010. State-of-the-art in heterogeneous computing. Scientific
Programming 18, 1 (2010), 1–33.

[8] Nazanin Calagar, Stephen D. Brown, and Jason H. Anderson. 2014. Source-level
debugging for FPGA high-level synthesis. In 2014 24th International Conference
on Field Programmable Logic and Applications (FPL). 1–8. https://doi.org/10.1109/
FPL.2014.6927496

[9] Jared Casper and Kunle Olukotun. 2014. Hardware Acceleration of Database
Operations. In Proceedings of the 2014 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays (Monterey, California, USA) (FPGA ’14).
Association for Computing Machinery, New York, NY, USA, 151–160. https:
//doi.org/10.1145/2554688.2554787

[10] Adrian M. Caulfield, Eric S. Chung, Andrew Putnam, Hari Angepat, Jeremy
Fowers, Michael Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-
Young Kim, Daniel Lo, Todd Massengill, Kalin Ovtcharov, Michael Papamichael,
Lisa Woods, Sitaram Lanka, Derek Chiou, and Doug Burger. 2016. A cloud-scale
acceleration architecture. In 2016 49th Annual IEEE/ACM International Symposium
onMicroarchitecture (MICRO). 1–13. https://doi.org/10.1109/MICRO.2016.7783710

[11] Andrew A Chien, Allan Snavely, and Mark Gahagan. 2011. 10x10: A general-
purpose architectural approach to heterogeneity and energy efficiency. Procedia
Computer Science 4 (2011), 1987–1996.

[12] Young-Kyu Choi and Jason Cong. 2017. HLScope: High-Level Performance
Debugging for FPGA Designs. In 2017 IEEE 25th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM). 125–128. https:
//doi.org/10.1109/FCCM.2017.44

[13] Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Beayna Grigorian, Karthik
Gururaj, and Glenn Reinman. 2014. Accelerator-rich architectures: Opportunities
and progresses. In 2014 51st ACM/EDAC/IEEE Design Automation Conference
(DAC). 1–6. https://doi.org/10.1145/2593069.2596667

[14] Jason Cong, Licheng Guo, Po-Tsang Huang, Peng Wei, and Tianhe Yu. 2018.
SMEM++: A Pipelined and Time-Multiplexed SMEM Seeding Accelerator for
DNA Sequencing. In 2018 IEEE 26th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM). 206–206. https://doi.org/10.
1109/FCCM.2018.00040

[15] Jason Cong, Bin Liu, Stephen Neuendorffer, Juanjo Noguera, Kees Vissers, and
Zhiru Zhang. 2011. High-Level Synthesis for FPGAs: From Prototyping to De-
ployment. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 30, 4 (2011), 473–491. https://doi.org/10.1109/TCAD.2011.2110592

[16] Jason Cong, Vivek Sarkar, Glenn Reinman, and Alex Bui. 2011. Customizable
Domain-Specific Computing. IEEE Design Test of Computers 28, 2 (2011), 6–15.
https://doi.org/10.1109/MDT.2010.141

[17] John Curreri, Greg Stitt, and Alan D. George. 2010. High-level synthesis tech-
niques for in-circuit assertion-based verification. In 2010 IEEE International Sym-
posium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW).
1–8. https://doi.org/10.1109/IPDPSW.2010.5470747

[18] Ian Cutress. 2018. Intel Shows Xeon Scalable Gold 6138P with Integrated FPGA,
Shipping to Vendors. https://www.anandtech.com/show/12773/intel-shows-
xeon-scalable-gold-6138p-with-integrated-fpga-shipping-to-vendors.

[19] Ren Ding, Yonghae Kim, Fan Sang, Wen Xu, Gururaj Saileshwar, and Taesoo
Kim. 2021. Hardware Support to Improve Fuzzing Performance and Precision. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security. 2214–2228.

[20] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. 2020. AFL++:
Combining Incremental Steps of Fuzzing Research. USENIX Association, USA.

[21] Daniel D Gajski, Nikil D Dutt, Allen CH Wu, and Steve YL Lin. 2012. High—Level
Synthesis: Introduction to Chip and System Design. Springer Science & Business
Media.

