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Abstract—Compiler technologies in deep learning and domain-
specific hardware acceleration are increasingly adopting exten-
sible compiler frameworks such as Multi-Level Intermediate
Representation (MLIR) to facilitate more efficient development.
With MLIR, compiler developers can easily define their own
custom IRs in the form of MLIR dialects. However, the diversity
and rapid evolution of such custom IRs make it impractical to
manually write a custom test generator for each dialect.

To address this problem, we design a new test generator
called SYNTHFUZZ that combines grammar-based fuzzing with
custom mutation synthesis. The key essence of SYNTHFUZZ is two
fold: (1) It automatically infers parameterized context-dependent
custom mutations from existing test cases. (2) It then concretizes
the mutation’s content depending on the target context and
reduces the chance of inserting invalid edits by performing k-
ancestor and prefix/postfix matching. It obviates the need to
manually define custom mutation operators for each dialect.

We compare SYNTHFUZZ to three baselines:
Grammarinator—a grammar-based fuzzer without custom
mutations, MLIRSmith—a custom test generator for MLIR
core dialects, and NeuRI—a custom test generator for ML
models with parameterization of tensor shapes. We conduct this
comprehensive comparison on four different MLIR projects.
Each project defines a new set of MLIR dialects where manually
writing a custom test generator would take weeks of effort.
Our evaluation shows that SYNTHFUZZ on average improves
MLIR dialect pair coverage by 1.75×, which increases branch
coverage by 1.22×. Further, we show that our context dependent
custom mutation increases the proportion of valid tests by up
to 1.11×, indicating that SYNTHFUZZ correctly concretizes its
parameterized mutations with respect to the target context.
Parameterization of the mutations reduces the fraction of tests
violating the base MLIR constraints by 0.57×, increasing the
time spent fuzzing dialect-specific code.

Index Terms—Grammar-based fuzzing, program synthesis,
program transformation, MLIR, compiler testing, code patterns

I. INTRODUCTION

Deep learning compilers are a critical component of AI
workflows that enable PyTorch and TensorFlow models to be
compiled to a variety of hardware architectures. One of the
leading technologies powering such DL compiler development
is LLVM’s Multi-Level Intermediate Representation (MLIR)
framework. Unlike LLVM, which defines a single common
intermediate representation (IR), MLIR enables developers

to extend the underlying IR through the concept of MLIR
dialects [1], [2]. Each MLIR dialect defines a new IR consist-
ing of a unique set of operations, types, and attributes with
domain-specific semantics. For example, the IR for machine
learning is modeled a computation graph, while the IR for
LLVM is modeled as a sequence of program instructions.

Take the Circuit IR Compilers and Tools (CIRCT) [3]
project as an example. It leverages the MLIR framework to
build a compiler for heterogeneous compilation by defining 26
new dialects with 145 new operations. For example, CIRCT
uses a generic hardware abstraction by defining the hw and
comb dialects with operations to represent abstract hardware
modules and combinational logic. Listing 1 shows a snippet
of MLIR representing a hardware module containing a custom
MLIR operation called comb.add which represents combi-
national addition.

Such fast evolution and diversity of underlying custom IRs
presents challenges for developing custom test generators.
Google reported in 2020 that over 60 dialects have been
internally developed [4]. In the four years since the MLIR
project’s initial public release, 29 public downstream projects
like CIRCT have also each contributed multiple custom di-
alects [3], [5]. General-purpose fuzzers such as AFL++ [6] fail
to effectively generate or mutate MLIR due to its highly struc-
tured form. For instance, syntactically correct MLIR must have
proper nesting of operations, the correct number of operands
and outputs for each operation, valid type annotations, and
valid attribute names and values. Grammar-based fuzzers, such
as Grammarinator [7], use a context-free grammar to constrain
input generation; however, there are two limitations for this
domain. First, developers must supply a refined grammar
that is specific to each MLIR dialect, which is a derivative
of the base MLIR grammar. This refined grammar must in-
clude specialized production rules for each dialect’s operation
names, attribute names, and the number of inputs and outputs.
For instance, to generate an onnx.Conv2D operation, the
refined grammar would need a specialized production rule
with operation name onnx.Conv2D that has 1 output, 3
inputs, and nested attribute names called kernel_size,
padding, and more. Creating such refined grammars by



1"hw.module"() ({ // Hardware module definition
2ˆbb0(%a1: i2): 2-bit integer input
3 // Defines a new constant with value -2, bitwidth 2:
4 %c1 = "hw.constant"() {value = -2 : i2} : () -> i2
5 // Adds the constants %0 and %1, outputting %2:
6 %o1 = "comb.add"(%a1, %c1) <{twoState}> : (i2, i2) -> i2
7 "hw.output"(%o1) : (i2) -> () // Output of module is %2:
8}) // extra boilerplate omitted

Listing 1. This MLIR code snippet uses a new hardware dialect comb for
combinational logic in the CIRCT project.

hand is impractical. For example, the four MLIR projects
in our evaluation collectively define 74 dialects with 1,493
unique operations. Each operation would require at least one
production rule in the refined grammar. Second, in addition to
defining a refined grammar, developers must externally encode
semantic constraints required by each custom dialect.

Custom generator-based fuzzers in the vein of CSmith [8],
NNSmith [9], and MLIRSmith [10] manually encode semantic
constraints in terms of imperative code. However, the large
and continually increasing number of MLIR dialects makes
it prohibitively expensive to write custom test generators
manually.

We observe that the fast-evolving compiler infrastructure of
IRs requires a test input generator that can learn semantic con-
straints automatically. To this end, we propose a new approach
called SYNTHFUZZ, drawing inspiration from techniques for
automated patch synthesis [11], [12], [13]. These techniques
synthesize code edits from examples, learn the code contexts in
which the transformations are appropriate and then concretize
the code edits to the matching code contexts.

Like generator-based fuzzers, SYNTHFUZZ is capable of
preserving context-sensitive constraints such as the cardinality
of operation arguments and return values, the def-use rela-
tionships of values, and the consistency of type annotations.
The key novelty is that SYNTHFUZZ can do so without the
significant manual effort required to write custom generators
by hand. SYNTHFUZZ accomplishes this by synthesizing
parameterized mutations from seed test cases.

Colored pairs in Listing 1 represent the def-use relationships
and type consistency that needs to be satisfied. A parame-
terized mutation derived from Listing 1 would encode the
knowledge that the operation comb.add is nested within
the hw.module denoted as ancestor k1, is preceded by one
hw.constant operation denoted as l1, and followed by
one hw.output operation denoted as r1. This knowledge
enables SYNTHFUZZ to select an appropriate context to apply
the mutation by matching the k-ancestors and l-siblings (and
r-siblings) of the comb.add operation. The parameterized
mutation also encodes the knowledge that comb.add takes
two arguments %a1 and %c1, and returns one value %o1 all
of which have the same type i2. SYNTHFUZZ parameterizes
these arguments and types and then re-concretizes them based
on the target context to which the mutation is applied.

