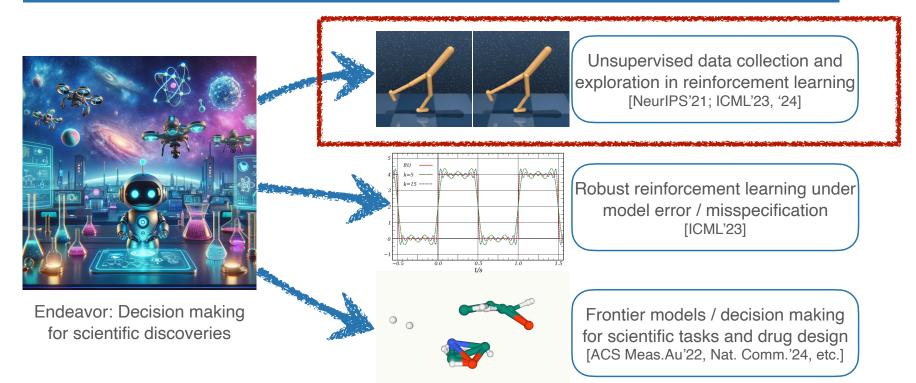


Uncertainty-Aware Unsupervised and Robust Reinforcement Learning

Snaupervised Data Gglectics & Exploration



Uncertainty-aware Unsupervised and Robust Reinforcement Learning - Weitong Zhang

Unsupervised Data Collection & Exploration

REWARD-FREE EXPLORATION IN REINFORCEMENT LEARNING

Uncertainty-aware Unsupervised and Robust Reinforcement Learning – Weitong Zhang

Unsupervised RL — **Explore without supervision**



Multi-task robotics

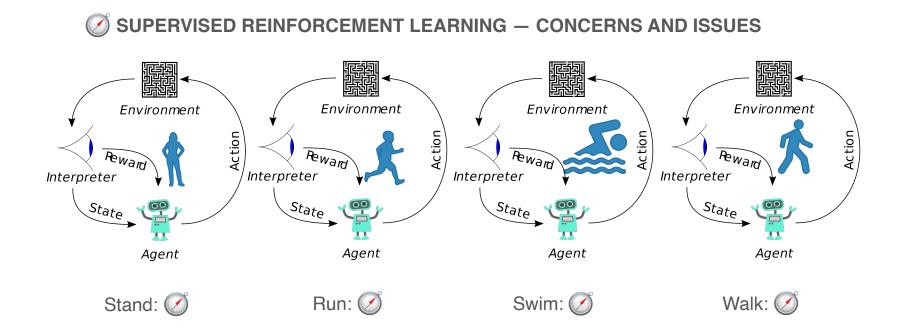
- Explore and learn physics
- Execute the desired motion

Search engine (GPT4+Bing)

- · Learn how to search result
- Search for specific result

Field research for public health

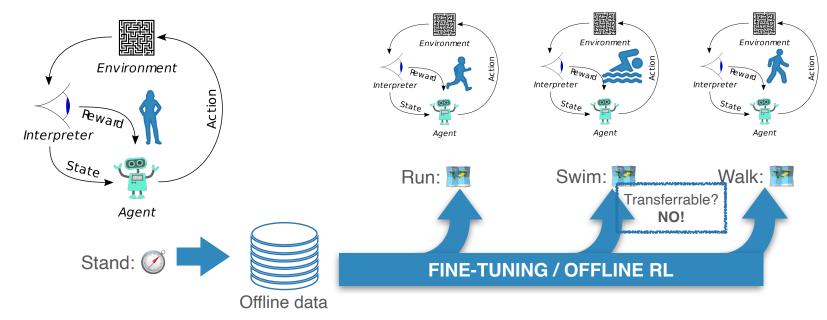
- Explore different groups
- Gain as much information as possible



UCLA

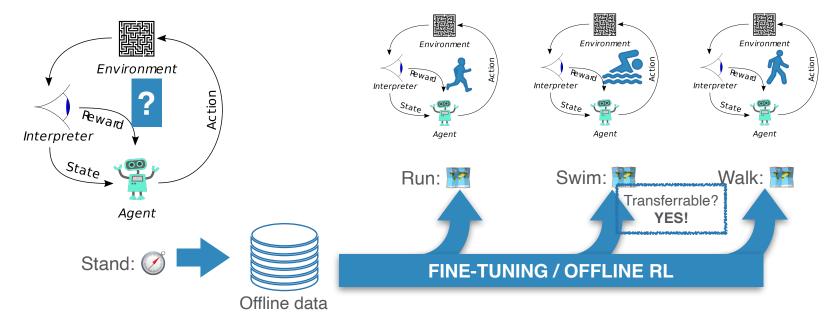
Efficient exploration for various tasks

OFFLINE RL WITH SUPERVISED DATA COLLECTION ...