[22] Philippe Garrault and Brian Philofsky. 2006. HDL coding practices to accelerate
design performance. Xilinx White Paper 231 (2006), 1–22.

[23] Licheng Guo, Jason Lau, Zhenyuan Ruan, Peng Wei, and Jason Cong. 2019. Hard-
ware Acceleration of Long Read Pairwise Overlapping in Genome Sequencing:
A Race Between FPGA and GPU. In 2019 IEEE 27th Annual International Sym-
posium on Field-Programmable Custom Computing Machines (FCCM). 127–135.
https://doi.org/10.1109/FCCM.2019.00027

[24] Intel. 2021. Dense Linear Algebra. https://github.com/oneapi-src/oneAPI-
samples/tree/6901f7203b549a651911fec694ffefad82ed0b35/DirectProgramming/
C%2B%2BSYCL/DenseLinearAlgebra.

[25] Intel. 2021. DPC++ Reference. https://oneapi-src.github.io/DPCPP_Reference/.
[26] Intel. 2022. Devcloud. https://www.intel.com/content/www/us/en/developer/

tools/devcloud/overview.html.
[27] Intel. 2022. FPGA Optimization Guide for Intel® oneAPI Toolkits - Shann-

onization to Improve FMAX/II. https://www.intel.com/content/www/us/en/
develop/documentation/oneapi-fpga-optimization-guide/top/optimize-your-
design/throughput-1/single-work-item-kernels/loops/shannonization-to-
improve-fmax-ii.html.

[28] Intel. 2022. FPGA Optimization Guide for Intel® oneAPI Toolk-
its - Transfer Loop-Carried Dependency to Local Memory. https:
//www.intel.com/content/www/us/en/develop/documentation/oneapi-fpga-
optimization-guide/top/optimize-your-design/throughput-1/single-work-
item-kernels/loops/transfer-loop-carried-dependency-to-local-memory.html.

[29] Intel. 2022. FPGA Optimization Guide for Intel® oneAPI Toolkits - Unroll Loops.
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-
fpga-optimization-guide/top/optimize-your-design/throughput-1/single-
work-item-kernels/loops/unroll-loops.html.

[30] Intel. 2022. Intel®Arria® 10 GX FPGAOverview. https://www.intel.com/content/
www/us/en/products/details/fpga/arria/10/gx/products.html.

[31] Intel. 2022. Intel® Stratix® 10 GX FPGA Overview. https://www.intel.com/
content/www/us/en/products/details/fpga/stratix/10.html.

[32] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating Fuzz Testing. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security (Toronto, Canada) (CCS ’18). Association
for Computing Machinery, New York, NY, USA, 2123–2138. https://doi.org/10.
1145/3243734.3243804

[33] Alexandra Kourfali and Dirk Stroobandt. 2020. In-Circuit Debugging with Dy-
namic Reconfiguration of FPGA Interconnects. ACM Trans. Reconfigurable Tech-
nol. Syst. 13, 1, Article 5 (jan 2020), 29 pages. https://doi.org/10.1145/3375459

[34] Kevin Laeufer, Jack Koenig, Donggyu Kim, Jonathan Bachrach, and Koushik Sen.
2018. RFUZZ: Coverage-Directed Fuzz Testing of RTL on FPGAs. In Proceedings
of the International Conference on Computer-Aided Design (San Diego, California)
(ICCAD ’18). Association for Computing Machinery, New York, NY, USA, Article
28, 8 pages. https://doi.org/10.1145/3240765.3240842

[35] Yi-Hsiang Lai, Ecenur Ustun, Shaojie Xiang, Zhenman Fang, Hongbo Rong, and
Zhiru Zhang. 2021. Programming and Synthesis for Software-Defined FPGA
Acceleration: Status and Future Prospects. ACM Trans. Reconfigurable Technol.
Syst. 14, 4, Article 17 (sep 2021), 39 pages. https://doi.org/10.1145/3469660

[36] Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn Song. 2018. PerfFuzz:
Automatically Generating Pathological Inputs. In Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis (Amsterdam,
Netherlands) (ISSTA 2018). Association for Computing Machinery, New York, NY,
USA, 254–265. https://doi.org/10.1145/3213846.3213874

[37] Huimin Li, Xitian Fan, Li Jiao, Wei Cao, Xuegong Zhou, and Lingli Wang. 2016.
A high performance FPGA-based accelerator for large-scale convolutional neural
networks. In 2016 26th International Conference on Field Programmable Logic and
Applications (FPL). IEEE, 1–9.