We compare the effectiveness of SYNTHFUZZ against
Grammarinator, MLIRSmith, and NeuRI. Grammarinator is
a representative grammar-based fuzzer. MLIRsmith is a rep-
resentative custom generator for MLIR core dialects. NeuRI

is a custom test generator with limited parameterization—i.e.
it parameterizes the tensor shapes and operation’s numerical
attributes. We evaluate SYNTHFUZZ on four MLIR-based
compiler projects: LLVM, ONNX-MLIR, Triton, and CIRCT.
These are chosen as representative MLIR projects that define
42, 2, 4, and 26 custom dialects respectively. For all dialects
except the 13 core dialects targeted by MLIRSmith and the
one onnx dialect that can be targetted by NeuRI, no custom
test generators exist. Writing test generators for these custom
dialects is time-consuming. As an example, MLIRSmith’s
implementation totals 11,434 lines of code with 447 lines of
code per dialect on average [14].

We assess SYNTHFUZZ’s fault detection potential by mea-
suring code coverage and MLIR dialect pair coverage. Dialect
pair coverage [10] is defined as the number of unique pairs
of operations/dialects that have a data dependency or con-
trol dependency. Averaged across over four MLIR compiler
projects, SYNTHFUZZ outperforms Grammarinator, MLIR-
Smith, and NeuRI in terms of branch coverage by 1.22×,
29.78×, and 17.47× respectively. In terms of dialect pair
coverage, SYNTHFUZZ outperforms Grammarinator, MLIR-
Smith, and NeuRI on average by 1.75×, 4.60×, and 5.56×.
Compared to MLIRSmith and NeuRI, SYNTHFUZZ is capable
of covering 60 new custom dialects defined by the four MLIR
projects. SYNTHFUZZ discovers a previously undiscovered
bug in CIRCT.

We also perform a case study on the potential of SYN-
THFUZZ to generalize beyond MLIR dialects to another do-
main by automatically generating valid AWS CloudForma-
tion (CF) templates [15] that can pass the validity checks
of cfn-lint [16]. SYNTHFUZZ generates 2.46× greater
proportion of valid CF templates compared to Grammarina-
tor, which demonstrates that SYNTHFUZZ’s custom mutation
synthesis can provide significant benefits to learn semantic
constraints automatically.

In summary, this paper makes the following contributions:
1) We design a novel compiler fuzzing technique that obvi-

ates the need for defining custom mutations apriori, which
is impractical when the target IR is highly extensible and
constantly evolving.

2) Our method automatically synthesizes and applies multi-
edit, dependence-aware, custom mutations on the fly. The
key enabler is the construction of parameterized muta-
tions from existing tests, and the concretization of the
mutations after positioning the context through ancestor
path or prefix(postfix) matching.

3) We show that our method achieves 1.22× greater code
coverage and 1.75× greater dialect coverage within the
same time budget compared to existing baseline fuzzers.

The remainder of this paper is organized as follows. Sec-
tion II introduces MLIR and a motivating example. Section
III presents the design and implementation of SYNTHFUZZ.
Section IV provides the design of our experiments and their
results. Section V discusses possible threats to validity. Sec-
tion VI presents related work. Finally, we draw the conclusions
of our work in Section VII.



II. BACKGROUND

A. MLIR: Multi-Level Intermediate Representation

Multi-Level Intermediate Representation (MLIR) is a mod-
ular compiler framework that differs from traditional ap-
proaches by enabling developers to extend the intermediate
representation. Rather than defining a single monolithic IR
with a fixed set of types and instructions like LLVM’s IR,
MLIR is extensible by design. Compiler developers may define
new MLIR dialects consisting of custom operations and types
tailored to the domain, language, or architecture the compiler
targets. MLIR dialects can be progressively lowered, forming
a modular compilation pipeline, in contrast with traditional
compiler infrastructure that offers limited extensibility. How-
ever, this presents a challenge for test generation, since dialect-
specific operations also introduce new constraints that are
dialect-specific.

Take the Circuit IR Compilers and Tools (CIRCT) [3] as an
example. CIRCT is a unified framework built on MLIR that
enables optimized hardware design across different backends
catering to the needs of heterogeneous compilation. It defines
26 new dialects with 145 new operations, including the comb
and hw dialects that define low-level hardware operations. An
example of the comb add operation is shown on line 4 of
Listing 3. The full name of this operation is comb.add where
comb is a dialect name and add is the operation name. As
shown in the snippet, the operation takes two operands %arg0
and %c1 and returns a single value %o1. Its type signature
indicates that the operation takes an input operands of type
i2 (2-bit integers) and produce an output of type i2.

B. Motivating Example

Existing mutation strategies such as recombining test frag-
ments frequently fail to generate test cases capable of exercis-
ing deeper compiler logic. This failure is caused by the large
proportion of invalid test cases generated, which violate early
checks made by the compiler. For example, a) the definition
of identifiers needs to exist before they are used (def-use),
b) the types of variables need to remain consistent through
the test case (type consistency), and c) the number and type
of arguments that match what is required by an operation
(signature consistency). To address the limitation of existing
fuzzers, we present an approach that synthesizes parameterized
mutations, aiming to implicitly capture these constraints.

Consider the following seed test cases: a “donor” program
Pd in Listing 2 that contains the comb.add operation to be
inserted in the “recipient” program Pr in Listing 3. We demon-
strate how grammar-based generation and recombination are
unlikely to produce a valid program shown in Listing 5.

A grammar-based mutator following a base MLIR grammar
is unlikely to produce Listing 5 because the grammar does
not include operation semantics defined by different dialects.
For any given operation, the generic MLIR grammar only
specifies that the syntax of an operation must have a name
(e.g. comb.sub), zero or more return values, arguments and
attributes, and a type signature. Therefore, a grammar-based

1"hw.module"() ({
2ˆbb0(%arg0: i2):
3 %c1 = "hw.constant"() {value = -2 : i2} : () -> i2
4 %o1 = "comb.add"(%arg0, %c1) : (i2, i2) -> i2
5 "hw.output"(%o1) : (i2) -> ()
6})

Listing 2. A donor program Pd from which a mutation for inserting the
comb.add operation is synthesized from.

1"hw.module"() ({
2ˆbb0(%arg0: i4, %arg1: !hw.array<2xi2>):
3 %0 = "hw.bitcast"(%arg1) : (!hw.array<2xi2>) -> i4
4 %1 = "comb.sub"(%arg0, %0) : (i4, i4) -> i4
5 "hw.output"(%1) : (i4) -> ()
6})

Listing 3. A recipient program Pr to which the mutation for inserting the
comb.add operation from Listing 2 should be applied to.

1"hw.module"() ({
2ˆbb0(%arg0: i4, %arg1: !hw.array<2xi2>):
3 %0 = "hw.bitcast"(%arg1) : (!hw.array<2xi2>) -> i4
4 %1 = "comb.sub"(%arg0, %0) : (i4, i4) -> i4
5 %o1 = "comb.add"(%arg0, %c1) : (i2, i2) -> i2
6 "hw.output"(%1) : (i4) -> ()
7})

Listing 4. A test case created by Grammarinator[7]’s recombine operation. It
deletes line4 and adds line 5. This test case is invalid as it violates the def-use
relation and the type consistency.