Unsupervised RL: Exploration for various tasks

DESIGNING UNSUPERVISED EFFICIENT EXPLORATION POLICY

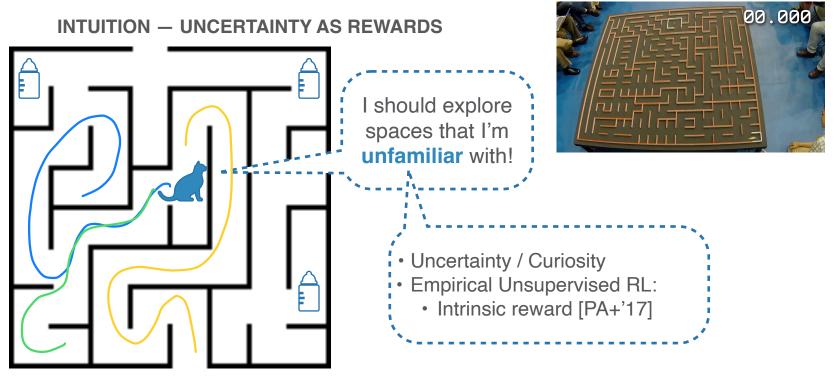


Uncertainty-aware Unsupervised and Robust Reinforcement Learning - Weitong Zhang

How to efficiently explore the environments without supervision?

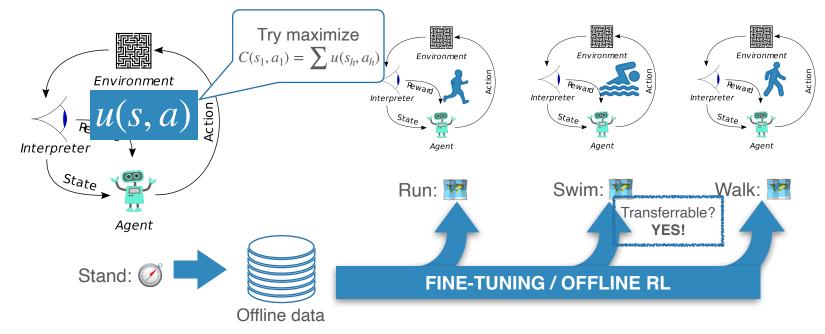
Foundation of unsupervised RL for both practice and analysis! [ZZG, NeurIPS'21]; [ZZG, ICML'23]; [ZZZG, ICML'24]

Designing efficient exploration policy



Leveraging uncertainty for unsupervised RL

UNCERTAINTY AS PSEUDO REWARD FUNCTION [ZZG21]



Uncertainty-aware Unsupervised and Robust Reinforcement Learning - Weitong Zhang

Detour: How to determine uncertainty?

THEORETICAL FRAMEWORK

Function class ${\mathcal F}$ for approximating...

- State transition P(s' | s, a)
- . Value function $Q(s, a) = \sum_{h} r(s_h, a_h)$

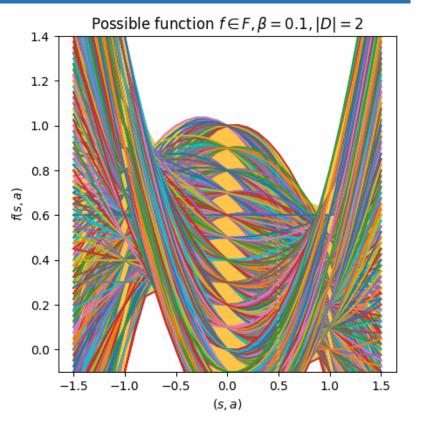
On historical dataset $\mathcal{D} = \{(s_i, a_i)\}$:

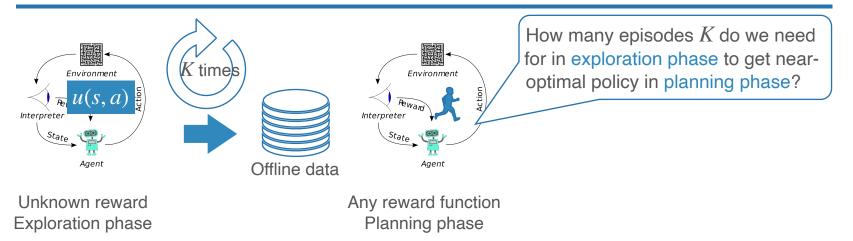
$$u(s, a) = \max_{f_1, f_2 \in \mathscr{F}} \left(f_1(s, a) - f_2(s, a) \right)^2$$

(radius of set)

s.t.
$$\sum_{\substack{(s_i, a_i) \in \mathscr{D}}} \left(f_{1,2}(s_i, a_i) - f^*(s_i, a_i) \right)^2 \le \beta$$
 (well trained functions)

Uncertainty-aware Unsupervised and Robust Reinforcement Learning - Weitong Zhang





Theorem [ZZG21]. For UCRL-RFE algorithm, for any $0 < \epsilon < 1$, if $K = \tilde{\mathcal{O}}(H^5 d^2 \epsilon^{-2})$ episodes are collected during exploration phase, then with high probability, for any reward function r, we can output a policy π such that $\mathbb{E}_s \left[V_1^*(s; r) - V_1^{\pi}(s; r) \right] \leq \epsilon$ in planning phase.

UCLA

Theoretical results — Unsupervised RL

Theorem [ZZG21]. For UCRL-RFE algorithm, for any $0 < \epsilon < 1$, if $K = \tilde{O}(H^5 d^2 \epsilon^{-2})$ episodes are collected during exploration phase, then with high probability, for any reward function r, we can output a policy π such that $\mathbb{E}_{s} \left| V_{1}^{*}(s; r) - V_{1}^{\pi}(s; r) \right| \leq \epsilon$ in planning phase. *H*: length of decision process $V_1^{\pi}(s; r)$: Expected cumulative reward $S_1, a_1, S_2, a_2, \cdots S_H, a_H$ e.g. At most H = 100 steps in get from policy π $V_1^{\pi}(s; r) = \mathbb{E}\left[\sum_{h=1}^H r(s_h, a_h) \middle| \pi\right]$ Maze No #state required! d: dimension of features AlphaGo: $V_1^*(s; r) = \max V_1^{\pi}(s; r)$: Maximum $\phi(s, a, s') \in \mathbb{R}^d < s \ge 10^{360}, d = 19 \times 19$ cumulative reward from optimal policy ϵ : precision of planning (most important)

PSEUDO REWARD IS INTRINSIC REWARD [PA+17]

 r_{int} : intrinsic reward — motivation, curiosity $\Leftrightarrow r_{\text{ext}}$: extrinsic reward — target, goal Exploration policy: $\pi = \arg \max_{\pi} V_1^{\pi}(s; r_{\text{int}})$

$\inf(s, a) = \max_{f_1, f_2 \in \mathscr{F}} \left(f_1(s, a) - f_2(s, a) \right)^2$	Name	Intrinsic reward	Translation
s.t. $\sum_{i=1,2}^{3,1,3,2} (f_{1,2}(s_i, a_i) - f^*(s_i, a_i))^2 \le \beta$	ICM [PA+'17]	$\ f(s_{t+1} s_t, a_t) - s_{t+1}\ _2^2$	$f_2(s,a) = f^*(s,a)$
$(s_i, a_i) \in \mathcal{D}$	Disagreement [PG+'19]	$\operatorname{Var}[f_i(s_{t+1} s_t, a_t)]_i$	Variance as radius
	RND [BE+'18]	$ f_1(s_t, a_t) - f_2(s_t, a_t) _2^2$	Only two function candidates

UCLA

Experiments — Multi-task robotics

DeepMind Control Robotics: Exploration: 1M frames, no reward Only 10% of offline RL benchmarks! (D4RL: 10M frames, expert agent)



Exploration (3, 2x speed)