[38] Jie Liang, Yu Jiang, Yuanliang Chen, Mingzhe Wang, Chijin Zhou, and Jiaguang
Sun. 2018. PAFL: Extend Fuzzing Optimizations of Single Mode to Industrial Paral-
lel Mode. In Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(Lake Buena Vista, FL, USA) (ESEC/FSE 2018). Association for Computing Ma-
chinery, New York, NY, USA, 809–814. https://doi.org/10.1145/3236024.3275525

[39] Yufei Ma, Yu Cao, Sarma Vrudhula, and Jae-sun Seo. 2017. Optimizing loop
operation and dataflow in FPGA acceleration of deep convolutional neural net-
works. In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays. 45–54.

[40] Valentin Manes, HyungSeok Han, Choongwoo Han, sang cha, Manuel Egele,
Edward Schwartz, and Maverick Woo. 2019. The Art, Science, and Engineering
of Fuzzing: A Survey. IEEE Transactions on Software Engineering PP (10 2019),
1–1. https://doi.org/10.1109/TSE.2019.2946563

[41] Joshua S. Monson and Brad Hutchings. 2015. Using source-to-source compilation
to instrument circuits for debug with High Level Synthesis. In 2015 International
Conference on Field Programmable Technology (FPT). 48–55. https://doi.org/10.
1109/FPT.2015.7393129

[42] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou, Kypros Con-
stantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth
Gopal, Jan Gray, Michael Haselman, Scott Hauck, Stephen Heil, Amir Hormati,
Joo-Young Kim, Sitaram Lanka, James Larus, Eric Peterson, Simon Pope, Aaron
Smith, Jason Thong, Phillip Yi Xiao, and Doug Burger. 2016. A Reconfigurable
Fabric for Accelerating Large-Scale Datacenter Services. Commun. ACM 59, 11
(Oct. 2016), 114–122. https://doi.org/10.1145/2996868

[43] Xiaoke Qin and Prabhat Mishra. 2014. Scalable Test Generation by Interleaving
Concrete and Symbolic Execution. In Proceedings of the 2014 27th International
Conference on VLSI Design and 2014 13th International Conference on Embedded
Systems (VLSID ’14). IEEE Computer Society, USA, 104–109. https://doi.org/10.
1109/VLSID.2014.25