1"hw.module"() ({
2ˆbb0(%arg0: i4, %arg1: !hw.array<2xi2>):
3 %0 = "hw.bitcast"(%arg1) : (!hw.array<2xi2>) -> i4
4 %1 = "comb.sub"(%arg0, %0) : (i4, i4) -> i4
5 %1 = "comb.add"(%arg0, %0) : (i4, i4) -> i4
6 "hw.output"(%1) : (i4) -> ()
7})

Listing 5. A test case created by SYNTHFUZZ’s context-dependent,
parameterized mutation. This mutation replaces an operation comb.sub with
comb.add. The test case is valid as SYNTHFUZZ matched a corresponding
context before concretizing its mutation to the target context.

fuzzer generating a comb.add operation would be unaware
of the signature of the operation as defined by the comb
dialect. Without a refined grammar for each dialect, the fuzzer
would be unaware of the associations between variables and
their types, e.g. %arg0, %0 with type i4, and comb.add
having exactly two input values and one return value.

Another common grammar-based mutation strategy is to
recombine the fragments of existing tests with other test cases.
To illustrate, comb.sub at line 4 of the recipient program Pr

in Listing 3 is replaced with comb.add from line 4 of the
donor program Pd in Listing 2, producing the mutated test
in Listing 4. However, after the replacement, the values and
types of the comb.add operation are inconsistent with its new
surrounding context. The resulting test will be rejected early
by the compiler as it violates the def-use constraint, since the
value %c1 was not defined before it was used. Inferring such
semantic constraints (often Turing-complete) is challenging as
discussed in prior work [17] [18] [19].

Listing 5 highlights the changes required to adapt the code
using comb.add from Pd to Pr. To satisfy the def-use
constraint, the values referenced as arguments to an operation
(e.g. %0 on line 5) must be previously defined (e.g. %0 on line
3). To satisfy type consistency, the initially assigned types,
such as i4, for %0 on line 3 must remain consistent in its



subsequent references, such as its use as an argument and the
resulting return type on line 5.

To generate test cases that satisfy these constraints, develop-
ers either must write a custom generator or define new refined
grammars and then manually encode additional semantic con-
straints. However, this requires hand-coding the constraints of
each operation defined in a dialect, and the cost is exacerbated
for rapidly evolving projects with IR extensions—i.e. those
that use MLIR—because the specialized grammar or custom
generators will need to be updated as new dialect operations
are added, modified, or removed.

In this paper, we propose to automatically synthesize custom
mutators. Existing test cases of MLIR dialects demonstrate
how the dialect-specific operations should be invoked. Our key
insight is that these test cases implicitly encode the various
constraints of MLIR dialects, e.g., def-use, operations’ type
signature, and therefore, matching the code context would lead
to a higher chance of successfully generating valid inputs. For
example, the donor test case in Listing 2 and the recipient test
case in Listing 3 exhibit structural similarity. SYNTHFUZZ is
able to identify such similarity and synthesize a parameterized
mutation that captures the context of the operation comb.add
in the donor test case. Applying the mutation, SYNTHFUZZ
produces a valid test case as shown in Listing 5, which respects
dialect-specific constraints, and hence is able to exercise
deeper logic in a given MLIR compiler.

III. APPROACH

Figure 1 describes SYNTHFUZZ’s fuzzing loop. Each itera-
tion synthesizes a custom mutation from a donor test case and
transplants it onto a recipient test case. In the SYNTH step
(Section III-A), SYNTHFUZZ selects a donor test case and a re-
cipient test case. From the donor test case, SYNTHFUZZ infers
a parameterized mutation with a parameterized context. In the
LOCATE step (Section III-B), as the mutations are context-
dependent, SYNTHFUZZ matches the parametrerized context
against the recipient test case to identify a suitable location for
the mutation. The MATCH step (Section III-C) then creates a
variable binding of parameters to concrete program fragments
from the matching context. Finally, INSTANTIATE (Section
III-D) concretizes the mutation and transplants it into the
recipient test case.

A. SYNTH: Synthesizing a parameterized mutation.

Parameterized mutations are synthesized from seed test
cases which we will refer to as donor test cases. Given a donor
test case like Listing 6, SYNTHFUZZ parses the test case using
a base MLIR grammar to produce a donor parse tree. From
the donor parse tree, SYNTHFUZZ constructs a custom mutator
comprising of a parameterized mutation and a parameterized
context as shown in Figure 2.

The parameterized mutation is a parameterized partial parse-
tree that contains the content to be inserted by SYNTHFUZZ
when mutating a test case. The parameterized context is
similarly a partial parse tree that captures the conditions in
which parameterized mutation may be instantiated.

Fig. 1. A flowchart of SYNTHFUZZ’s fuzzing loop

1"hw.module"() ({
2ˆbb0(%arg0: i2):
3 %c1 = "hw.constant"() {value = -2 : i2} : () -> i2

4 %o1 = "comb.add"(%arg0, %c1) : (i2, i2) -> i2

5 "hw.output"(%o1) : (i2) -> ()
6})

Listing 6. In this donor test case Pd, the boxed area represents the source
of a grafted, parameterized mutation. The rest unboxed area represents the
potential source of a corresponding, parametrized context.

Fig. 2. This diagram illustrates how SYNTH decomposes the donor test
case Pd shown in Listing 6 into a parameterized context and parameterized
mutation. For example, concrete symbols such %arg0, %c1, i2, and %o1
are now paramterized as placeholders such as A, B, C, and D respectively.

SYNTH uniformly randomly selects a sub-tree in the
donor’s parse tree as the parameterized mutation to be trans-
planted. The parameterized context and parameterized muta-
tion are extracted by bisecting the donor parse tree along at the
selected sub-tree’s root node as shown in Figure 2. The param-
eterized context encodes information such as the operations
before and after the parameterized mutation, their ordering,
the nesting of operations, and the potential locations of param-
eters. For example, as shown in Figure 2, the parameterized
context encodes the information that comb.add is preceded
by a block label bb0 and the operation hw.constant, and
succeeded by a hw.output operation. It also encodes the
nesting information that bb0, hw.constant, comb.add,
and hw.output are nested within hw.module.

Since the donor’s mutation may contain identifiers and types
that are not defined in recipient programs, a naive transplan-
tation will likely produce an invalid input that violates def-



use and type consistency constraints. SYNTH uses a heuristic
that common sub-strings in the input can be indicators of
context-dependent constraints such as def-use and type con-
sistency. SYNTH parameterizes the context and mutation by
introducing a parameter for each common sub-string between
the context and the mutation. In Figure 2 SYNTH creates 4
parameters: A, B, C, and D with an initial binding of %arg0,
%c1, i2, and %o1 as illustrated with matching colors in
Figure 2. Later, each parameter can be concretized with a
suitable sub-string from the context of the recipient.