Cumulative rewards (std) for various tasks

Task	ICM [PA+'17]	Disagreement [PG+'19]	RND [BE+'18]	Ours
Walk	411 (237)	851 (63)	709 (115)	826 (89)
Stand	466 (17)	726 (79)	750 (62)	925 (50)
Run	108 (41)	340 (37)	306 (34)	339 (64)

Uncertainty-aware Unsupervised and Robust Reinforcement Learning - Weitong Zhang

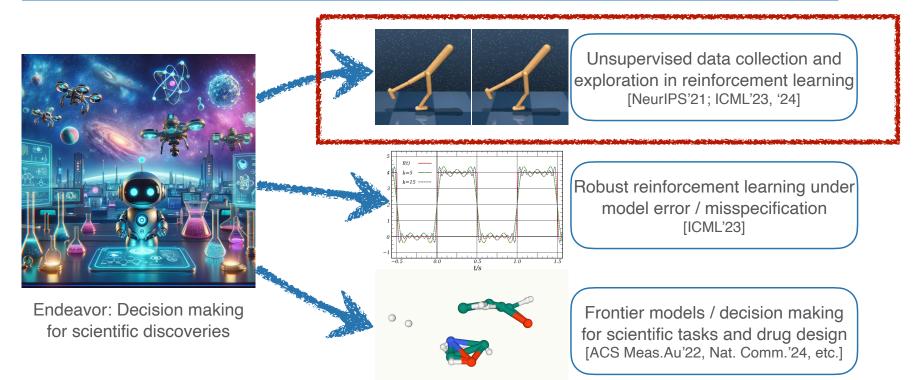
Walk

Stand

15

Uncertainty-aware curiosity helps exploration without supervision

Misspecification-Robust Decision Making



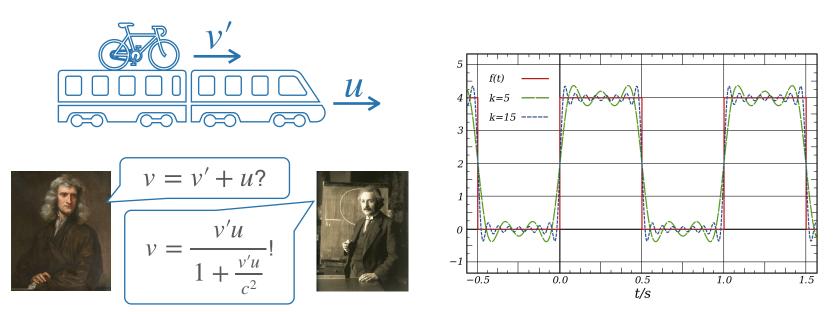
Uncertainty-aware Unsupervised and Robust Reinforcement Learning - Weitong Zhang

Misspecification-Robust Decision Making

REINFORCEMENT LEARNING WITH MODEL MISSPECIFICATION

Uncertainty-aware Unsupervised and Robust Reinforcement Learning – Weitong Zhang

Model Misspecification Always Exists...

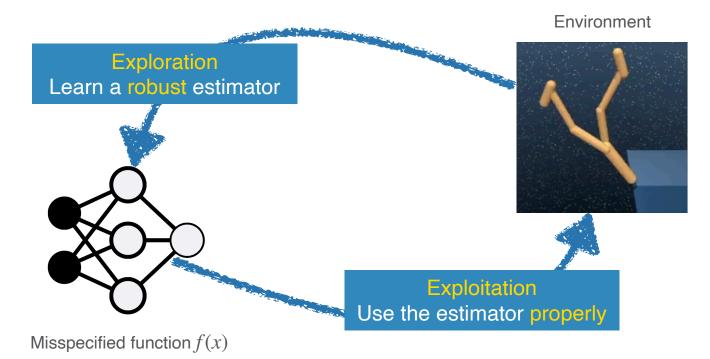


Function approximations, Neural networks

Model error, Physic laws, etc..

Will the model misspecification affect decisions?

Model misspecification in Reinforcement Learning



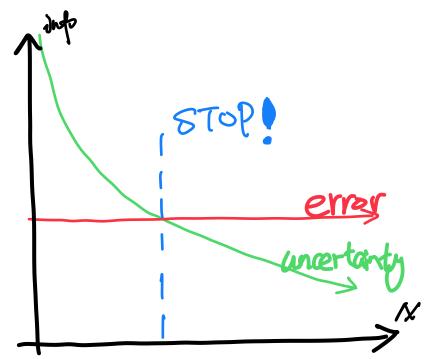
Uncertainty-aware Unsupervised and Robust Reinforcement Learning - Weitong Zhang

What's the relationship between misspecification & precision in RL?