1112

https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1109/FPL.2014.6927496
https://doi.org/10.1109/FPL.2014.6927496
https://doi.org/10.1145/2554688.2554787
https://doi.org/10.1145/2554688.2554787
https://doi.org/10.1109/MICRO.2016.7783710
https://doi.org/10.1109/FCCM.2017.44
https://doi.org/10.1109/FCCM.2017.44
https://doi.org/10.1145/2593069.2596667
https://doi.org/10.1109/FCCM.2018.00040
https://doi.org/10.1109/FCCM.2018.00040
https://doi.org/10.1109/TCAD.2011.2110592
https://doi.org/10.1109/MDT.2010.141
https://doi.org/10.1109/IPDPSW.2010.5470747
https://www.anandtech.com/show/12773/intel-shows-xeon-scalable-gold-6138p-with-integrated-fpga-shipping-to-vendors
https://www.anandtech.com/show/12773/intel-shows-xeon-scalable-gold-6138p-with-integrated-fpga-shipping-to-vendors
https://doi.org/10.1109/FCCM.2019.00027
https://github.com/oneapi-src/oneAPI-samples/tree/6901f7203b549a651911fec694ffefad82ed0b35/DirectProgramming/C%2B%2BSYCL/DenseLinearAlgebra
https://github.com/oneapi-src/oneAPI-samples/tree/6901f7203b549a651911fec694ffefad82ed0b35/DirectProgramming/C%2B%2BSYCL/DenseLinearAlgebra
https://github.com/oneapi-src/oneAPI-samples/tree/6901f7203b549a651911fec694ffefad82ed0b35/DirectProgramming/C%2B%2BSYCL/DenseLinearAlgebra
https://oneapi-src.github.io/DPCPP_Reference/
https://www.intel.com/content/www/us/en/developer/tools/devcloud/overview.html
https://www.intel.com/content/www/us/en/developer/tools/devcloud/overview.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-fpga-optimization-guide/top/optimize-your-design/throughput-1/single-work-item-kernels/loops/shannonization-to-improve-fmax-ii.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-fpga-optimization-guide/top/optimize-your-design/throughput-1/single-work-item-kernels/loops/shannonization-to-improve-fmax-ii.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-fpga-optimization-guide/top/optimize-your-design/throughput-1/single-work-item-kernels/loops/shannonization-to-improve-fmax-ii.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-fpga-optimization-guide/top/optimize-your-design/throughput-1/single-work-item-kernels/loops/shannonization-to-improve-fmax-ii.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-fpga-optimization-guide/top/optimize-your-design/throughput-1/single-work-item-kernels/loops/transfer-loop-carried-dependency-to-local-memory.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-fpga-optimization-guide/top/optimize-your-design/throughput-1/single-work-item-kernels/loops/transfer-loop-carried-dependency-to-local-memory.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-fpga-optimization-guide/top/optimize-your-design/throughput-1/single-work-item-kernels/loops/transfer-loop-carried-dependency-to-local-memory.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-fpga-optimization-guide/top/optimize-your-design/throughput-1/single-work-item-kernels/loops/transfer-loop-carried-dependency-to-local-memory.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-fpga-optimization-guide/top/optimize-your-design/throughput-1/single-work-item-kernels/loops/unroll-loops.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-fpga-optimization-guide/top/optimize-your-design/throughput-1/single-work-item-kernels/loops/unroll-loops.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-fpga-optimization-guide/top/optimize-your-design/throughput-1/single-work-item-kernels/loops/unroll-loops.html
https://www.intel.com/content/www/us/en/products/details/fpga/arria/10/gx/products.html
https://www.intel.com/content/www/us/en/products/details/fpga/arria/10/gx/products.html
https://www.intel.com/content/www/us/en/products/details/fpga/stratix/10.html
https://www.intel.com/content/www/us/en/products/details/fpga/stratix/10.html
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/3375459
https://doi.org/10.1145/3240765.3240842
https://doi.org/10.1145/3469660
https://doi.org/10.1145/3213846.3213874
https://doi.org/10.1145/3236024.3275525
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1109/FPT.2015.7393129
https://doi.org/10.1109/FPT.2015.7393129
https://doi.org/10.1145/2996868
https://doi.org/10.1109/VLSID.2014.25
https://doi.org/10.1109/VLSID.2014.25

Leveraging Hardware Probes and Optimizations for Accelerating Fuzz Testing of Heterogeneous Applications ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

[44] James Reinders, Ben Ashbaugh, James Brodman, Michael Kinsner, John Penny-
cook, and Xinmin Tian. 2021. Data parallel C++: mastering DPC++ for program-
ming of heterogeneous systems using C++ and SYCL. Springer Nature.

[45] Ruyman Reyes and Victor Lomüller. 2016. SYCL: Single-source C++ accelerator
programming. In Parallel Computing: On the Road to Exascale. IOS Press, 673–682.

[46] Hongbo Rong. 2017. Programmatic Control of a Compiler for Generating High-
performance Spatial Hardware. CoRR abs/1711.07606 (2017). arXiv:1711.07606
http://arxiv.org/abs/1711.07606

[47] Kyle Rupnow, Yun Liang, Yinan Li, and Deming Chen. 2011. A study of high-level
synthesis: Promises and challenges. In 2011 9th IEEE International Conference on
ASIC. 1102–1105. https://doi.org/10.1109/ASICON.2011.6157401

[48] Kostya Serebryany, Maxim Lifantsev, Konstantin Shtoyk, Doug Kwan, and Peter
Hochschild. 2021. Silifuzz: Fuzzing cpus by proxy. arXiv preprint arXiv:2110.11519
(2021).