B. LOCATE: Selecting mutation location depending on the
target context

SYNTHFUZZ looks for locations where the parameterized
context matches the recipient input to increase the likelihood
of satisfying the constraints. Three factors are considered: the
number of matching ancestor nodes k, the number of left-
sibling nodes l, and the number of right-sibling nodes r.
Matching k ancestors with the parameterized context ensures
that the mutation is made in a similar level of nesting. This
prevents situations such as improperly nested functions, or
operations being inserted outside of functions. Matching l left-
siblings and r right-siblings with the parameterized context
ensures that if an mutation pattern is of an operation, then
the operation will likely be inserted in a location where the
required number of operand values (left) is available, and the
results of the parameterized mutation will be used accordingly
(right).

Algorithm 1 describes how the mutate location is selected.
The values k, l, and r are global hyper-parameters that are set
by the user. In our evaluation, we set k, l, r = 4.

On line 1, the walk function returns each node of the
recipient parse tree in breadth-first order. Each node considered
a candidate mutate location.

On line 4 of the algorithm, getNext and m are jointly
assigned so that when getNext← getParent then m← k and
when getNext ← getLeft then m ← l. The getParent(n),
getLeft(n), and getRight(n) functions on line 3 take a parse
tree node n and return the parent node of n, the node that
precedes n at the same depth, or the node that succeeds n at
the same depth respectively. In Listing 7 calling getParent,
getLeft, and getRight on Location A returns the enclosing
block node (representing lines 2-7), the prior operation node
(representing line 2), and the next operation node (representing
line 5) respectively.

On line 11 of the algorithm, the pName(n) function re-
turns the name of the production rule that corresponds with
the parse-tree node n. For example, calling pName on the
hw.bitcast operation of Listing 7 returns the rule name
”operation”.

Listings 7 and Figure 3 show an example of the k-ancestor,
l-sibling, and r-sibling matching process. LOCATE compares
the parameterized context to each candidate location in the
recipient test case. Location A is a valid location since it has an
operation as a left and right sibling (lines 3 and 5 respectively),
and is nested within a block (line 2) and within a operation

Algorithm 1 LOCATE: Finding a valid mutate location by
matching k-ancestors and l(r) siblings.
Input:

• context← the parametrized context
• recipient← the recipient parse tree

Output:
• mutateLocation ← a parse-tree node in the recipient

test case that represents a valid mutate location
1: for candidate← walk(recipient) do
2: isMatch← true
3: ▷ The following loop jointly assigns getNext and m

4: for (getNext,m) ∈ { (getParent, k),
5: (getLeft, l),
6: (getRight, r)}
7: do
8: pNode← context

9: cNode← candidate

10: for i ∈ [0,m) do
11: if pName(pNode) ̸= pName(cNode) then
12: isMatch ← false
13: break
14: pNode← getNext(pNode)

15: cNode← getNext(cNode)

16: if isMatch then
17: yield candidate

(line 1). Location B is invalid because it is at the end of the
block and thus has no right-siblings. Location C is invalid
because it has no right-siblings and its ancestor node is an
operation, whereas the parameterized context requires the first
ancestor to be a block.

Apart from replacing existing parse-tree nodes, SYNTH-
FUZZ is also able to transplant content by inserting them in
locations corresponding to quantifiers in production rules of
the grammar. Such quantifiers indicate that a varying length
collection of terms can be generated. SYNTHFUZZ locates
parse-tree nodes that correspond to production rule and inserts
a new node corresponding to the quantified term. SYNTHFUZZ
can then apply the same k-ancestor, l(r)-sibling matching
logic described earlier to decide if the newly inserted node is
a suitable mutation location. This grants SYNTHFUZZ greater
flexibility, increasing the diversity of inputs generated.

C. MATCH: Matching and extracting parameters

Once an mutation location is selected in the LOCATE
step, MATCH performs a joint breadth-first traversal of the
parameterized context tree and the parse-tree of the recipient
test case to compute parameter assignments. The traversal
starts at the mutate location of the recipient tree and the
root of the parameterized mutation within the parameterized
context. An annotated example of this traversal is illustrated



1"hw.module"() ({
2ˆbb0(%arg0: i4, %arg1: !hw.array<2xi2>):
3 %0 = "hw.bitcast"(%arg1) : (!hw.array<2xi2>) -> i4
4 Location A
5 "hw.output"(%1) : (i4) -> ()
6 Location B
7}
8 Location C
9)

Listing 7. A set of potential insertion locations are marked as A, B, and C
in the recipient test case.

Fig. 3. Illustration of k-ancestor and l(r)-sibling context matching. Location
B is invalid due to not matching the postfix context with r = 1. Location C
is invalid due to not matching the k-ancestor path context as the parent node
is an operation, not a block with k = 2.

in Figure 4. A node pair is considered a match if the parse tree
node name is the same between the parameterized context and
recipient parse tree. This allows parse tree nodes of different
concrete operations to match. For example, node pair 2.2 in
Figure 4 is considered a match even though the operation
names (hw.constant and hw.bitcast), types (i2 and
i4), and values (%c1 and %0) differ.

When a parameter node is encountered during the traversal
of the parameterized context, SYNTHFUZZ assigns it to the
corresponding sub-tree in the traversal of the parse tree of the
recipient input. In Figure 4, the parameters A, B, C, and D
from the parameterized context are assigned to the matching
nodes for %arg0, %0, i4, and %1 in the recipient parse
tree. When there are duplicate assignments as in parameter
C, MATCH will uniformly randomly select one of the as-
signments to use.

D. INSTANTIATE: Concretize the mutation

1"hw.module"() ({
2ˆbb0(%arg0: i4, %arg1: !hw.array<2xi2>):
3 %0 = "hw.bitcast"(%arg1) : (!hw.array<2xi2>) -> i4

4 %1 = "comb.add"(%arg0, %0) : (i4, i4) -> i4

5 "hw.output"(%1) : (i4) -> ()
6})

Listing 8. The recipient test case where the parametrerized mutation is
inserted and concretized. The parametrerized mutation is boxed on line 4.
By instantiating the pattern in this new context, the following substitutions
are made: A←%arg0, B←%0, C←%i4, and D←%1.

In the INSTANTIATE step, SYNTHFUZZ adapts the pa-
rameterized mutation to the recipient test case by substituting
in the parameter assignments extracted during the MATCH
step. Listing 8 shows how the parametrerized mutation is
instantiated. Here, parameters A, B, C, and D corresponding

the return value, two operands, and the types are assigned the
values %arg0, %0, %i4, and %1 respectively.

SYNTHFUZZ also checks that the mutated input conforms to
generic MLIR constraints before passing them to the compiler.
For example, a mutation may lead to test cases that redefine
the same variable twice or use an undefined variable. Such
test cases are invalid in any MLIR dialect.

IV. EVALUATION

In our study, we examine the following research questions:
RQ1: How effective is SYNTHFUZZ in terms of increasing code

coverage?
RQ2: What is the input space coverage of SYNTHFUZZ in terms

of dialect pair coverage?
RQ3: Does context-based positioning of parametrized mutation

improve the likelihood of a valid mutation?
RQ4: Does parameterization of the mutation content improve

the likelihood of a valid mutation?