The interplay between misspecification & "precision" [ZHFG, ICML'23; ZFHG, 24]

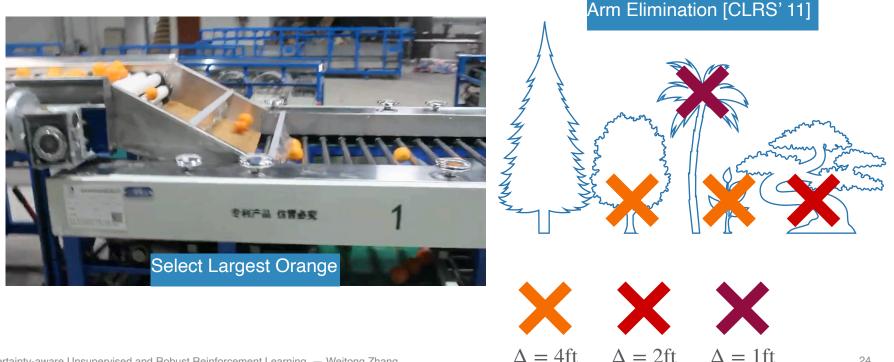
Learning a proper function approximation

- $r(\mathbf{x}) = \underbrace{f(\mathbf{x})}_{\text{Model}} + \underbrace{u(\mathbf{x})}_{\text{Uncertainty}} + \underbrace{\zeta(\mathbf{x})}_{\text{Error}}$
- Gain from reducing uncertainty: $\tilde{\mathcal{O}}(1/\sqrt{N})$
- Lost from error: $\tilde{\mathcal{O}}(1)$
 - $N\!\!:\!$ number of data we \mathbf{used}
- STOP before making mistakes
 - Skip the data $u(\mathbf{x}) \lessapprox \Delta$ (desired precision)
 - Learn from the data $u(\mathbf{x}) \gtrapprox \Delta$



UCLA

When desired precision Δ is not given to us...



Theoretical results — Robust Data Selection for RL

Theorem [ZHFG23]. For any $0 < \delta < 1$, let the parameter be properly set, if the misspecification level is bounded by $\sqrt{d\zeta} \leq \Delta$, then with probability at least $1 - \delta$, the cumulative regret is bounded by $\operatorname{Regret}(K) \leq \widetilde{O}(d^2\Delta^{-1}\log(\delta^{-1}))$

Precision v.s. misspecification

 Δ : difference between the 1st and 2nd action ζ : model misspecification

 $\operatorname{Regret}(K) = \sum_{k=1}^{K} r_k^* - r(\mathbf{x}_k):$

(total 'mistakes' for k rounds)

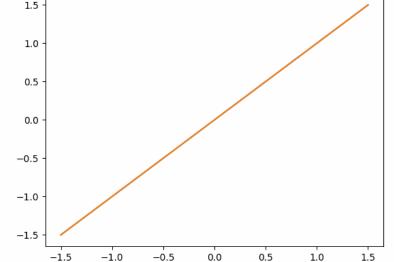
d: dimension of (linear) function approximation δ : high-probability factor

Interplay between precision and model error

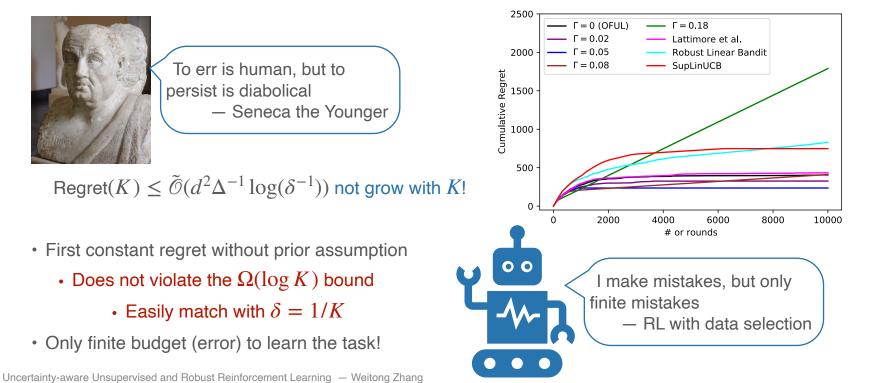
Theorem [ZHFG23]. For any $0 < \delta < 1$, let the parameter be properly set, if the misspecification level is bounded by $\sqrt{d\zeta} \lesssim \Delta$, then with probability at least $1 - \delta$, the cumulative regret is bounded by $\operatorname{Regret}(K) \leq \tilde{\mathcal{O}}(d^2\Delta^{-1}\log(\delta^{-1}))$