[49] Congxi Song, Xu Zhou, Qidi Yin, Xinglu He, Hangwei Zhang, and Kai Lu. 2019.
P-Fuzz: A Parallel Grey-Box Fuzzing Framework. Applied Sciences 9, 23 (2019).
https://doi.org/10.3390/app9235100

[50] Haijun Wang, Xiaofei Xie, Yi Li, Cheng Wen, Yuekang Li, Yang Liu, Shengchao
Qin, Hongxu Chen, and Yulei Sui. 2020. Typestate-Guided Fuzzer for Discovering
Use-after-Free Vulnerabilities. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering (Seoul, South Korea) (ICSE ’20). Association
for Computing Machinery, New York, NY, USA, 999–1010. https://doi.org/10.
1145/3377811.3380386

[51] Cheng Wen, Haijun Wang, Yuekang Li, Shengchao Qin, Yang Liu, Zhiwu Xu,
Hongxu Chen, Xiaofei Xie, Geguang Pu, and Ting Liu. 2020. MEMLOCK: Mem-
ory Usage Guided Fuzzing. In 2020 IEEE/ACM 42nd International Conference on
Software Engineering (ICSE). 765–777. https://doi.org/10.1145/3377811.3380396

[52] Xilinx. 2021. UltraScale Architecture and Product Data Sheet: Overview.
https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-
overview.pdf.

[53] Tai Yue, Pengfei Wang, Yong Tang, Enze Wang, Bo Yu, Kai Lu, and Xu Zhou. 2020.
Ecofuzz: Adaptive energy-saving greybox fuzzing as a variant of the adversarial
multi-armed bandit. In Proceedings of the 29th USENIX Conference on Security
Symposium. 2307–2324.

[54] Mohamed Zahran. 2017. Heterogeneous computing: Here to stay. Commun. ACM
60, 3 (2017), 42–45.

[55] Michał Zalewski. 2021. American Fuzz Loop. http://lcamtuf.coredump.cx/afl/.
[56] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong.

2015. Optimizing FPGA-based accelerator design for deep convolutional neural
networks. In Proceedings of the 2015 ACM/SIGDA international symposium on
field-programmable gate arrays. 161–170.

[57] Qian Zhang, Jiyuan Wang, Muhammad Ali Gulzar, Rohan Padhye, and Miryung
Kim. 2020. BigFuzz: Efficient Fuzz Testing for Data Analytics using Framework
Abstraction. In The 35th IEEE/ACM International Conference on Automated Soft-
ware Engineering. https://doi.org/10.1145/3324884.3416641

[58] Qian Zhang, Jiyuan Wang, and Miryung Kim. 2021. Heterofuzz: Fuzz testing
to detect platform dependent divergence for heterogeneous applications. In
Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 242–254.

[59] Yuan Zhou, Udit Gupta, Steve Dai, Ritchie Zhao, Nitish Srivastava, Hanchen
Jin, Joseph Featherston, Yi-Hsiang Lai, Gai Liu, Gustavo Angarita Velasquez,
WenpingWang, and Zhiru Zhang. 2018. Rosetta: A Realistic High-Level Synthesis
Benchmark Suite for Software Programmable FPGAs. , 10 pages. https://doi.
org/10.1145/3174243.3174255

1113

https://arxiv.org/abs/1711.07606
http://arxiv.org/abs/1711.07606
https://doi.org/10.1109/ASICON.2011.6157401
https://doi.org/10.3390/app9235100
https://doi.org/10.1145/3377811.3380386
https://doi.org/10.1145/3377811.3380386
https://doi.org/10.1145/3377811.3380396
https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
http://lcamtuf.coredump.cx/afl/
https://doi.org/10.1145/3324884.3416641
https://doi.org/10.1145/3174243.3174255
https://doi.org/10.1145/3174243.3174255

	Abstract
	1 Introduction
	2 Background
	2.1 Heterogeneous Applications with FPGA
	2.2 An Illustrating Example: Nbody-simulation

	3 Approach
	3.1 Injecting HW Probes in addition to SW Monitors
	3.2 Offloading Input Mutations to Kernels
	3.3 FPGA Optimizations for Fuzzing

	4 Evaluation
	4.1 Defect Detection by HW and SW Feedback
	4.2 Speed-up from In-kernel Input Mutations
	4.3 Speed-up from FPGA-level Optimizations
	4.4 Probe Overhead

	5 Threats to Validity
	6 Related Work
	7 Data Availability
	8 Conclusion
	References