A. Experiment Design
TABLE I

BENCHMARK PROGRAMS

Subject
Program

Description # of Seed
Test Cases

# of
Dialects

mlir-opt
(P1)

Includes the core and
contributed MLIR dialects
part of the LLVM project.

1,692 42

onnx-mlir-
opt (P2)

An MLIR-based ONNX
compiler.

1,885 2

triton-opt
(P3)

An MLIR-based compiler
for the Triton language.

29 4

circt-opt
(P4)

An MLIR-based compiler
for electronic design
automation (EDA).

377 26

Each project contributes a number of custom dialects for which it would be
costly to hand-write test generators.

In our evaluation of SYNTHFUZZ, we select four active
projects that use the MLIR compiler infrastructure, shown
in Table I. Each project provides a utility executable named
<project>-opt which is used to independently invoke and
test one or more compiler passes. Although SYNTHFUZZ can
be used to test compilers end-to-end by generating MLIR
inputs consumed by the frontend of the compilers, we found
it more effective to generate MLIR inputs that can be directly
consumed by intermediate compiler passes. To fuzz each
project, we invoke the <project>-opt executable with a
pipeline of P randomly selected compiler passes on each test
case generated by a fuzzer. In practice, we set P = 5 since
most unit test cases written by developers only invoke one to
three compiler passes at a time.

For ONNX-MLIR, LLVM, and CIRCT, we select compiler
passes based on the dialects present, identified by the operator
names in the test case. For example, if a test case contains
the arith.maxsi operation, then our test driver will select
a compiler pass that operates on the arith dialect such
as the arith-to-llvm pass which lowers certain arith



Fig. 4. An illustration of the MATCH step. When the recipient test case in Listing 8 is matched with the parameterized context shown in this figure, the
parameters A, B, C, and D are bound to the concrete values %arg0, %0, %i4, and %1 respectively.

operations to the llvm dialect. As Triton’s compiler passes
do not follow this naming scheme and this heuristic cannot be
used, we select compiler passes randomly from all available
passes.

1) Locating Seed Test Cases: We build a corpus of seed test
cases for each subject project by locating and splitting “.mlir”
files in each subject project’s respective repositories for a total
of 1,692, 1,885, 26, and 377 seed test cases respectively. Then
we convert each test case into its generic MLIR syntax form
to remove syntactic sugar and enable it to be parsed using the
base MLIR grammar for all subject programs.

1 "sv.if"(%arg2) ({
2 %18 = "hw.constant"() {value = 10 : i32} : () -> i32
3 %19 = "comb.icmp"(%7, %18) <...> : (i32, i32) -> i1

Listing 9. hw.constant (line 3) and comb.icmp (line 4) have a control
dependence on sv.if (line 2), forming two dependent dialect pairs (comb,
sv) and (hw, sv). comb.icmp (line 4) also has a data dependence on
hw.constant (line 3) forming a data dependent dialect pair (scf, hw).

2) Evaluation Measures: To compare the fault detection
potential of SYNTHFUZZ, we use the following measures:

• Branch coverage is computed as the number of covered
branches as reported by LLVM’s SanitizerCoverage code
coverage instrumentation.

• Dialect coverage is a measure of input space coverage
used in the evaluation of prior work, MLIRSmith [10].
This notion can be further divided into control dependent
dialect coverage and data dependent dialect coverage. The
idea is to differentiate the usage of multiple dialects in
tandem, and to prefer the usage of distinct dialects in a
meaningful manner by being connected through data or
control dependencies.
– Control dialect coverage is computed by counting the

number of unique dialect pairs whose operations are
linked by a control dependence. For example, Listing 9
contains two control dependent dialect pairs, (comb,
sv) and (hw, sv), since hw.constant (line 2) and
comb.icmp (line 3) are nested within sv.if (line
1) forming a control dependence.

– Data dialect coverage is computed by counting the
number of unique dialect pairs whose operations are
linked by a data dependency. For example, Listing 9
contains one data dependent dialect pair, (scf, hw)
since comb.icmp (line 3) takes the output %18 of
hw.constant (line 2), thus forming a data depen-
dence.

3) Baselines: We evaluate SYNTHFUZZ against Grammar-
inator [7], MLIRSmith [10], and NeuRI [20]. Grammarinator
represents a baseline grammar-based fuzzer, while MLIRSmith
and NeuRI represent the state of the art custom generators for
MLIR and deep learning models.

Grammarinator converts ANTLR4 grammar definitions into
a random probabilistic generator code that can be used to
generate, mutate, and recombine test cases based on the gram-
mar rules. In our experiments, we provide both SYNTHFUZZ
and Grammarinator with the same seed corpus for a fair
comparison.

MLIRSmith is a custom generator-based fuzzer that targets
MLIR’s core dialects. MLIRSmith was chosen for compar-
ison as it specializes in generating valid MLIR programs
for MLIR’s core dialects, but requires users to implement
custom generators for other new dialects. As of March 2024,
MLIRSmith supports 13 out of 42 available core dialects [14].
NeuRI is a DL model-level fuzzer that generates computation
graphs based on DL-model specific, API-level constraints.
NeuRI supports parameterization in the form of tensor shape
constraints and shape propagation rules for machine learning
models. While NeuRI does not directly target MLIR, the
onnx-mlir tool can be used to lower the models generated
by NeuRI to the core MLIR dialects for P1 (mlir-opt) or to
the onnx dialect for P2 (onnx-mlir-opt).

We also compare SYNTHFUZZ against running existing test
cases (i.e., the seeds for SYNTHFUZZ and Grammarinator).
By measuring the branch and dialect coverage of the seed test
cases alone, we separate the contributions of the increased
coverage afforded by the fuzzers’ mutation capability from
the innate capability of the seed corpus they draw from.

4) Experimental Environment: All experiments are per-
formed on an AMD Ryzen 2950X 16-Core Processor with
32 GB of RAM running on Ubuntu 22.04.

B. RQ1: Branch Coverage

Figure 5 shows the branch coverage of SYNTHFUZZ and
the baseline fuzzers on the four subject programs. Averaging
across all subject programs, SYNTHFUZZ outperforms Gram-
marinator, MLIRSmith, and NeurRI by 1.22×, 29.78×, and
17.47× respectively.

On P1 (mlir-opt) SYNTHFUZZ outperforms Grammarinator,
MLIRSmith, and NeuRI by 1.51×, 1.99×, and 9.06× respec-
tively. On P4 (circt-opt) SYNTHFUZZ outperforms Grammari-



Fig. 5. Branch coverage for each subject program. SYNTHFUZZ outperforms a grammar-based fuzzer by up to 1.51× and improves coverage by up to 1.47×
compared to existing seed tests.

nator, MLIRSmith, and NeuRI by 1.21×, 43.25×, and 34.50×
respectively.