Theorem [ZHFG23]. When $\sqrt{d\zeta} \gtrsim \Delta$, then there exists some hard case such that $\operatorname{Regret}(K) \approx K\Delta$

You can never learn a good estimator!

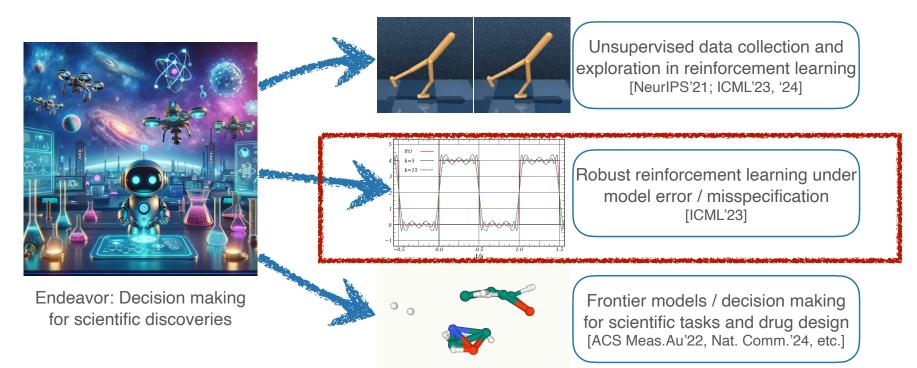


Byproduct: Constant Regret and Finite Mistakes



Uncertainty-aware data selection helps control model misspecification

Next-step Decision Making for Science



Next-step Decision Making for Science

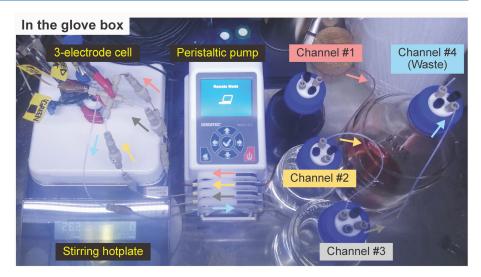
OTHER WORKS AND FUTURE DIRECTION

Reinforcement learning for chemical analysis

• Robotic systems:

UCLA

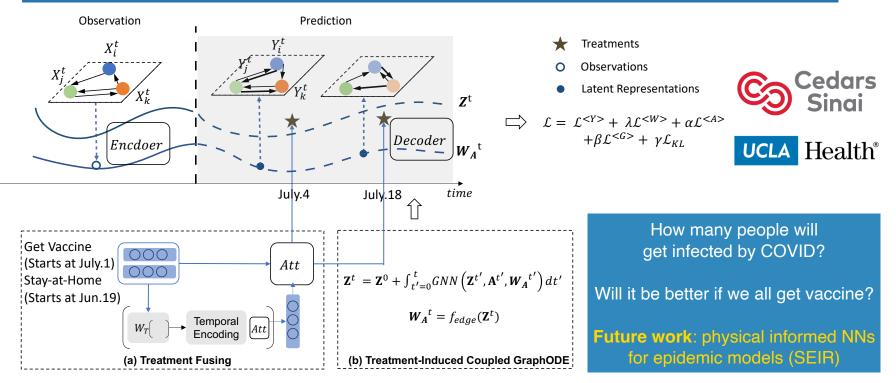
- 600 hrs wet lab -> 55 robot hrs
- Future directions:
 - Understanding the foundation of
 - Chemical reactions
 - Molecule science
 - Explainable RL for robust reaction analysis



College | Physical Sciences Chemistry & Biochemistry

[HZ+, ACS Meas. Au'22] [SS+, Nat. Comm.'24]

Pandemic control using causal inference



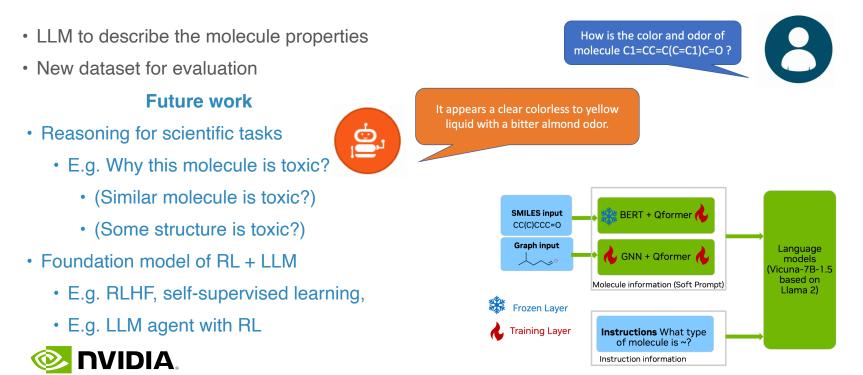
Uncertainty-aware Unsupervised and Robust Reinforcement Learning - Weitong Zhang

$\frac{\text{CNN} \rightarrow \text{Seq2Seq} \rightarrow \text{Atari RL}}{\text{Diffusion} \rightarrow \text{LLM} \rightarrow \emptyset}$

Better decision making empowered by foundation models

Uncertainty-aware Unsupervised and Robust Reinforcement Learning – Weitong Zhang

Multi-modality LLM for molecule prediction



Drug discovery using diffusion models

- Equivariant model (Rotation, translation)
 - Theoretical framework

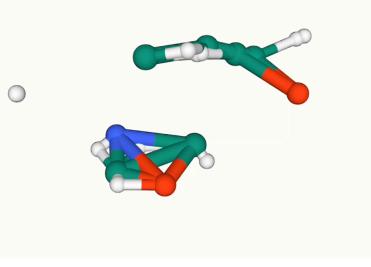
 $\Pr\left(\{\vec{x}_n\}\right) = \Pr\left(\{\vec{x}_n - \vec{x}_c\}\right) \Pr(\vec{x}_c)$

Discrete generative model for atom type
 ⇒ Stable, higher quality generation

Future work

- RL + diffusion model \Rightarrow trial and error!
- Protein / Ligand generation

Last 300 step in reverse (denoising) process



UCLA

Decision making for scientific discoveries and healthcare
Exploration for scientific tasks
Automated systems research

Field research in public health

Interdisciplinary collaborations for decision making

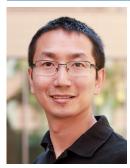
Advanced decision making algorithms

- Unsupervised RL / Exploration
- Robust RL / Adversarial RL
- Multi-agent RL

Decision making with foundation models

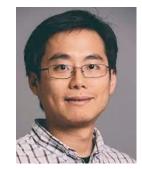
- LLM agent / RLHF
- Diffusion RL
- Self-supervised exploration

Acknowledgements



Advisor: Quanquan Gu

Prof. Wei Wang



Prof. Dominik Wodarz (UCSD, BioScience) Dr. Lihong Li (Amazon)

Prof. Amy Zhang (UT Austin)

Dr. Joe Eaton (Nvidia)

Prof. Yizhou Sun

Dr. Bradley Rees (Nvidia)

Prof. Chong Liu (UCLA Chem)

SCIENCE HUB FOR HUMANITY AND ARTIFICIAL INTELLIGENCE UCLA amazon

Uncertainty-aware Unsupervised and Robust Reinforcement Learning - Weitong Zhang

Thank You

Uncertainty-aware Unsupervised and Robust Reinforcement Learning – Weitong Zhang

Image Credits I

- Decision making for scientific discoveries and healthcare: GPT4 (https://chat.openai.com/)
- CDC website: <u>https://web.archive.org/web/20200618014344/https://www.cdc.gov/coronavirus/</u> 2019-ncov/covid-data/forecasting-us.html
- PCH table, Pearl's book: https://crl.causalai.net/crl-icml20.pdf
- Spherical harmonics: https://en.wikipedia.org/wiki/Spherical_harmonics
- Maze: <u>https://www.mazegenerator.net/</u>
- Unsupervised RL: <u>https://bair.berkeley.edu/blog/2021/12/15/unsupervised-rl/</u>
- Google search: <u>https://www.google.com</u>
- RL demonstration: https://commons.wikimedia.org/w/index.php?curid=57895741
- Go game: <u>https://commons.wikimedia.org/w/index.php?curid=15223468</u>
- Mouse-Maze solving: <u>https://www.youtube.com/watch?v=ZMQbHMgK2rw</u>