On P2 (onnx-mlir-opt), SYNTHFUZZ is similar to NeuRI,
with less than 1% difference in coverage. This demonstrates
that SYNTHFUZZ can match the performance of a domain-
specific fuzzer, NeuRI, by bootstrapping parameterized muta-
tions from existing test cases without hand-coding any custom
generator logic. NeuRI implements custom test generator logic
for ONNX models (computation graphs for DL models).

On P3 (triton-opt), Grammarinator outperforms SYNTH-
FUZZ in terms of branch coverage by 1.04×. P3 only provides
36 test cases in its repository that SYNTHFUZZ and Grammar-
inator could use as seeds. Since SYNTHFUZZ relies upon seed
test cases to synthesize its custom mutations, the low number
of seeds constrained SYNTHFUZZ’s ability to generate diverse
test cases.

An example bug found. SYNTHFUZZ discovered a
new bug in CIRCT (Issue #6799), which has been con-
firmed and fixed by the developers. This bug occurs when
the --convert-llhd-to-llvm pass is invoked on an
llhd.proc operation with a block without a terminator
operation, such as llhd.wait or llhd.halt. The CIRCT
compiler incorrectly assumes that the llhd.proc operation
always contains a terminator, and crashes due to the violation
of this dialect-specific requirement. The CIRCT verifier should
have detected this absence of a terminator and rejected the
llhd.proc operation.
module {llhd.proc @empty() -> () { }}

Listing 10. CIRCT crashes on this minimized input due to not checking for a
terminator within llhd.proc. Reported on Mar 7, 2024, the bug was fixed
immediately on Mar 8.

SYNTHFUZZ demonstrates an average 1.22× improve-
ment of branch coverage without requiring any hand-
coding of custom generator logic.

C. RQ2: Dialect Coverage

Table II summarizes the performance of SYNTHFUZZ as
compared to Grammarinator, MLIRSmith and NeuRI in terms
of dialect control/data pair coverage (described in Section
IV-A2). SynthFuzz outperforms Grammarinator, MLIRSmith
and NeuRI by 1.70× and 4.16× and 5.32× in terms of control
dependent dialect pairs and 1.88×, 4.38×, 4.18× in terms of
data dependent dialect pairs.

To validate whether SYNTHFUZZ discovers new dialect
pairs not covered by the seed corpus, we also measure the
dialect pair coverage of the seed corpus as a baseline. For
each subject and fuzzer combination, we report the number
of unique dialects and the number of unique control and data
dialect pairs. Across all subjects, SYNTHFUZZ covers 99 new
control-dependent and 57 new data-dependent dialect pairs that
did not already exist in the seed corpus.

1"func.func"() <{function_type = (i1, i32, i32) -> i32,
sym_name = "main"}> ({

2ˆbb0(%arg0: i1, %arg1: i32, %arg2: i32):
3 %0 = "arith.addi"(%arg1, %arg2) <{overflowFlags =

#arith.overflow<none>}> : (i32, i32) -> i32
4 %1 = "arith.shli"(%0, %arg1) <{overflowFlags =

#arith.overflow<none>}> : (i32, i32) -> i32
5 %6 = "comb.icmp"(%1, %1) <predicate = 1 : i64> : (i32,

i32) -> i1
6 %2 = "arith.subi"(%1, %0) <{overflowFlags =

#arith.overflow<none>}> : (i32, i32) -> i32
7 %3 = "arith.select"(%arg0, %3, %0) : (i1, i32, i32) -> i32
8 "func.return"(%4) : (i32) -> ()
9}) : () -> ()

Listing 11. A test case generated by SYNTHFUZZ that was not generated
by any baselines. SYNTHFUZZ inserts the underlined line 5 and substitutes
in the operand %1 and type i32, satisfying the required def-use and type
consistency constraints. This test case achieves a new dialect pair coverage,
(comb, arith) by introducing the comb.icmp operator.

Listing 11 shows an example test case that can be gen-
erated by SYNTHFUZZ, but cannot be generated by other
approaches. The comb dialect is not supported by MLIR-
Smith, as it currently implements test generator logic for 13
core dialects only and takes 447 lines of code on average
to support each additional dialect. Grammarinator’s naive
recombination fails to satisfy def-use and type consistency
constraints by inserting line 5 as %6 = "comb.icmp"(%5,
%4) <predicate = 0 : i64> : (i2, i2) -> i1
, which references an undefined variable %5 and uses an incor-
rect type i2 for variable %4. This is because Grammarinator’s
recombination is context-unaware and is not concretized to fit
the target context.

While Grammarinator takes the same set of seed tests as
SYNTHFUZZ, it achieves lower dialect coverage than SYN-
THFUZZ or the seed tests alone, because Grammarinator
alternates between generation, mutation, and recombination
modes. Approximately, one third of its time is spent on the
pure generation mode that does not use seed test cases.

To investigate SYNTHFUZZ’s capability to generate test
cases tailored for each dialect, we compute the propor-
tion dialect-specific operations (e.g. onnx.Add) to total



TABLE II
DIALECT COVERAGE FOR EACH SUBJECT PROGRAM.

Subject P1 (mlir-opt) P2 (onnx-mlir-opt) P3 (triton-opt) P4 (circt-opt)
dialects control data dialects control data dialects control data dialects control data

SynthFuzz 27 129 100 9 23 24 7 15 4 20 86 40

Seed tests as is 28 68 56 9 17 11 7 12 4 23 57 40
Grammarinator 27 63 49 8 15 8 7 12 4 17 43 27
MLIRSmith 13 62 65 4 6 3 3 3 1 6 15 10
NeuRI 7 17 12 6 9 10 3 3 2 6 14 10

Seed test cases refers to each subject’s respective test suite. SYNTHFUZZ achieves greater dialect coverage compared to baseline fuzzers.

operations (e.g. including non-interesting operations like
func.return) in the generated inputs. We find the pro-
portions to be 0.49, 0.48, 0.92, and 0.87 for test cases from
LLVM, ONNX-MLIR, Triton, and CIRCT respectively. This
shows SYNTHFUZZ’s potential to generate test cases with a
high proportion of dialect-specific operations by synthesizing
mutations from existing tests.

SYNTHFUZZ achieves greater dialect coverage, com-
pared to other baseline fuzzers: average 1.70× improve-
ment in terms of control-dependent dialect pairs and
average 1.43× in data-dependent dialect pairs.

D. RQ3: Context-based Positioning of Mutation

SYNTHFUZZ selects an appropriate insertion location to
inject a parameterized mutation by matching the mutation’s pa-
rameterized context against the target context of the recipient
test case. To test the individual effect of the context matching
requirement for a parameterized mutation, we vary k from
0, 2, and 4 when matching a k-ancestor path. Similarly, we
vary l from 0, 2 and 4, when matching a l-sibling prefix l,
and we vary r from 0, 2, and 4 when matching a r-sibling
postfix. Each trial consists of 10,000 test cases generated by
SYNTHFUZZ for P1 (mlir-opt).