Image Credits II

- Issac Newton: <u>https://en.wikipedia.org/wiki/Isaac_Newton</u>
- Albert Einstein: <u>https://en.wikipedia.org/wiki/Albert_Einstein</u>
- IC: https://en.wikipedia.org/wiki/Integrated_circuit
- Tape ruler: https://en.m.wikipedia.org/wiki/File:Retractable_twenty_meter_tape_measure_2.jpg
- Vernier calipers: <u>https://i.ebayimg.com/images/g/FD8AAOSwex1kR9WN/s-I1600.jpg</u>
- Orange selection video: <u>https://www.youtube.com/watch?v=2J_SxL7FvM0</u>
- Seneca the Younger: https://en.wikipedia.org/wiki/Seneca_the_Younger
- Square wave: <u>https://commons.wikimedia.org/wiki/File:Square_Wave_Fourier_Series.svg</u>

References I

- [CR+, PNAS'22]: Cramer, Estee Y., et al. "Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States." *Proceedings of the National Academy of Sciences* 119.15 (2022): e2113561119.
- [SB+, PNAS'23]: Shea, Katriona, et al. "Multiple models for outbreak decision support in the face of uncertainty." *Proceedings of the National Academy of Sciences* 120.18 (2023): e2207537120.
- [HH+, WWW'24]: Huang, Zijie, et al. "Causal Graph ODE: Continuous Treatment Effect Modeling in Multiagent Dynamical Systems." *The Symbiosis of Deep Learning and Differential Equations III*. 2023
- [HSW'21]: Huang, Zijie, Yizhou Sun, and Wei Wang. "Coupled graph ode for learning interacting system dynamics." *Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining*. 2021.
- [SI+'22]: Seedat, Nabeel, et al. "Continuous-time modeling of counterfactual outcomes using neural controlled differential equations." *arXiv preprint arXiv:2206.08311* (2022).
- [MD+'22]: Ma, Jing, et al. "Assessing the causal impact of COVID-19 related policies on outbreak dynamics: A case study in the US." *Proceedings of the ACM Web Conference 2022*. 2022.
- [WVL'22]: Weltz, Justin, Alex Volfovsky, and Eric B. Laber. "Reinforcement learning methods in public health." *Clinical therapeutics* 44.1 (2022): 139-154.

References II

- [ZZG, NeurIPS'21]: Zhang, Weitong, Dongruo Zhou, and Quanquan Gu. "Reward-free model-based reinforcement learning with linear function approximation." *Advances in Neural Information Processing Systems* 34 (2021): 1582-1593.
- [ZZG, ICML'23]: Zhang, Junkai, Weitong Zhang, and Quanquan Gu. "Optimal Horizon-Free Reward-Free Exploration for Linear Mixture MDPs." *International Conference on Machine Learning. PMLR. 2023.*
- [PA+17]: Pathak, Deepak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. "Curiosity-driven exploration by self-supervised prediction." *International conference on machine learning, PMLR, 2017,* pp. 2778-2787.
- [PG+19]: Pathak, Deepak, Dhiraj Gandhi, and Abhinav Gupta. "Self-supervised exploration via disagreement." *International conference on machine learning. PMLR, 2019,* pp. 5062-5071.
- [BE+18]: Burda, Yuri, Harrison Edwards, Amos Storkey, and Oleg Klimov. "Exploration by random network distillation." *International Conference on Learning Representations. 2018.*
- [SS+, Nat. Comm.'24 (in press)]: Sheng, Hongyuan, et al. "Autonomous closed-loop mechanistic investigation of molecular electrochemistry via automation." (2023).
- [HZ+, ACS Meas. Au'22]: Hoar, Benjamin B., et al. "Electrochemical mechanistic analysis from cyclic voltammograms based on deep learning." *ACS Measurement Science Au* 2.6 (2022): 595-604.