As shown in Table III, setting each parameter k, l, and r to
4 improves the number of valid test cases by 1.11×, 1.07×,
and 1.03× respectively. This indicates that using more context
information increases the chance of finding an appropriate
location for injecting a grafted mutation, thus increasing the
portion of valid test cases. A test case is considered valid, if
feeding the generated input to the target program returns zero,
indicating a success.

Setting k = 4 decreases dialect pair coverage by 10%.
This may indicate that a very restrictive requirement for
matching context by increasing k can negatively affect the
input coverage of generated tests. Additional experiments with
k greater than 4 had minimal effect on the number of valid
tests, as most seed tests have an operation nesting depth less
than 4.

Increasing ancestor-path, prefix, and postfix require-
ments for context positioning improves the proportion
of valid test cases.

TABLE III
AVERAGE BRANCH COVERAGE, DIALECT PAIR COVERAGE, AND VALID

TEST CASES.

Parameter Branch Cov. Dialect Pair Cov. Valid Test Cases

k = 0 24,764 100 677
k = 2 24,765 100 698
k = 4 24,987 90 749

l = 0 25,055 94 684
l = 2 24,749 97 710
l = 4 24,713 98 729

r = 0 24,657 97 706
r = 2 24,901 95 687
r = 4 24,958 98 731

Increasing k, l, and r to 4 increases the number of valid test cases by
1.11×, 1.07×, and 1.03×

E. RQ4: Effect of Parameterization

SYNTHFUZZ has the capability to parameterize and con-
cretize a variable name, an argument’s type, and an operation’s
attribute (e.g. "hw.constant"() {value = -2 : i2}
has a value attribute -2 with the type i2) to fit the target
context where a grafted mutation is inserted into. The goal
of parameterization is to preserve context-sensitive constraints
such as the def-use constraint (i.e., a value must be defined
before use) and the type-constraint (i.e., the type annotation
of a value must be consistent throughout its scope).

TABLE IV
VALIDITY OF TEST CASES GENERATED BY SYNTHFUZZ.

Violation Type W/ Param. W/O Param.

Invalid Dialect Specific Count 4,259 2,450
Percent 38.1% 23.7%

General MLIR Count 1,777 3,120
Percent 15.9% 30.2%

Invalid Options Count 4,356 4,052
Percent 39.0% 39.2%

Valid Valid Count 772 702
Percent 6.9% 6.8%

Parameterization reduces General MLIR violations from 30.2% to 15.9%.

We create a downgraded version of SYNTHFUZZ by turning
off its parameterization and concretization capability denoted
as W/O Param in Table IV. We generate 10,000 test cases with



each version and categorize the test cases based on the error
message returned by the target program.

Parameterization increases the proportion of valid test cases
by 0.01% only. However, when we further inspect the under-
lying reasons for invalid test cases, we find that SYNTHFUZZ
increases the chance of adhering to the general MLIR con-
straints.

With parameterization, 772 tests are valid with the return
value zero indicating success, when the tests are fed to the
target program. We then categorize the remaining 9228 invalid
test cases into three categories based on the type of violation
reported by the target program.

• Dialect Specific: 4,259 test cases generated with
parameterization are rejected by the target pro-
gram with a dialect-specific error message such as:
tosa.logical_or op result #0 must be tensor of 1-
bit signless integer values, tosa.floor op requires a
single operand, etc.

• General MLIR: 1,777 test cases generated with pa-
rameterization are rejected by the target program with
a general MLIR error message such as: an undefined
symbol, use of undeclared SSA, redefinition of SSA
value, etc.

• Invalid Options: 4,356 test cases generated with param-
eterization are rejected with an error message, “no such
option exists.” This occurs due to the test driver’s random
pass selection which may pair an option with a pass that
does not accept said option.

With parameterization enabled, SYNTHFUZZ generates
1,343 fewer test cases that violate general MLIR constraints
out of 10,000 tests. The proportion of Invalid Options category
is approximately the same with and without parameterization.
However, the proportion of General MLIR invalidity increases
from 15.9% to 30.2% when disabling parameterization. This
is due to the fact that without parameterization, the content of
parameterized mutation is not concretized to fit the recipient
context. Thus it is more likely to violate general MLIR
constraints such as def-use and type consistency.

Listing 11 shows an example of a test case generated by
SYNTHFUZZ which nests the comb.icmp operation within a
func.func operation. SYNTHFUZZ parameterizes the input
arguments and their types, thus passing the general MLIR
constraints such as def-use and type consistency.

SYNTHFUZZ reduces the proportion of general MLIR
constraint violating tests from 30.2% to 15.9% by
parameterizing the injected mutation’s content.

V. DISCUSSION

A. Case study using a grammar-aware constraint solver
(ISLa)

ISLa is a grammar-based constraint solver that can act
as a fuzzer to generate inputs [19]. ISLa enables a user to
specify SMT-like constraints on top of a context-free gram-
mar. It then generates inputs to satisfy grammar-aware string

constraints. To fuzz MLIR-based compilers, ISLa requires a
user to define a precise, refined grammar and manually encode
input constraints for each MLIR dialect. On the other hand,
SYNTHFUZZ infers implicit constraints specific to each dialect
by leveraging existing tests.

As a case study, we used ISLa under two configurations
on the same four subject programs: Under configuration (A),
we provided ISLa the same base MLIR grammar provided to
Grammarinator and SYNTHFUZZ. This base MLIR grammar
is generic in that it accepts all MLIR dialects. However, it
is not specialized to any MLIR dialect and thus it does not
encode any dialect specific operations, types, or attributes.
Under configuration (B), we provided ISLa with a specialized
refined grammar for a subset of the ONNX MLIR dialects,
consisting of 25 custom ONNX MLIR operations.

Under both configurations, we used ISLa’s input specifica-
tion language to encode two constraints: one definition-before-
use and one no-redefinition. For configuration (B), we encoded
a third constraint, a simplified type-consistency constraint.

1) Results: We ran ISLa under configurations (A) and (B)
with the same four hour time budget used in our evaluation. We
found that when ISLa is configured to generate more than 10
inputs, the solver frequently stalls indefinitely, likely due to the
complexity of the generated SMT constraints. To work around
this issue, we restarted ISLa every 10 inputs to maintain an
approximate throughput of 3 seconds per input.

In both configurations, ISLa did not generate any valid
MLIR inputs. Inputs generated by configuration (A) were
invalid because none of the operation names are specific to
an individual MLIR dialect. In configuration (B), the refined
grammar specialized to ONNX MLIR along with the three
constraints caused ISLa to generate only MLIR inputs with
the NoValue operation (equivalent to a no-op). Thus, we
had to disable the ISLa constraints to generate the remaining
24 operations defined in our refined grammar. In such case,
all inputs failed the ONNX MLIR compiler’s input validity
checks as they violated the def-use, no-redef, and type-
consistency constraints. Removing the NoValue operation
from the grammar caused the ISLa solver to stall indefinitely
during its constraint solving.

Creating the specialized grammar and constraints for the
subset of the ONNX MLIR dialect with only 25 operations
required an in-depth understanding of the MLIR dialect and
ISLa’s specification language. This entailed at least 5 hours for
a graduate student (the first author) to write the grammars and
constraints. Further several days of effort were required for
the graduate student to debug the constraints by learning the
nuances of the ISLa specification language. Further extending
this by-hand to all four MLIR projects with 7 dialects and a
total of 1,493 unique operations would require a tremendous
manual effort. This motivates SYNTHFUZZ’s approach to
automate synthesis of custom mutations from existing tests
to lower input constraint specification effort.



B. Generalizability beyond MLIR

We assess SYNTHFUZZ’s ability to generalize beyond
MLIR dialects by using SYNTHFUZZ to generate AWS Cloud-
Formation (CFN) templates. AWS CloudFormation templates
are embedded in the JSON format, but keys and values
have their own semantics. Since a refined grammar for CFN
templates does not exist, we used an existing JSON grammar
[21] instead. The problem of generating CFN templates using
the JSON grammar and existing tests is analogous to the
problem of generating MLIR dialect specific inputs using the
base MLIR grammar and existing tests. For our seed corpus,
we extract 557 CFN templates from the PIPr dataset [22],
[23] that are accepted as valid by CloudFormation’s linter,
cfn-lint [16].

We compare SYNTHFUZZ against Grammarinator to gen-
erate 2,000 CFN templates with the JSON grammar and the
seed corpus of CFN templates. For each fuzzer, we measure
the number of generated CFN templates that are accepted as
valid by cfn-lint.

We found that 62.1% (1,241 out of 2,000) CFN templates
generated by SYNTHFUZZ were valid, in comparison to 25.2%
(504 out of 2,000) CFN templates generated by Grammar-
inator. This 2.46× improvement shows that SYNTHFUZZ’s
custom mutation synthesis generalizes beyond MLIR dialects
to AWS CloudFormation.

C. Threats to validity

1) Limited fuzzing time: In our experiments on code and
dialect coverage, we limit the fuzzing budget to four hours for
each fuzzer. While unlikely, continuing the fuzzing campaign
for longer may reveal different trends.

2) Choice of Subject Programs: To minimize bias, we se-
lected four MLIR projects to represent a wide variety domains
among 40 possible public MLIR projects. P1 (the LLVM/M-
LIR project) was chosen as it contains the original MLIR core
dialects that MLIRSmith defines its custom generators for. P2
is a deep-learning compiler for ONNX models that NeuRI
directly fuzzed. P3 is a compiler for the Triton language. P4
(CIRCT) is a novel application of MLIR to the domain of
hardware accelerator synthesis.

VI. RELATED WORK

Grammar-based fuzzing. Grammar-based fuzzers, e.g. Gram-
marinator [7], Nautilus [17], LangFuzz [24] constrain input
space with a context-free grammar. PolyGlot [25] transforms
the high-level languages into a general IR with the BNF gram-
mar given by the users and uses constraint mutators to preserve
the grammar. Our experiments found that 97% of Grammarina-
tor’s generated inputs fail to satisfy semantic constraints, e.g.,
type consistency, or more complex relationships over shapes
and types. SYNTHFUZZ, instead, automatically infers semantic
constraints from existing tests through mutation synthesis.
Custom generator and mutation-based fuzzers. Generator-
based fuzzers [26], [27] require handwritten generators, usu-
ally coded in an imperative language, to produce valid in-
puts. CSmith [8] is a well-known example custom generator

that produces random C programs for fuzzing C compilers.
Related to our target domain of MLIR, MLIRSmith [10]
is a hand-written generator for MLIR core dialects. Hand-
coded generators encode context-sensitive constraints beyond
the expressiveness of a context-free grammar. Despite the
additional human effort required, MLIRSmith underperforms
SYNTHFUZZ, as it is unable to satisfy the input constraints of
each new dialect beyond the MLIR core dialects. To target
a new dialect, SYNTHFUZZ does not require hand-coding
custom mutators, as it infers parameterized, context-dependent
mutations from example tests.

Several studies have proposed fuzzers targeted at specific
domains. Apart from fuzzing MLIR dialects, GrayC [28] de-
signed custom mutators for fuzzing C programs. NNSmith [9]
designed a generator for computation graphs to fuzz deep
learning compilers. BigFuzz [29] was proposed for Apache
Spark programs, Qdiff [30] for quantum programs, Hetero-
Fuzz [31] for heterogeneous applications with FPGA high-
level-synthesis. To effectively generate inputs, these fuzzers
employ custom mutators. These mutators are hand-crafted
and manually implemented for each domain. The amount
of work needed to develop a new fuzzer for each domain
highlights the need for SYNTHFUZZ that synthesizes custom
mutators from existing tests. These approaches do not allow
for parameterized mutations whose content is adapt to the
target context. The closest work to SYNTHFUZZ is NeuRI [20],
which infers constraints over tensor shapes to generate deep
learning (DL) models for fuzzing DL compilers. However,
because it is specific to DL compilers and parameterization is
limited to tensor shapes and operation’s numerical attributes,
NeuRI does not achieve high coverage in our experiments for
MLIR.
Learning constraints. ISLA [19] allows semantic constraints
to be applied during grammar-based fuzzing. Dewey et al. [32]
uses Constraint Logic Programming to specify constraints for
test generation. As discussed in Section V-A, these tech-
niques require significant human effort for specifying input
constraints by hand [32] or templates [19].
Learning code patterns and transformations. Code pattern
inference techniques are used for code search [33], mining
rules for detecting bugs [34], and code quality [35]. Other tech-
niques synthesize patches, or program transformation. These
patch synthesis techniques [11], [36], [13], [37], [12], [38],
[39] transform programs by learning reusable transformation
from examples. They identify parameterized patches given
examples of the transformation, based on the observation
that code elements re-occurring across multiple patches are
essential. SYNTHFUZZ draws inspiration from these patch
synthesis techniques by learning parameterized mutations from
existing tests. While these techniques aim to mutate a buggy
program into a single, correct program, SYNTHFUZZ aims to
diversify mutations for fuzzing.

VII. CONCLUSION

Domain-specific fuzzers or test generators require months
of development effort, which is impractical given the rapid



evolution of target languages and intermediate representations.
We present SYNTHFUZZ, a novel approach that combines
mutation synthesis with grammar-based fuzzing to make it
easier to instantiate a domain-specific fuzzer without hand-
coded customization and without manually specifying input
constraints.

SYNTHFUZZ synthesizes parameterized, context-dependent
mutations from existing test cases, exploiting the observation
that domain-specific input constraints are implicitly encoded
in existing tests. In our evaluation on MLIR-based compil-
ers, SYNTHFUZZ outperforms existing grammar-based and
domain-specific fuzzers in terms of branch coverage by 1.22×
and dialect coverage by 1.75×. SYNTHFUZZ is able to syn-
thesize custom mutations for new MLIR dialects. It also has
the potential to generalize to different domains. For example,
SYNTHFUZZ improved the input validity rate from 25% to
62% when generating AWS CloudFormation templates.

A replication package has been made available at https://
github.com/UCLA-SEAL/SynthFuzz.
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